The PLplot Plotting Library

Programmer's Reference Manual

Maurice J. LeBrun
Geoff Furnish, University of Texas at Austin

The PLplot Plotting Library: Programmer's Reference Manual
by Maurice J. LeBrun and Geoff Furnish

Version 5.0

Copyright © 1994 Geoffrey Furnish, Maurice LeBrun

Copyright © 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Alan W. Irwin
Copyright © 1999, 2000, 2001, 2002, 2003, 2004 Rafael Laboissiere

Copyright © 2003 Joao Cardoso

Copyright © 2004 Andrew Roach

Copyright © 2004,2008 Andrew Ross

Copyright © 2004 Arjen Markus

Copyright © 2005 Thomas J. Duck

Copyright © 2008, 2009 Hezekiah M. Carty

Abstract

The PLplot Plotting Library

Redistribution and use in source (XML DocBook) and “compiled” forms (HTML, PDF, PostScript, DVI, TeXinfo and so forth) with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (XML DocBook) must retain the above copyright notice, this list of conditions and the following disclaimer as
thefirst lines of thisfile unmodified.

2. Redistributionsin compiled form (transformed to other DTDs, converted to HTML, PDF, PostScript, and other formats) must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

Important: THIS DOCUMENTATION IS PROVIDED BY THE PLPLOT PROJECT “ASIS” AND ANY EXPRESS OR IMPLIED WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PLPLOT PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THISDOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Release version: 5.9.10

Release date: 2013-09-30

Table of Contents

(I gL oo (8 1o o H PP PRTR 1
O [gL oo (0o 1o o RSP PP PP PPPPTI 3
The PLplot PIOtNG LiDIaryooieeiiieiiii et 3
Getting a Copy of the PLPIOt PaCkageccovvuniiiiiiiiecci e 4
Installing and Using the PLPIOt Library ... 4
Organization of thiS ManUaluiiiiiiiiiii e 5
L600]0)Y/ 1T | £ O PP TPPPTTR 5
Additional COPYIIGNLSccouviiiiii e 6

00 1= o 1 £SO TP TPPPPTPUPPPIN 6
O oo ="t 111 011 oo PP TP PP PPPPPI 8
2. SIMPlE USE OF PLPIOL ..eueeeiiii et e e e eees 11
Plotting & SIMPIe Graphoooiiie e 11
INItIAlIZING PLPIOL ...t 11
Defining Plot SCAlES AN AXEScevuiiiiiie ettt 11
Labelling the Graphcoooueii e 12
Drawing the Graphcoouuiiii e 13
Drawing POINEScc.uuiiiiiiiiieiiit ettt e e e e et e e eabe e eees 13
Drawing LiNeS OF CUMNVEScoouuuiiiiiiieeeiii ettt et e e e eeeai e eees 13
Writing TeXt 0N @ Graphcooovuiiiiiie e 13
ATEA IS e 14
More ComMpPIEX GraphScoeeeiieieii et 14
FINISNING UP ettt et e et e e e e een 14
[N CASE OF EITOF ..ttt e e e et e e e e 14
3. AAvaNCed UsSe Of PLPIOL ...cveiiieiiii ettt 15
Command Line ATQUMENESciiiiieieii ettt e et e e e e e e enees 15
OULPUL DEVICES ...ttt ettt ettt e e et e e e e e enaans 16
Driver FUNCHIONS ... e 17
PLplot Metafiles and PIrenderooveeiiiiiiiiiie e 18
Family File OULIPULcoeeiieiiii e 20
INnteractive OULPUL DEVICESuiiiiiii ittt 21
Specifying the OQUIPUE DEVICEiiiiiiiieeiiii e 22
Adding FreeType Library Support to Bitmap DIivVerscccoovveeiiiiiiiiiieceeieeeein 24
Write a call back function to plot asingle pixel ..o, 24
INItIAliZE FrEETYPR ..ttt 24

Add A Command to redraw text (interactive driversonly)ccoocoeviveeiinnnnnen. 26

Add FUNCEION ProtOtYPES ... ceeeei ettt e e s 26

Add CloSiNg fUNCHIONSooiieiieiiiii e 27
View Surfaces, (Sub-)Pages, Viewports and Windowscoeuiieiiiiiinieiinineeeennnn. 27
Defining the VIBWPOITcoouuiiiiiii e 27
Defining the WINAOWcooouuiiiiii e 29
ANnotating the VIEeWPOrtccoouiiiii e 29
Setting up a Standard WIindOWoveiiiiiiiiiiice e 30
Setting Line AtHIDULESiiii e 30
Setting the Area Fill Patternoooiiiiiii e 31
SEIING COlOF ...ttt et 31
COlOr MDD ...t 31
L600] [0 g 1V = 1 TSP SUP PP UPPPPRR 32
Setting Character ANDULEScoouuiiii e 34
HEISNEY TONLS ...t 34
UNICOOE FONES ...ttt ettt e e e e e e eees 35

! TSP TSUUPPUPRPTN 37

plplotdoc

ESCape SEQUENCES 1N TEXE ...vvviiii i e e e e e e e e e een 37
Character Size adjUSIMENTiiii e e e 38
Three Dimensional SUrface PIOLSvvviiiiiiiii e 39
Contour and Shade PlOLSuuiiiiiiiieiii e eaeens 40
Contour PIOES FTOM €viiiiii e 40
Shade PIOtS from € ..o 41
Contour Plots from the Fortran 95 interfacecoveiiiviiiiii e, 41
Shade Plots from the Fortran 95 interfaceocoeviviiiiiiiiii e 41
Contour Plots from the Fortran 77 interfacecoveiiiviiiii e, 41
Shade Plots from the Fortran 77 interfacecoevviiiiii i 42
Legends and COlOr Darscooiuiiiiii e 42
4. Deploying programs that Use PLPIOLovvniiiic e 44
5. The PLplot Display Driver Familyoooouiiiiiii e 47
The XWin Driver (X-WINAOWS)ciiiiiiiiiieiii e e e e e e s e eanes 47
LIS B 11 SR 47
The AquaTerm Driver (MaC OS X) .uuiiuuieiiii i e e e e e e eaae s 47
The wxWidgets Driver (Linux, Mac OS X, WindOWs)cccoeevviiiiiiieiiinieiiiiecieeennn, 47
WXWIiAQELS DIIVEr BASICS ..uivviiiiiieiiieeie e et e e e s e e e e e et eea e e eanes 47

6. The PLplot Output Driver Familyc.iiiiiiiiiii e 49
THE GD DIIVET ..ttt e et e e e et e e e et e e e eate e e e eetenaeaeees 49
THE PDF DIIVEL ..ttt e et e et e e e e e e e eba e 49
The POSESCIIPL DIIVEL ..uuiiiieii e e e e e e e e e eaen 49
The TrueType POSISCIIPt DIIVEriiiiecii e e e 50
The LaTeX POSESCIIPE DIIVEY ...covuiiii e e e e 50
THE SVG DIIVEL ettt e e et e e et e e e e 50
1. Language BiNAINGSoovuiiiii i e e e e e e e e e e e e et e e et e e et eeaneeannaees 52
A - W I 0o 1= o [TP 55
L@ N T PP 55
LI L 21T 0o 1o P 55
THIN BINAING .vniiii e e e e e e e eees 55

The Thick BiNGINGScvvvniiiieii e e e e e e e e e eens 56
Standard Thick Binding Using Enhanced Namescccoveviiveiiineciineeeieee, 56
Thick Binding Using Traditional NameSc.oovviiiiiiiiieiie e eeiee e 57

The EXAMPIES .eeeiiei e e 57
Obtaining the SOfIWEAIEcccv e 57
Obtaining an Ada COMPILErcounii e 57
Download and install PLPIOLcouuiiiiiii e 58

The Adabindings to PLPIOLcovvniii e 58

How to use the Ada bindiNgSoviuiiiiiiii e 58
Ada 95 VErsuS Ada 2005couuieiiiiiiieiiiie e 58
GNAT Versus NON-GNAT ... e 58
Sample command [iNE PrOJECTuuivieiiiii e 59
Unique Features of the Adabindingsooooiiiiiiiii e 60
High-level features for simplified plottingccccoeeeiiiiiii i 60
Integer Options Given AdaNAMEScouuiiiiiiiiii e 62
ONE-0F S ettt et e s 63

Parts That Retain @ C FlaVOrcoovvuiiiiiii e e 64
V=TT | = Yoo [64
10 I T g o= OO 64
DOCUMENEBLION ...eivvieeeeeii e e e e et e e et e e e et e e e e et e e e eatn e e eeatnaeeeenes 64

N PP 64
(0001 o 1 =10 g Vo (== P 65
Ada 95 Versus Ada 2005uveiieiiiieiiiiie et 65
GNAT DEPENAENCE .. .cvvieiii it e e e e e r e eaaas 65

plplotdoc

[I o AN 0 (1 T 65

Notes for Apple Macintosh OS X USEIScvvvniiiiiciiiieiie e e e e e e e e e e 65
Using APPIE'S XCOOE IDEiviiiiii e e e 65
AGUAT BTN it 66
D PP 66

GINAT FOF OS X oottt ettt e et e et e e e e e eaa s 66

S T O = a0 1 7= o PP PTPRPTPR 67
9. A CH+ Interface fOr PLPIOL ...vueiieece e e 69
Motivation for the CH++ INEErTACEcuviiiiiii e 69
Design of the PLPIOt CH+ INEIfaCeccovniiiiicii e 69
Stream/ODbJECt TAENLILYivviieii e e 69
Namespace ManagEMENTvuiiri e aaas 70
Abstraction of Data LayOuLccuuiiiiiiiiiii e e e e 70

Callapsing the APl ... 71
Specializing the PLPpIot CH++ INtErfaceovvvviiii e 71
Status of the CH+ INEEIFACEvviieiie e 72

10. FOrtran 77 LanNQUAOEucvuieneinieeiti ettt iets et ea et eta et nea et s e tn st s e ta e e nata e e e ta e e raaeeanenaeenees 73
11, FOrtran 95 LanQUAGE . ..uovuieneiniiieittieiees e e e e e et e e it r e et e e e tn et et e e n et e e aneaeeanees 76
A @ O ' I o U= o[T 80
L@ N T PP 80

LI L 2T 0o [T o P 80

COre BiNAiNG ...ovviiiii e 80
OCaml-specific variations to the core PLplot APl ..., 80

OCaml high level 2D plotting APlciveieii e 81

The EXAMPIES ..ee i e e 81
Obtaining the SOfIWEAIEccvvii e e 81
Obtaining the OCaml COMPILErccuiiiiiiiei e 81

How to use the OCaml bindingSoevuiiiiiii e 81

How to setup findlib for use with the OCaml bindings..........c.cccoovviiiiiiiieiins 81

Sample command line project (Core API)covniiiiiiii e 82

Sample command line project (OCaml-specific API)covviviiiiiiiiieieeeis 82

Sample tOPIEVEl PIOJECTovv i 83

KINOWN TSSUBS ...ttt ettt e e e et e e e e e e e e e eneees 84

13. Using PLPIOE from Perl ...oeeie e 85
14. Using PLPIOL from Pythono.uiiiiii e 87
15. USINg PLPIOE frOM TCl covniiiii e e 88
Motivation for the Tcl Interface to PLPIOLcovviiiiiii e, 88
Overview of the Tcl Language Bindingco.veiiiiiiiiiiieci e 89

The PLplot Tcl Matrix EXTENSIONuiiiiiiiieciii e e e e e e e e 91
Using Tcl Matrices from TCl .o.vuiiiiiii e 91

Using Tcl MatriceS from C ...oovvniiiiiiiii e e e 93

Using Tcl Matrices from C ...oouuiiiiicii e e e e 93

Extending the Tcl MatriX facilityoooeiiiiiiiii e, 94
Contouring and Shading from Tlcoooiiiiiii e 95
Drawing a Contour Plot from Tcloooviiiiiiii e, 95

Drawing a Shaded Plot from TClooiiiiiiiii e 97
Understanding the Performance Characteristics of Tclcccoveiiiiiiiiiiiiiiie e, 97

16. Building an Extended WISHooiiiiiiiii e 99
Fgl oo (W el o I (o TN I PSP 99
MOLIVELION FOr TCl it 99
Capabilities Of TCl ..ovviiii e e 99

ACUITING TCl ooeiei e e 100

F g1l (8o (oo TN (o TN I PR 100
INtroduction tO [INCr TCl] ...iirnii e e 101

plplotdoc

PLplOt EXIENSIONS T0 TCl 1.vuiiiiiiciii i e e e e e 101
Custom EXLENSIONS 1O TCl ovvvniiiiiiieecei e 102
WISH CONSLIUCHION vttt e e 102
WISH LINKING oottt e e e e e e e e e e e e et eeeaeeaanaees 104
WISH Programmingcouueieieeiiieeiee e e e e e e e e e e s e et e e e e esanaesanaees 104
17. Embedding Plots in Graphical User INterfacesccoovviiiiiiiiiiiii e, 105
[V L REFEIENCE ...ttt ettt e ea 106
RGN 1] o] oo r="o] Y/ 112
19. The Common AP fOr PLPIOLuiiiiiii e e e e e e 113
pl _setcont | abel f or mat : Set format of numerical label for contours................. 113
pl _set cont | abel par am Set parameters of contour labelling other than format
Of NUMENICAl 1ADE] ... e e 114
pl adv: Advance the (SUB-)Pageovveiiii e 114
pl ar c: Draw acircular or elliptical @rcccoeeviiiiiiii i 114
pl axes: Draw abox with axes, etc. with arbitrary originccc.ccoeveiiiiiinnnn, 115
pl bi n: Plot a histogram from binned datacc.cciveiiiiiiiiiic e, 117
Pl DOP: BEJIN @ NEW PAOEiiiiieiiie e e e e e e e et e e e e an s 117
pl box: Draw aboxX With @XES, BICcviviiiiii e e e e e 118
pl box3: Draw a box with axes, etc, iN 3-dccooviiiiiiiii e, 119
pl cal ¢c_wor | d: Calculate world coordinates and corresponding window index
from relative device COOrdINGLESuiiiiiii i e 121
pl cl ear: Clear current (SUD)PAgEceuiviniiiii e 122
pl col 0: Set color, MEP0ccvuiiiiiiei e e 122
Pl col 1: Set color, MEPLcvvniiii e e e 123
pl col or bar : Plot color bar for image, shade or gradient plots.............c.cceeeeennnis 123
[0 e 0] | A @ g1 o1 | g o] o 126
pl cpst r m Copy state parameters from the reference stream to the current stream.... 127
(O I=Y g Yo =l aTo I o] Ko 1T o S === T o 128
pl end1: End plotting session for current Streamcceveviiiiiiieeiin e, 128
pl env0: Sameaspl env but if in multiplot mode does not advance the subpage,
g == o [o= | RN 128
pl env: Set up standard window and draw BOXccceeeiiiieiiiiiiiii e 130
Pl €OP: EJECE CUIMENE PAGE .ovvniii e e e e e e e e e e et e e aneees 132
Pl errX: Draw X eTOr Darccoiiiiiiii e 132
Plerry: Draw y erOr Darc.oiiiiiiii 133
pl f amadv: Advance to the next family file onthe next new page..........c.ccceeeeennnens 133
pl fill: Draw filled POlYgonccoouiiiiiiii e 133
pl fill 3:Draw filled polygon in 3Dcoouiiiiiiiiiiiciie e 134
pl f1 ush: Flushes the Output SIreamccuviiiiiiiii e, 134
pl font: Set character fONtcooviiii i 134
pl font | d: Load character fONtccoeeiuiiiiiiii e 135
pl gchr : Get character default height and current (scaled) heightcccceeeeinnnis 135
pl gcol 0: Returns 8-hit RGB values for given color from color map0 135
pl gcol Oa: Returns 8-hit RGB values and double alpha value for given color from
(oro] o gl 12700 S PPN 136
pl gcol bg: Returns the background color (cmap0[Q]) by 8-bit RGB value............... 136
pl gcol bga: Returns the background color (cmapQ[0]) by 8-bit RGB value and dou-
ble aAlpha VAIUE.ciiiii e 136
pl gconpr essi on: Get the current device-compression Settingcoccevvevvnnnnne. 137
pl gdev: Get the current device (keyword) NaMeccccevviviiiiiiiiciiii e, 137
pl gdi dev: Get parameters that define current device-space window 137
pl gdi ori: Get plot OrieNtalionccuuiiiieiiie e e 137
pl gdi pl t : Get parameters that define current plot-space window 138
pl gf am Get family file parameterscooovieiii i 138

Vi

plplotdoc

pl gf ci : Get FCI (font characterization integer)oovevveeiiiieiiii e 138
pl gf nam Get output file@ NAMEcoevniii e, 139
pl gf ont : Get family, style and weight of the current fontccoooeiiiiis 139
pl gl evel : Get the (current) run levelcooiiiiiiiiii e, 139
Pl gpage: Get PAgE PArAMELESS ... civu i ee e e e e e e e e e e e e eaes 140
pl gr a: Switch to graphiCS SCrEeNcovviiiii e 140
pl gr adi ent : Draw linear gradient inside polygoncccooevviviiiiiiiiiiieviieeeieee, 140
pl gri ddat a: Grid datafrom irregularly sampled data............cccocevveiiiiiiiinninnnnns 141
pl gspa: Get current SUDPAgE ParamMELErScevuuevirnieiiie e e eeee e e e e e e e eaneens 142
pl gst rm Get current Stream NUMDETcovuiiiiiiiiiii e 143
pl gver : Get the current library version NUMDErccocovieiiiiiiiieein e, 143
pl gvpd: Get viewport limits in normalized device coordinates.................cceeeeennnnns 143
pl gvpw: Get viewport limitsin world COOrdinateScoevvvviiiiieiiiieiiieeeeeeeennn, 143
Pl gXxaxX: Get X aXiS PArAMELErSccvuneiiiieeii e e e et e e e e e e e e e e eeanns 144
Pl gyax: Get Y aXiS PArAMELErScceuuiiiiieiiieeei e e e e e e e e e e e e e eeaans 144
Pl gzaX: GEt Z aXiS PArAMELENS ...u.iivi e eei e e et e e e e e e e e e e e eaes 144
pl hi st : Plot a histogram from unbinned datac..ccooeeiiiiiiin i, 145
pl hl srgb: Convert HLS color tO RGBc..ooviiiiiiiiii e 145
pl i magefr: Plot a2D matrix using color Maplccoevvveviiiiiiiieeiiiieceeeaieeeen 146
pl i mage: Plot a2D matrix using color mapl with automatic colour adjustment 147
Plinit:Initiaize PLPIOL ...cccuniiii e 147
pl j oi n: Draw aline between tWo POINESc.uiviiiiiiii e e 148
pl | ab: Simple routine to write [abelScooiviii i, 148
pl | egend: Plot legend using discretely annotated filled boxes, lines, and/or lines of

LS Y01 oo £ PR 148
pl | i ght sour ce: Setsthe 3D position of the light source............ccooeeviiiiiieennnn.. 151
PlLiNEIDraw aliNg coouniii e 152
Pl 1ine3: Draw alinin 3 SPACEuocvuniiiiii e e e e e 152
Pl Sty: SHECt NG SYIE covniii e 152
pl map: Plot continental outline in world coordinates.ccooevviviiiineiiiieeei e, 153
pl meri di ans: Plot latitude and longitude lines.c.ccoeveiiiiiiiii e, 153
pl mesh: Plot SUrface MESH ... cove e 154
pl meshc: Magnitude colored plot surface mesh with contour.ccoeeennns 155
pl mkst r m Creates a new stream and makes it thedefaultc.oooeeiveinennnn. 156
pl nt ex: Write text relative to viewport boundaries.............ccoeveviviiiineiine e, 156
pl nt ex3: Write text relative to viewport boundariesin 3D plots.ccoccvvevvnnennnn. 157
pl ot 3d: Plot 3-d SUIface PlOtveeicie e 158
pl ot 3dc: Magnitude colored plot surface with contour.cccccoeveiiiieinneennnn. 158
pl par seopt s: Parse command-line argumentsccceuveviiiieiiieeiiiieeieeeaeeeen 159
pl pat : Set area fill Patterncooeviiiii 160
pl pat h: Draw aline between two points, accounting for coordinate transforms. 160
pl poi n: Plot aglyph at the specified POINtScccvviiiiiieiiiiii e, 161
pl poi n3: Plot a glyph at the specified 3D POINtScoevvieiiiieiiiieeie e, 161
pl pol y3: Draw apolygon iN 3 SPACEccuuuiiiiiieiiieeei e e e e e e 162
pl prec: Set precision in NUMENC 1abelSccooviiiii i 162
pl psty: Select areafill Patterncooovviiiiie 163
pl pt ex: Write text inside the VIEWPOItcc.veiiiiiiiiiic e, 163
pl pt ex3: Write text inside the viewport of a3D plot.ccoevviviiiiiiiiie, 163
pl r andd: Random number generator returning areal random number in the range

05 PSPPI 164
pl r epl ot : Replays contents of plot buffer to current device/file................ooeeeen.. 164
pl rgbhl s: Convert RGB color to HLS ..o, 165
Pl SCHr: Set CharaCter SIZEuiiiiiiii e 165
pl scmap0: Set color map0 colors by 8-bit RGB valUuescoocvvvviviiiieiieeiinnnns 165

Vii

plplotdoc

pl scmapOa: Set color map0 colors by 8-hit RGB values and double alphavalue....... 166
pl scmapOn: Set number of colorsin color Map0ccccvvveviiiiiiiiiiii e 166
pl scmapl: Set color mapl colors using 8-bit RGB ValUEScccceevvvveiiineeinnnn, 166
pl scmapla: Set color mapl colors using 8-bit RGB values and double alpha values.
... 167
pl scmapll : Set color mapl colors using a piece-wise linear relationship 167
pl scmapll a: Set color mapl colors using a piece-wise linear relationship 169
pl scmapln: Set number of colorsin color maplccooevveviiiiiiiiiciiiiecee e 169
pl scol 0: Set agiven color from color map0 by 8 bit RGB value.......................... 169
pl scol Oa: Set agiven color from color map0 by 8 bit RGB value and double alpha

12 1 =P 170
pl scol bg: Set the background color by 8-bit RGB value.............c.cccovevivneeinnnnnnn. 170
pl scol bga: Set the background color by 8-bit RGB value and double alpha value.
... 171
pl scol or : Used to globally turn color output on/offcccoiiiiiiiiiiie, 171
pl sconpr essi on: Set device-compression levelcocceviviiiiiinciin e 171
pl sdev: Set the device (Keyword) NAMEcouiiiiiiiiii e 172
pl sdi dev: Set parameters that define current device-space window 172
pl sdi nap: Set up transformation from metafile coordinates................cccoveevnennnn. 172
pl sdi ori: Set plot Orentationcoevuiiiiiieei e 173
pl sdi pl t : Set parameters that define current plot-space windoweeee. 173
pl sdi pl z: Set parameters incrementally (zoom mode) that define current plot-space
17T [0 PP 173
pl seed: Set seed for internal random number generator.coceeeeviiieiieeeinns 174
pl sesc: Set the escape character for text StringScovevviiiiiiiciie e, 174
pl set opt : Set any command-ling OPtioNc.cciieiiiiiiiii e 175
pl sfam Set family file parameterscooovii i 175
pl sfci : Set FCI (font characterization iNteger)ccoevvvieviiiiiiiieeiieece e, 175
pl sfnan Set output file NAMEiii i 176
pl sf ont : Set family, style and weight of the current fontccc.oeviienn. 176
pl shades: Shade regionson the basisof valuecccooviiiiiiiiiii i 176
pl shade: Shade individual region on the basisof value.................ccoooiiiinnn. 178
pl shadel: Shade individual region onthe basisof value...............ccoeeeiiieiinennnnn. 179
pl sl abel f unc: Assign afunction to use for generating custom axis labels............. 181
pl smaj : Set length of M or tickScoceviiiiii 181
pl smem Set the memory areato be plotted (RGB)cccvevviiiiiiiiiiiiccieeceeeeenn, 182
pl smena: Set the memory areato be plotted (RGBA)c.voevvviiiiiiiiiiieciieeeeeee, 182
pl sm n: Set length of MINOr tiCKScovniiii e 182
O I o G IS = a0 1] g1 - 1 o 183
Pl Spage: Set PAJE PArAMELENSuuiivi e e 183
pl spal 0: Set the colors for color table 0 fromacmap0 file.........c.cccoveiiiiiiinnennnnn. 183
pl spal 1: Set the colors for color table 1 fromacmaplfile.........c.cccoeeviiviiinnnnnnn. 184
pl spause: Set the pause (on end-of-page) StatuScceevneveriiiiiiieeiiiecie e, 184
pl sstrm Set current OULPUL SLIEAMcvvvieiiii e e e e e e 184
pl ssub: Set the number of subpagesin X and yccooeviviiiiiiiiiiiin e, 184
Pl SSYNT Set SYMDOl SIZE ...ovviciii e 185
plstar: INtializationoiiiiiii e 185
plstart: INLaliZationcooiiiiiii e 185
pl st ransf or m Set agloba coordinate transform functionccoeeevvne. 186
pl string: Plot aglyph at the specified points..........cooceviieiiiiiii e, 186
pl string3: Plot aglyph at the specified 3D POINtS........cccovvviiiiiieiiiiciineee e 186
pl stripa: Addapointtoastripchartcoooviiiiiiiii 187
pl stripc: Create ad-pen Strip Chartooeiiiiiiii e 187
pl stri pd: Deletes and releases memory used by astripchartcccoeeeveennnnn. 188

viii

plplotdoc

Pl StYl: SEt NG SIYIE covniiee e 188
pl sur f 3d: Plot shaded 3-d surface plotoevviiiiiiiii e, 189
pl f surf 3d: Plot shaded 3-d surface plotcoovviiiiiiiiii e 190
pl svect : Set arrow style for vector PlotScccuiveiiiieiiiicii e 191
pl svpa: Specify viewport in absolute coordinatesccoeevvveviieiiinieii e, 191
Pl SXaX: St X aXiS PArAMELEIS ...uuiiiieeiii e ee e e e e e e e e e e e e e e e e e ees 192
Pl SyaX: Set Yy axiS PAraMELErS ...u.ivieieiii i ee e e e e e e e e e e e 192
pl sym Plot a glyph at the specified PointScoooviiiiiiiii e, 192
Pl SZaX: St Z aXiS PATAMELEN'Svvi i e e 193
Pl t ext : SWItch tO teXt SCrEENccvv i 193
pl ti mefnt: Setformat for date/timelabels........ccooiiiiiiiii i, 193
pl vasp: Specify viewport using aspect ratio ONlyccooevviieviiieeiiiieiiineee e, 194
O IV =Y ot VA= oi (o gl o [) P 194
pl vpas: Specify viewport using coordinates and aspect ratioccoevevvneeennnnnns 195
pl vpor : Specify viewport USing COOTdiNAEESccuuveiinieeiiieiie e e e e 195
pl vst a: Select standard VIEWPOITcccuuiiiiiiiiicii e 196
pl w3d: Set up window for 3-d plOttingcoeeviiiiiicii e 196
pl Wi dt h: Set pen Widthoiii 197
pl wi nd: Specify world coordinates of viewport boundaries...............c..ccceeeevnnnn. 197
pl xor nod: Enter or [€ave XOr MOuviiiiieiiieii e 197
20. The Specialized C APl for PLPIOLcovviiiii e 198
Pl @bort: Error @ortccouuiiiiiii e 198
pl Al l oc2dG i d: Allocate ablock of memory for use asa 2-d grid of type PLFLT.
... 198
pl C ear Opt s: Clear internal option table info structure.c..ccoeeeiiievineennnnn. 198
OIS T A 1 o = 199
pl Free2dG i d: Free the memory associated with a 2-d grid allocated using
[T I o Yo o [I o 199
pl Get Cur sor : Wait for graphics input event and trandate to world coordinates....... 199
plgfile: Getoutput filehandleooiiiiiiii e 199
pl Mer geOpt s: Merge use option table into internal info structure. 200
pl M nMax2dGr i d: Find the minimum and maximum of a 2d grid allocated using
[T I o Yo o [I o 200
pl Opt Usage: Print usage and Syntax MESSA0E.evvvuieernieiiiieeiiieeiiieeeieeenneeenns 200
pl Mer geOpt s: Reset internal option table info structure.cccocovviviieiinenennn. 201
pl sabort: Set abort handlerccooviiiiiiiii 201
pl Set Usage: Set the strings used in usage and Syntax MESSAYES.ccevvevvvneenenn. 201
plsexit: Setexit handlercoooviiiiii 201
pl sfile:Setoutputfilehandle........cccocoiiiiiiiiii e, 202
pl t r O: Identity transformation for grid to world mappingcccceeevvveviiiieeinnennnnn. 202
pl t r 1: Linear interpolation for grid to world mapping using singly dimensioned co-
(0100 10T (IR = Y= PR 202
pl t r 2: Linear interpolation for grid to world mapping using doubly dimensioned co-
ordinate arrays (column dominant, as per normal C 2d arrays)cceeevvveviniernnnennnn. 203
PLGraphicsin: PLplot Graphics INput SETUCLUNEcccvviiiieiiiiiecie e 203
PLOptionTable: PLplot command line options table structurecccocoeveevneennnn. 204
21. The Specialized Fortran 95 APl for PLPIOtocovviiiiiic e 205
pl cont : Contour plot for FOrtran 95cceeiviiiiiiieee e 205
pl shade: Shaded plot for FOrtran 95coooeiiiiiiiiii e 207
pl shades: Continuously shaded plot for Fortran 95ccocceiviiiiieiiinneiineeeennn, 207
pl vect : Vector plot for FOrtran 95cooiiiiiiiiii e 207
pl mesh: Plot surface mesh for Fortran 95coocviiiiiii i 207
pl ot 3d: Plot 3-d surface plot for Fortran 95ccooviiii i, 207
pl par seopt s: parse arguments for Fortran 95ccooevviiiiiiii i 207

plplotdoc

pl sesc: Set the escape character for text strings for Fortran 95...............ccoeveeennns 208
22. The Specialized Fortran 77 APl for PLPIOtocovviiiii e, 209
pl conO: Contour plot, identity mapping for Fortran 77ccooeeviiiiiinecin e, 209
pl conl: Contour plot, general 1-d mapping for Fortran 77cccccoevvvieevnnen. 209
pl con2: Contour plot, general 2-d mapping for Fortran 77cccccoevevieeinnnen, 210
pl cont : Contour plot, fixed linear mapping for Fortran 77ccoeeviiveivneennnnn. 210
pl vecO: Vector plot, identity mapping for Fortran 77ccooeeviieeiiievineeiieeenn, 211
pl vecl: Vector plot, general 1-d mapping for Fortran 77ccccccoeveiiieiiineennnnn, 211
pl vec2: Vector plot, general 2-d mapping for Fortran 77ccccccoeveiiieiinnecennnn. 211
pl vect : Vector plot, fixed linear mapping for Fortran 77ccoocooivevineeinneennnn. 212
pl mesh: Plot surface mesh for FOrtran 77coocoiieiii i 212
pl ot 3d: Plot 3-d surface plot for FOrtran 77ccccoeviiiieiii e, 212
pl par seopt s: parse arguments for FOrtran 77cccoeeviiiiiiiieeiiie i 212
pl sesc: Set the escape character for text strings for Fortran 77ccoeeeevns 213
23. API compatibility definitioncoooiiiiiiiii s 214
What iS TN the API? e 214
Regression test for backwards compatibilityccoieviiiiiiii e, 218
24, Obsolete/Deprecated APl fOr PLPIOLciveii e 219
[Y I I O = e U (= 0 = o = N 219
o] o o] IS~ o | [219
pl hl s: Set current color by HLS ..o, 219
pl HLS RGB: Convert HLS Color tO RGBcciviiiiiiiicii e 219
Pl page: BEgIN @NEBW PAJE .. .cuuiiiiiiiii e e e e e e e 220
pl rgb: Setline color by red, greenooviiiii i 220
pl rgbl: Setline color by 8-bit RGB VAlUESccvviiiiieiiiicicee e, 220
25. Internal C functions in PLPIOLooviiiiiii e 221
pl P_checkdri veri ni t : Checksto seeif any of the specified drivers have been
LU= T2 o PP 221
pl P_getinitdriverlist: Gettheinitiaized-driver listc..ccoeveiiierinennnn. 221
26. Notes for each Operating System that We SUPPOITccvuveiiieiiiiieiiiece e, 222
LiNUX/UNIX NOEES ...eeveieeieii et e e e e et e e e e re e 222
Linux/Unix Configure, Build, and Installationcccooeviiiiiiiiiiiiicceeeen, 222
Linux/Unix Building of C Programmes that Use the Installed PLplot Libraries.... 222
WINAOWS NOEES ...oveieiii e e e e et e e e e et e e e eata e eeeees 222
Windows Configure and BuUildccooouiiiiiiiiii e, 222
27. The PLPIOt LIBrariescccouuiiiici e e e e e e 223
BiNAiNgS LIDIariEscvvecii i e 223
The PLPIOt Core Libraryccoouiiiiii e 223
ENhancement LiDraries ooveeui ettt e et e 223
The CSIRO Cubic Spline Approximation Libraryccccccoeveiiiiiiiiiiinennnnnn, 223
The CSIRO Natural Neighbours Interpolation Libraryc.ccooeeviiiiiiiniinnns 224
The QSAS Time Format Conversion Librarycooovviiiiiiiiiiieeenn, 224
Device-ariver LIDrarieso eaens 224

List of Tables

3.1. PLplot Terminal OULPUL DEVICESccuuuiiiiiiii ettt eeeens 16
3.2. PLPIOt File OULPUL DEVICES ...ttt ettt ettt e e 17
3.3, FCI INEEIPrELBHIONeevti ettt et e e et e e ettt e e et et e e e et reeeert e e eennnaeeees 37
3.4. Roman Characters Corresponding to Greek CharaCterscouvuiiviiiiiieiiiiiieeeeieeeeii e 38
19.1. Examples Of iNtErPOIaIIONccouuueiiiiie e 168
19.2. BOUNAS ON COOTAINGLES ... ieeeeiiie ettt ettt et e et e et e e et e e e e 168
27.1. BindingS LiBraries oo 223

Xi

Part I. Introduction

Table of Contents

O [gL oo (0 1o o R PP PPPPTI
The PLplot PIOING LiDIaryooieiiei e
Getting a Copy Of the PLPIOt PaCKAgEcoviiiieiiiii e
Installing and Using the PLPIOL LiDrarycocouuiiiiiiiiiii e
Organization of thiS MaNUaLuiiiiiiiiii e
1600701/ 1T | £ ST OO PP

Additional COPYIIGNLScoovtieiiii e
LG 1= o 1 £ PUPPPTPTPPPIN

Chapter 1. Introduction
The PLplot Plotting Library

PLplotisalibrary of Cfunctionsthat are useful for making scientific plots from programswrittenin C, C+
+, Fortran77, Fortran95, Java, Octave, Perl, Python, and Tcl/Tk. The PLplot project is being devel oped by
aworld-wideteam who interact viathe facilities provided by SourceForge (http://sourceforge.net/projectsy
plplot)

The PLplot library can be used to create standard x-y plots, semi-log plots, log-log plots, contour plots,
3D plots, shade (gray-scale and color) plots, mesh plots, bar charts and pie charts. Multiple graphs (of the
same or different sizes) may be placed on a single page with multiple lines in each graph. Different line
styles, widths and colors are supported. A virtualy infinite number of distinct area fill patterns may be
used. There is full unicode support in the PLplot library, and most of the display drivers are capable of
displaying any of the millions(?) of characters in the unicode standard. Those driver that are not unicode
enabled can still display amost 1000 characters in the extended character set. Thisincludes four different
fonts, the Greek alphabet and a host of mathematical, musical, and other symbols. A variety of output
devices and file formats are supported including a metafile format which can be subsequently rendered to
any devicel/file. New devices and file formats can be easily added by writing adriver routine. For example,
we have recently added a postscript driver with TrueType font support (PSTTF), aSVG filedriver and a
PDF file driver. A wxWidgets interactive driver is currently in devel opment.

PLplot was originally developed by Sze Tan of the University of Auckland in Fortran-77. Many of the
underlying concepts used in the PL plot package are based on ideas used in Tim Pearson's PGPLOT pack-
age. Sze Tan writes:

I'm rather amazed how far PLPLOT has travelled given its origins etc. | first used PG-
PLOT onthe Starlink VAX computerswhile | was agraduate student at the Mullard Ra
dio Astronomy Observatory in Cambridge from 1983-1987. At the beginning of 1986,
| was to give a seminar within the department at which | wanted to have a computer
graphics demonstration on an IBM PC which was connected to a completely non-stan-
dard graphics card. Having about a week to do this and not having any drivers for the
card, | started from the back end and designed PLPL OT to be such that one only needed
to be able to draw aline or a dot on the screen in order to do arbitrary graphics. The
application programmer's interface was made as similar as possible to PGPLOT so that
| could easily port my programs from the VAX to the PC. The kernel of PLPLOT was
modelled on PGPLOT but the code is not derived from it.

The C version of PLplot was developed by Tony Richardson on a Commodore Amiga. In the process,
several of the routines were rewritten to improve efficiency and some new features added. The program
structure was changed somewhat to make it easier to incorporate new devices. Additional features were
added to allow three-dimensional plotting and better access to low-level routines.

PLplot 5.0 is a continuation of our work on PLplot 4.0, which never got widely distributed. It became
clear during thework on 4.0 that in order to support an interactive driver under Unix (using Tcl/Tk), many
additions to the basic capabilities of the package were needed. So without stopping to fully document and
bug-fix the 4.0 additions, work on 5.0 was begun. The result is that a very capable PL plot-based widget
for the Tk toolkit has been written. This widget can manipulate the plot (zoom/pan, scale, orient, change
colors), as well dump it to any supported device. There are help menus and user customization options.
These are still in the process of being documented.

Other changes include the introduction of a new color palette (cmapl) for smooth color shaded images
(typicaly for 2d or 3d plots—inwhich color represents function intensity), support for color fill plots, and

http://sourceforge.net/projects/plplot
http://sourceforge.net/projects/plplot

Introduction

lots more cool stuff. The manual has been rewritten in LaTeXinfo, so that there is now a printed version
and an online (info) version of the document. The manual is still in a state of flux and will be fleshed out
in more detail in later updates.

Some of the improvements in PLplot 5.0 include: the addition of several new routines to enhance usage
from Fortran and design of a portable C to Fortran interface. Additional support was added for coordinate
mappings in contour plots and some bugs fixed. New labelling options were added. The font handling
code was made more flexible and portable. A portable PL plot metafile driver and renderer was devel oped,
allowing one to create a generic graphics file and do the actua rendering later (even on a different sys-
tem). The ability to create family output files was added. The internal code structure was dramatically re-
worked, with elimination of global variables (for amore robust package), the drivers rewritten to improve
consistency, and the ability to maintain multiple output streams added. An XFig driver was added. Other
contributions include Clair Nielsen's (LANL) X-window driver (very nice for high-speed color graphics)
and tektronix file viewer. At present, Maurice LeBrun and Geoff Furnish are the active developers and
maintainers of PLplot.

We have attempted to keep PLplot 5.0 backward compatible with previous versions of PLplot. However,
some functions are now obsolete, and many new ones have been added (e.g. new contouring functions,
variable get/set routines, functions that affect label appearance). Codes written in C that use PL plot must
be recompiled including the new header file pl pl ot . h beforelinking to the new PLplot library.

PLplot is currently known to work on the following systems: Unix/Linux, Mac OS-X and Windows XP.
The Unix/Linux version is the best supported of these possibilities. The PLplot package is freely distrib-
utable, but not in the public domain. See the section called “ Copyrights’ for distribution criteria.

We welcome suggestions on how to improvethis code, especially in the form of user-contributed enhance-
ments or bug fixes. If PLplot is used in any published papers, please include an acknowledgement or ci-
tation of our work, which will help us to continue improving PLplot. Please direct all communication to
the general PLplot mailing list, plplot-general @lists.sourceforge.net.

Getting a Copy of the PLplot Package

At present, the only mechanism weare providing for distribution of the PL plot isby electronic transmission
over the Internet. We encourage others to make it available to users without Internet access. PLplot is
a SourceForge project and may be obtained by the usual SourceForge file release and anonymous svn
repository access that is made available from links at http://sourceforge.net/projects/plplot.

Installing and Using the PLplot Library

Theinstallation procedure is by necessity system specific; installation notes for each system are provided
in Chapter 26, Notes for each Operating System that We Support. The procedure requires that all of the
routines be compiled and they are then usually placed in alinkable library.

After the library has been created, you can write your main program to make the desired PLplot calls.
Example programsin C, C++, Fortran77, Fortran95 and Java areincluded as aguide. Plots generated from
the exampl e programs are shown here [http://plpl ot.sourceforge.net/examples.php].

Y ou will then need to compile your program and link it with the PLplot library(s). See Chapter 26, Notes
for each Operating System that We Support for more details).

You can aso use Tcl/Tk, Perl and Python scripts to generate plots using the PLplot libraries. Examples
of these possibilities are also included as a guide.

http://sourceforge.net/projects/plplot
http://plplot.sourceforge.net/examples.php
http://plplot.sourceforge.net/examples.php

Introduction

Organization of this Manual

The PLplot library has been designed so that it is easy to write programs producing graphical output
without having to set up large numbers of parameters. However, more precise control of the results may
be necessary, and these are accommodated by providing lower-level routines which change the system
defaults. The manual first describes the overall process of producing a graph using the high-level routines
(see the section called “Plotting a Simple Graph”). For a discussion of the underlying concepts of the
plotting process and an introduction to some of the more complex routines (see Chapter 3, Advanced Use
of PLplot). An alphabetical list of the user-accessible PLplot functions with detailed descriptionsis given
in the reference section of the manual (see Chapter 19, The Common API for PLplot).

Because the PLplot kernel is written in C, standard C syntax is used in the description of each PLplot
function. If you have difficulty interpreting the call syntax as described in this manual, please refer to
part 111, Language Bindings. This manual includes: C (Chapter 8, C Language), C++ (Chapter 9, A C+
+ Interface for PLplot), Fortran 95 (Chapter 11, Fortran 95 Language), Fortran 77 (Chapter 10, Fortran
77 Language), Java (???), Tcl (Chapter 15, Using PLplot from Tcl), Perl (Chapter 13, Using PLplot from
Perl) and Python (Chapter 14, Using PLplot from Python). Since PLplot has a long history, bindings to
your language of choice are probably available though not necessarily in the PLplot distribution. It is a
good ideato ask around and do a quick search before rolling your own.

The meaning of the function (subroutine) arguments is typically the same regardless of what language
you are using to call PLplot (but there are some exceptions to this). The arguments for each function are
usually specified in terms of PLBOOL, PLINT ,and PLFL T—these are the internal PL plot representations
for logical, integer, and floating point, and aretypically azero (false) or non-zero (true) contained in along,
along, and afloat (or aLOGICAL, INTEGER, and a REAL, for Fortran programmers). See Chapter 8,
C Language for more detail.

Most of the output devices supported by PLplot arelisted in Chapter 5, The PLplot Display Driver Family
and Chapter 6, The PLplot Output Driver Family, along with description of the device driver--PLplot
interface, metafile output, family files, and vt100/tek4010 emulators.

Copyrights

The PLplot package may be distributed under the following terms:

This library is free software; you can redistribute it and/or
nmodify it under the terns of the GNU Li brary General Public

Li cense as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any |ater version.

This library is distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the GNU
Li brary General Public License for nore details.

You shoul d have received a copy of the GNU Library General Public
Li cense along with this library; if not, wite to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

The text of this license is given in the file COPYING.LIB in the distribution directory. Exceptions are
noted below.

Introduction

Theintent behind distributing PLplot under the LGPL isto ensure that it continuesto evolve in a positive
way, while remaining freely distributable. Note in particular that either open-source or proprietary code
can be linked to LGPLed code such as PLplot, see the interpretation here [http://www.gnu.org/phil oso-
phy/license-list.ntml]. Full details of the LGPL are given here [http://www.gnu.org/copyleft/lesser.html].

Additional Copyrights

The start up code used in argument handling (uti | s/ pl render. c andsrc/ pl args. c) ispartialy
derived from xt er m ¢ of the X11R5 distribution, and its copyright is reproduced here:

LR S S R R O O O R S O O O I O

Copyright 1987, 1988 by Digital Equi prent Corporation, Mynard,
Massachusetts, and the Massachusetts Institute of Technol ogy, Canbridge,
Massachusetts.

Al'l Rights Reserved

Perm ssion to use, copy, nodify, and distribute this software and its
docunent ati on for any purpose and w thout fee is hereby granted,

provi ded that the above copyright notice appear in all copies and that
both that copyright notice and this pernission notice appear in
supporting docunmentation, and that the nanmes of Digital or MT not be
used in advertising or publicity pertaining to distribution of the
software without specific, witten prior perm ssion.

DI G TAL DI SCLAI M5 ALL WARRANTI ES W TH REGARD TO THI S SOFTWARE, | NCLUDI NG
ALL | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS, | N NO EVENT SHALL
DI G TAL BE LI ABLE FOR ANY SPECI AL, | NDI RECT OR CONSEQUENTI AL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS,
VWHETHER I N AN ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON,
ARI SING QUT OF CR I N CONNECTI ON W TH THE USE OR PERFORMANCE OF THI S
SCOFTWARE.

LR S S R R O O O S S O R O O O

Any filethat is explicitly marked as "public domain” is free from any restriction on distribution.

Any file that has a explicit copyright notice may be distributed under the terms of both the LGPL and
whatever stated conditions accompany the copyright.

Credits

PLplot 5.0 was created through the effort of many individuals and funding agencies. We would like to
acknowledge the support (financial and otherwise) of the following institutions:

» Thelnstitute for Fusion Studies, University of Texas at Austin
e The Scientific and Technology Agency of Japan

* Japan Atomic Energy Research Institute

» Duke University

» Universitede Nice

http://www.gnu.org/philosophy/license-list.html
http://www.gnu.org/philosophy/license-list.html
http://www.gnu.org/philosophy/license-list.html
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html

Introduction

» Nationa Energy Research Supercomputer Center

* LosAlamos National Labs

Thanks are a so due to the many contributors to PLplot, including:
e Tony Richardson: Creator of PLplot 2.6b, 3.0

» Sam Paolucci (postscript driver)

» Sam Paolucci (postscript driver)

e Tom Rokicki (IFF driver and Amiga printer driver)

Finally, thanksto al those who submitted bug reports and other suggestions.

Part Il. Programming

Table of Contents

2. SIMPIE USE OF PLPIOL ...ttt et e et e e e et e eeeees 11
Plotting @& SIMPle Graph ... e e 11
INItIAliZING PLPIOL ...ttt et e e 11
Defining Plot SCAIES AN AXES ...c.uuuiiiiiiii ettt et et 11
Labelling the Graph ..o 12
Drawing the Graphoooeeeiii e 13

Drawing POINESccuuuiiiiitieeiiit ettt e et e e et e e ettt e e e e et e e e eet e e eennnaeaeen 13
Drawing LiNES OF CUINVEScouuuieiiiiiiei ettt ettt e e e e enn e e eneas 13
WIting TEXt 0N @& Graphcooeiiieiiii et eaens 13
ATEA RIS e 14
More COMPIEX GIaPNScoeeeeeieei et 14
FINISNING UP ettt e ettt e e et e e e e eeee 14
[N CASE OF EFTOF ..ttt ettt e et e et e et e e e et e e e e aa s 14

3. AAVANCE USE OF PLPIOL ...cevtiiiiiit ettt e et e e e e enees 15
Command Line ATQUIMENTSciiiri ettt ettt e e et e e et e e et e e e et eeena s 15
OULPUL DEVICES ...ttt ettt ettt et et et et e e enaans 16

DIiVEr FUNCHIONS ...ttt e e e 17
PLplot Metafiles and PIrenderoveieiieiiiii e 18
Family File OULIPULcooetiiiiii et e e e e e e eees 20
INteraCtive OULPUL DEVICESiiiiei ettt ettt 21
Specifying the OUIPUE DEVICEciiiiiii et 22
Adding FreeType Library Support to Bitmap DIivers ..o 24
Write a call back function to plot asingle PiXeloviiiiiiiiii e, 24
INItIAliZE FIrEETYPR .. ettt e e e 24
Add A Command to redraw text (interactive drivers only)cccooevvviiieiiiiinieninnnnnn. 26
Add FUNCEION ProtOLYPESceeeeieeeeii ettt et e eeaenns 26
Add CloSING FUNCLIONScieiii e 27
View Surfaces, (Sub-)Pages, Viewports and WIiNndOWScocuuiieiiiiinieiiiiineeeciieeeeiien 27
Defining the VIBWPOITcoeeiiieiii e 27
Defining the WINAOWcoouuiiiii e 29
ANNOtating the VIEWPOITcooiiii e 29
Setting up a Standard WINAOWoiiiiiieiiii e e 30
Setting Line ATHHDULESiiei e e 30
Setting the Area Fill Patternooooiiiiii e e 31
SELING COlOF ...ttt ettt et et 31
COlOr MAP0 ... 31
1600] [0 g 1V = 1 PP P TP PPPPTTR 32
Setting Character AMDULESoooue e 34
HEISNEY TONLS ...t et 34
UNICOTE FONES ...ttt ettt e et e e et e e e eae e eees 35
O PSPPSR 37
ESCaPE SEQUENCES 1N TEXE ...vuiiiiiii ettt e et e et e e e nt e eeees 37
Character Size adjUSIMmENTooiiii e 38
Three Dimensional SUIMace PIOLScuuuiiiiiiiie e 39
Contour and Shade PlOLSuuiiii e 40
ContoUr PIOES TTOM € ...ttt e 40
Shade PIOtS from € ... 41
Contour Plots from the Fortran 95 interfaceooviiiiiiiii e 41
Shade Plots from the Fortran 95 interfaceoovvvviiiiiiiiii e 41
Contour Plots from the Fortran 77 interface ..o 41
Shade Plots from the Fortran 77 interfaceoovevviiiiiiiiii e 42

Programming

Legends and COlOT DArSooiiuii i e 42

4. Deploying programs that USe PLPIOLcoveiiiiiii e 44
5. The PLplot Display Driver Familycooiuiiiiiiii e 47
The XWin Driver (X-WINAOWS)uiiiiiiiiiieeii e e e e e e e e e e e e e eaens 47
LIS B 117 S PSP 47

The AquaTerm Driver (MaC OS X) ...iiuiiiiieiii e e e eeaaas 47

The wxWidgets Driver (Linux, Mac OS X, WINAOWS)ccoevuieiiiiiiiiiecei e e, 47
WXWIAQELS DIIVEr BASICS ..vuiviiiiiiiieii e e e e e e e e e e e e e et e e e e et e e ean e eeas 47

6. The PLplot Output Driver Familyooiiiiiiiii e e e e e e e 49
THE GD DIIVEL ..ttt et e e et e e ettt e e e e et e e e e et raeeestnneeeeatnaeeeenes 49

THE PDF DIIVEL ...iiiitiieeeei ettt ettt e e et e e e e et e e e eat s e e e e atnaeeeeatnneeeesanaaeaes 49

THE POSISCIIPL DIIVEL ..iiiiicii et e e e e e e e e e et e e et e e e eanaees 49

The TrueTYPe POSESCIIPE DIIVEL ...iiiciii e e e e e e e eeas 50

The LaTeX POSISCIIPE DIIVEL ...cvuiiiiiiieiii e e e e e e e e et e e e e e e eaeas 50

THE SVG DIIVEN ettt et e e et e e e et e e e e 50

10

Chapter 2. Simple Use of PLplot
Plotting a Simple Graph

We shall first consider plotting simple graphs showing the dependence of one variable upon another. Such
agraph may be composed of severa elements:

A box which defines the ranges of the variables, perhaps with axes and numeric labels along its edges.
A set of points or lines within the box showing the functional dependence.

» A set of labelsfor the variables and atitle for the graph.

In order to draw such agraph, it is necessary to call at least four of the PLplot functions:

1. plinit,toinitialize PLplot.

2. pl env, to define the range and scale of the graph, and draw labels, axes, etc.

3. One or more callsto pl | i ne or pl poi n to draw lines or points as needed. Other more complex
routinesinclude pl bi n and pl hi st to draw histograms, pl er r x and pl er ry to draw error-bars.

4. pl end, to close the plot.

More than one graph can be drawn on a single set of axes by making repeated calls to the routines listed
initem 3 above. PLplot only needs to be initialized once unless plotting to multiple output devices.

Initializing PLplot

Before any actual plotting calls are made, agraphics program must cal pl i ni t ,isthemaininitialization
routine for PLplot. It sets up all internal data structures necessary for plotting and initializes the output
device driver. If the output device has not aready been specified when pl i ni t iscaled, alist of valid
output devicesisgiven and the user isprompted for achoice. Either the device number or adevice keyword
is accepted.

There are several routines affecting the initialization that must be called before pl i ni t , if they are used.
The function pl sdev alows you to set the device explicitly. The function pl set opt allows you to
set any command-line option internally in your code. The function pl ssub may be called to divide the
output device plotting areainto several subpages of equal size, each of which can be used separately.

One advances to the next page (or screen) viapl adv. If subpages are used, this can be used to advance
to the next subpage or to a particular subpage.

Defining Plot Scales and Axes

The function pl env is used to define the scales and axes for simple graphs. pl env starts a new picture
on the next subpage (or a new page if necessary), and defines the ranges of the variables required. The
routine will also draw abox, axes, and numeric labelsif requested. The syntax for pl env is:

plenv (xmn, xmax, ymn, ynax, just, axis);
xm n, xmax (PLFLT, input) The left and right limits for the horizontal axis.

ym n, ymax (PLFLT, input) The bottom and top limits for the vertical axis.

11

Simple Use of PLplot

j ust (PLI NT, input) This should be zero or one. If j ust isone, the scales of the x-axis
and y-axis will be the same (in units per millimeter); otherwise the
axesare scaled independently. Thisparameter isuseful for ensuring
that objects such as circles have the correct aspect ratio in the final
plot.

axi s (PLI NT, input) axi s controlswhether abox, tick marks, labels, axes, and/or agrid
are drawn.

¢ axi s =-2: No box or annotation.
e axi s =-1: Draw box only.

¢ axi s = 0: Draw box, labelled with coordinate values around
edge.

¢ axi s = 1: In addition to box and labels, draw the two axes X
=0andY =0.

e axi s =2: Sameasaxi s =1, but also draw agrid at the major
tick interval.

e axi s =10: Logarithmic X axis, linear Y axis.

e axi s = 11: Logarithmic X axis, linear Y axis and draw line Y
=0.

e axi s =20: Linear X axis, logarithmic Y axis.

e axi s =21: Linear X axis, logarithmic Y axis and draw line X
=0.

e axi s =30: Logarithmic X and Y axes.

Note: Logarithmic axes only affect the appearance of the axes and their labels, so it is up to the user to
compute the logarithms prior to passing them to pl env and any of the other routines. Thus, if a graph
has a 3-cycle logarithmic axis from 1 to 1000, we need to set xmi n =1 0gj0(1) = 0.0, and xmax =
| 0910(1000) = 3.0.

For greater control over the size of the plots, axis labelling and tick intervals, more complex graphs should
make use of the functionspl vpor , pl vasp, pl vpas, pl wi nd, pl box, and routines for manipulating
axislabelling pl gxax through pl szax.

Labelling the Graph

The function pl | ab may be called after pl env to write labels on the x and y axes, and at the top of the
picture. All the variables are character variables or constants. Trailing spaces are removed and the label is
centered in the appropriate field. The syntax for pl | ab is:

pllab (xIbl, ylbl, toplbl);

xI bl (char *,input) Pointer to string with label for the X-axis (bottom of graph).
yl bl (char *,input) Pointer to string with label for the Y -axis (left of graph).
topl bl (char *,input) Pointer to string with label for the plot (top of picture).}

12

Simple Use of PLplot

More complex labels can be drawn using the function pl nt ex. For discussion of writing text in a plot
see the section called “Writing Text on a Graph”, and for more detailed discussion about label generation
see the section called “Writing Text on a Graph”.

Drawing the Graph

PLplot can draw graphs consisting of points with optional error bars, line segments or histograms. Func-
tions which perform each of these actions may be called after setting up the plotting environment using
pl env. All of the following functions draw within the box defined by pl env, and any lines crossing
the boundary are clipped. Functions are also provided for drawing surface and contour representations of
multi-dimensional functions. See Chapter 3, Advanced Use of PLplot for discussion of finer control of
plot generation.

Drawing Points

pl poi n and pl symmark out n points(x[i], y[i]) withthe specified symbol. The routines differ
only in the interpretation of the symbol codes. pl poi n uses an extended ASCII representation, with the
printable ASCII codes mapping to the respective characters in the current font, and the codes from 0-31
mapping to various useful symbols. In pl sy mhowever, the codeisaHershey font code number. Example
programs are provided which display each of the symbols available using these routines.

pl poi n(n, x, y, code);
pl sym (n, x, y, code);

n (PLI NT, input) The number of pointsto plot.
X, Yy (PLFLT *,input) Pointers to arrays of the coordinates of the n points.
code (PLI NT, input) Code number of symbol to draw

Drawing Lines or Curves

PL plot provides two functions for drawing line graphs. All lines are drawn in the currently selected color,
style and width. See the section called “Setting Line Attributes’ for information about changing these
parameters.

pl | i ne drawsalineor curve. The curve consists of n- 1 line segments joining the n pointsin the input
arrays. For single line segments, pl j oi n isused to join two paints.

plline (n, x, Vy);

n (PLI NT, input) The number of points.

X, Yy (PLFLT *,input) Pointers to arrays with coordinates of the n points.
pljoin (x1, yl, x2, y2);

x1, y1 (PLFLT, input) Coordinates of the first point.

x2, y2 (PLFLT, input) Coordinates of the second point.

Writing Text on a Graph

pl pt ex alowstext to be written within the limits set by pl env. Thereference point of atext string may
be located anywhere along an imaginary horizontal line passing through the string at half the height of a

13

Simple Use of PLplot

capital |etter. The parameter j ust specifieswhere along thisline the reference point islocated. The string
is then rotated about the reference point through an angle specified by the parameters dx and dy, so that
the string becomes parallel to alinejoining (x, y) to(x+dx, y+dy).

pl ptex (x, y, dx, dy, just, text);
X, Yy (PLFLT, input) Coordinates of the reference point.

dx, dy (PLFLT, input) These specify the angle at which the text is to be printed. The text
iswritten parallel to aline joining the points (x, y) to (x+dx,
y+dy) on the graph.

dx, dy (PLFLT, input) These specify the angle at which the text is to be printed. The text
iswritten parallel to aline joining the points (x, y) to (x+dx,
y+dy) on the graph.

j ust (PLFLT, input) Determines justification of the string by specifying which point
within the string is placed at the reference point (x, y) . Thispa
rameter is afraction of the distance along the string. Thusif j ust
= 0. 0, the reference point is at the left-hand edge of the string.
Ifjust = 0.5,itisatthecenter andifjust = 1.0, itisat
the right-hand edge.

t ext (char *,input) Pointer to the string of characters to be written.

Area Fills

Areafills are done in the currently selected color, line style, line width and pattern style.
pl fill fillsapolygon. The polygon consists of n vertices which define the polygon.
plfill (n, x, y);

n (PLI NT, input) The number of vertices.

X, Y (PLFLT *,input) Pointers to arrays with coordinates of the n vertices.

More Complex Graphs

Functionspl bi nandpl hi st areprovided for drawing histograms, and functionspl er r x andpl erry
draw error bars about specified points. There are lots more too (see Chapter 19, The Common API for
PLplot).

Finishing Up

Before the end of the program, always call pl end to close any output plot files and to free up resources.
For devices that have separate graphics and text modes, pl end resets the device to text mode.

In Case of Error

If afatal error is encountered during execution of a PLplot routine then pl exi t iscaled. Thisroutine
prints an error message, does resource recovery, and then exits. The user may specify an error handler
via pl sexi t that gets called before anything else is done, allowing either the user to abort the error
termination, or clean up user-specific data structures before exit.

14

Chapter 3. Advanced Use of PLplot

In this chapter, we describe advanced use of PLplot.

Command Line Arguments

PL plot supports alarge number of command line arguments, but it is up to the user to pass these to PLplot
for processing at the beginning of execution. pl par seopt s isresponsible for parsing the argument list,
removing al that are recognized by PLplot, and taking the appropriate action before returning. There are
an extensive number of options available to affect this process. The command line arguments recognized
by PLplot are given by the -h option:

% x01c -h
Usage:
./ x01c [options]

PLpl ot opti ons:
-h

-V

-ver bose

- debug

-dev nane

-0 nane

-di spl ay nane

- pX numnber

- py number
-geonetry geom
-wplt xI,yl, xr,yr
-mar margin

-a aspect

-j X justx

-Jy justy

-ori orient
-freeaspect
-portrait

-width width

-bg col or

-ncol 0 n

-ncoll n

-fam

-fsiz size[kKKmM\hQG
-fbeg number
-finc nunber
-fflen length

- nopi xmap

-db

_np
-server_nanme nane
-dpi dpi

- conpressi on num

Print out this nessage

Print out the PLplot library version nunber

Be nore verbose than usua

Print debugging info (inplies -verbose)

Qut put devi ce namne

Qut put fil ename

X server to contact

Pl ots per page in X

Plots per page iny

W ndow size, in pixels (e.g. -geonmetry 400x300)

Rel ative coordi nates [0-1] of w ndow into plot
Margi n space in relative coordinates (0 to 0.5, def 0)
Page aspect ratio (def: sane as output device)

Page justification in x (-0.5 to 0.5, def 0)

Page justification iny (-0.5to 0.5, def 0)

Pl ot orientation (0,2=landscape, 1,3=portrait)

Do not preserve aspect ratio on orientation swaps
Sets portrait node (both orientation and aspect ratio)
Sets pen width (1 <= width <= 10)

Background col or (0=bl ack, FFFFFF=whit e)

Nunber of colors to allocate in cmap O (upper bound)
Nunber of colors to allocate in cmap 1 (upper bound)
Create a famly of output files

Qutput famly file size in MB (e.g. -fsiz 0.5G def MB)
First fam |y nenber nunber on out put

I ncrenent between famly menbers

Fam |y nenmber nunmber minimumfield width

Don't use pixmaps in X-based drivers

Doubl e buffer X wi ndow out put

No pause between pages

Mai n wi ndow nane of PLplot server (tk driver)

Resol ution, in dots per inch (e.g. -dpi 360x360)
Sets conpression |evel in supporting devices

-drvopt option[=value][,option[=value]]* Driver specific options

15

Advanced Use of PLplot

-cmap0 nane Sets PLplot color table 0 using the file nane
-cmapl nane Sets PLplot color table 1 using the file nane

The command-line options can also be set using the pl set opt function, if invoked beforepl i nit.

Some options are may not be recognized by individual drivers. If an option is not recognized but should
be, please contact the driver author viathe plplot mailing lists.

Many drivers have specific options that can be set using the -drvopt command line option or with pl se-
t opt . These options are documented in Chapter 5, The PLplot Display Driver Family and Chapter 6, The
PLplot Output Driver Family.

Output Devices

PL plot supports a variety of output devices, viaa set of device drivers. Each driver is required to emulate
asmall set of low-level graphics primitives such asinitialization, line draw and page advance, as well as
be completely independent of the PLplot package as a whole. Thus a driver may be very simple, asin
the case of the many black and white file drivers (tektronix, etc.). More complicated and/or color systems
require a bit more effort by the driver, with the most effort required by an output device with a graphical
user interface, including menus for screen dumps, pal ette manipulation, and so forth. At present only the
tk driver does the latter on Unix systems. At present we aren't pursuing a Macintosh development effort
dueto alack of time and expertise, but will assist anyone wanting to volunteer for the job.

Note that if you always render to a PLplot metéfile, you can aways pl r ender them to new devices as
they become available.

Thelist of available devices presented when starting PLplot (viapl st ar) isdetermined at compiletime.
When installing PLplot you may wish to exclude devices not available on your system in order to reduce
screen clutter. To include a specified device, simply define the appropriate macro constant when building
PL plot (see the installation instructions for your system).

The device drivers for PLplot terminal output at present are given in Table 3.1, “PLplot Terminal Output
Devices’ whiledriversfor file output are given in Table 3.2, “PLplot File Output Devices’. Thedriver for
0OS/2 PM is available separately. See the section on OS/2 in the Appendix for more details.

Table 3.1. PLplot Terminal Output Devices

Device keyword driver file
X-Window Screen Xwin Xwin.c
Tcl/Tk widget tk tk.c
Linux console VGA vga linuxvga.c
Xterm Window xterm tek.c
Tektronix Terminal (4010) tekt tek.c
Tektronix Terminal (4105/4107) tek4107t tek.c
MS-Kermit emulator mskermit tek.c
Versaterm vt100/tek emulator versaterm tek.c
VLT vt100/tek emulator vit tek.c
Conex vt320/tek emulator conex tek.c
DG300 Terminal dg300 dg300.c

16

Advanced Use of PLplot

Device ‘ keyword ‘ driver file
NeXT display (unsupported) ‘ nx ‘ next.c

Table 3.2. PLplot File Output Devices

Device keyword driver file
PLplot Native Meta-File plmeta plmeta.c
Tektronix File (4010) tekf tek.c
Tektronix File (4105/4107) tek4107f tek.c
PostScript File (monochrome) ps ps.c
PostScript File (color) psc ps.c
XFigfile xfig xfig.c
LaserJet |1p Bitmap File ljiip ljiip.c
LaserJet 11 Bitmap File (150 dpi) [jii ljii.c
HP 7470 Plotter File (HPGL hp7470 hpgl.c
Cartridge Small Plotter)
HP 7580 Plotter hp7580 hpgl.c
File (Large Plotter)
HP Laser Jet, HPGL file lj_hpgl hpgl.c
Impress File imp impress.c
Portable bitmap file pbm pbm.c
Null device null null.c
JPEG file ipeg gd.c
PNG file png gd.c
Computer Graphics Metéfile cgm cgm.c

Driver Functions

A dispatch tableis used to direct function calls to whatever driver is chosen at run-time. Below are listed
the names of each entry in the PLDispatchTable dispatch table struct defined in pl cor e. h. The entries
specificto each device (definedindr i ver s/ *. ¢) aretypically named similarly but with “pl_" replaced
by a string specific for that device (the logical order must be preserved, however). The dispatch table
entriesare :

e pl _MenuSt r: Pointer to string that is printed in device menu.
e pl _DevNane: A short device "name" for device selection by name.
» pl _type: Ofor file-oriented device, 1 for interactive (the null driver uses -1 here).

e pl _init: Initialize device. This routine may also prompt the user for certain device parameters or
open a graphics file (see Notes). Called only once to set things up. Certain options such as familying
and resolution (dots/mm) should be set up before calling this routine (note: some driversignore these).

* pl _Ii ne: Draws aline between two points.
* pl _pol yli ne: Draws apolyline (no broken segments).

e pl _eop: Finishes out current page (see Notes).

17

Advanced Use of PLplot

e pl _bop: Set up for plotting on a new page. May also open anew anew graphicsfile (see Notes).

o pl _tidy: Tidy up. May close graphicsfile (see Notes).

» pl _st at e: Handle change in PL Stream state (color, pen width, fill attribute, etc).

e pl _esc: Escape function for driver-specific commands.

Notes: Most devicesallow multi-page plotsto be stored in asingle graphicsfile, in which case the graphics
file should be opened inthe pl_init() routine, closed in pl_tidy(), and page advances done by calling pl_eop
and pl_bop() in sequence. If multi-page plots need to be stored in different files then pl_bop() should open
the file and pl_eop() should close it. Do NOT open files in both pl_init() and pl_bop() or close filesin
both pl_eop() and pl_tidy(). It is recommended that when adding new functions to only a certain driver,

the escape function be used. Otherwiseit is necessary to add anull routineto all the other driversto handle
the new function.

PLplot Metafiles and Plrender

The PLplot metafile is away to store and transport your graphical data for rendering at alater time or on
adifferent system. A PLplot metafile is in binary format in order to speed access and keep storage costs
reasonable. All datais stored in device-independent format (written as a stream of bytes); theresulting file
is about as portable as a tektronix vector graphicsfile and only slightly larger.

Each PL plot metafile begins with a header string that identifiesit as such, aswell asthe version number of
the format since this may change in time. The utility for rendering the metafile, pl r ender , verifies that
theinput fileisindeed avalid PL plot metafile, and that it “understands’ the format the metafile is written
in. pl render ispart of the PLplot package and should be built at the time of building PLplot, and then
put into your search path. It is capable of high speed rendering of the graphicsfile, especialy if the output
device can accept commands at a high rate (e.g. X windows).

The commands as written by the metafile driver at present are as follows:

* | NI TI ALI ZE

+ CLOSE

* SWTCH TO TEXT

* SWTCH TO_GRAPH

+ CLEAR

* PAGE

 NEW COLOR

* NEW W DTH

* LINE

LI NETO

» ESCAPE

* ADVANCE

18

Advanced Use of PLplot

Each command is written as a single byte, possibly followed by additional data bytes. The NEW COLOR
and NEW W DTH commands each write 2 data bytes, the LI NETO command writes 4 data bytes, and
the LI NE command writes 8 data bytes. The most common instruction in the typical metafile will be the
LI NETOcommand, which draws a continuation of the previouslineto the given point. This dataencoding
is not quite as efficient as the tektronix format, which uses 4 bytes instead of 5 here (1 command + 4
data), however the PLplot encoding is far simpler to implement and more robust. The ESCAPE function
writes a second command character (opcode) followed by an arbitrary number of data bytes depending on
the value of the opcode. Note that any data written must be in device independent form to maintain the
transportability of the metafile so floating point numbers are not allowed.

The short usage message for pl r ender is printed if one inputs insufficient or invalid arguments, and
isasfollows:

% pl r ender
No fil enanme specified.

Usage:
pl render [options] [files]

pl render options:
[-v] [-i name] [-b nunber] [-e nunber] [-p page]

PLpl ot opti ons:

[-h] [-v] [-verbose] [-debug] [-dev nane] [-o0 nane] [-display nane]
[-px nunber] [-py nunber] [-geonetry geom [-wplt xI,yl,xr,yr]

[-mar margin] [-a aspect] [-jx justx] [-jy justy] [-ori orient]
[-freeaspect] [-width width] [-bg color] [-ncol0O n] [-ncoll n] [-fan]
[-fsiz size] [-fbeg nunmber] [-finc nunber] [-fflen |length] [-nopixmap]
[-db] [-np] [-server_nane nane] [-server_host nanme] [-server_port nane]
[-user nane]

Type plrender -h for a full description.

The longer usage message goes into more detail, and is as follows:

% pl render -h

Usage:
pl render [options] [files]

pl render options:

-V Print out the plrender version nunber

-i name [nput fil ename

-b nunber Begi nni ng page numnber

- e nunber End page numnber

-p page Pl ot given page only

If the "-i" flag is omtted, unrecognized input will assumed to be fil enane
paranmeters. Specifying "-" for the input or output filename means use stdin

19

Advanced Use of PLplot

or stdout, respectively. See the manual for nore detail.

PLpl ot opti ons:

-h Print out this nessage

-V Print out the PLplot library version nunber

-ver bose Be nore verbose than usua

- debug Print debugging info (inplies -verbose)

-dev nane Qut put devi ce name

-0 name Qut put fil ename

-di spl ay nane X server to contact

- pX number Pl ots per page in x

- py numnber Plots per page iny

-geonetry geom W ndow si ze, in pixels (e.g. -geonmetry 400x300)
-wplt xI,yl, xr,yr Rel ative coordi nates [0-1] of w ndow into plot

-mar margin Margi n space in relative coordinates (0 to 0.5, def 0)
-a aspect Page aspect ratio (def: sane as output device)

-j X justx Page justification in x (-0.5 to 0.5, def 0)

-jy justy Page justification iny (-0.5to 0.5, def 0)

-ori orient Pl ot orientation (0,2=landscape, 1,3=portrait)
-freeaspect Do not preserve aspect ratio on orientation swaps
-portrait Sets portrait node (both orientation and aspect ratio)
-width width Sets pen width (1 <= width <= 10)

-bg col or Background col or (0=bl ack, FFFFFF=whit e)

-ncol 0 n Nunber of colors to allocate in cmap O (upper bound)
-ncol 1 n Nunber of colors to allocate in cmap 1 (upper bound)
-fam Create a famly of output files

-fsiz size[kKm\vbQg Qutput famly file size in MB (e.g. -fsiz 0.5G def MB)
-fbeg number First fam |y nenber nunber on out put

-finc number I ncrement between famly menbers

-fflen length Fam |y nenmber nunmber minimumfield width

- nopi xmap Don't use pixmaps in X-based drivers

-db Doubl e buffer X wi ndow out put

-np No pause between pages

-server_nanme nane Mai n wi ndow nane of PLplot server (tk driver)

-dpi dpi Resol ution, in dots per inch (e.g. -dpi 360x360)

- conpressi on num Sets conpression |evel in supporting devices

-drvopt option[=value][,option[=value]]* Driver specific options

The options are generally self explanatory (family files are explained in the section called “Family File
Output”). Most of these options have default values, and for those that don't pl r ender will prompt
the user. The - px and - py options are not so useful at present, because everything is scaled down by
the specified factor --- resulting in labels that are too small (future versions of pl r ender might allow
changing the label size aswell).

Additional options may be added in future releases.

Family File Output

When sending PLplot to afile, the user has the option of generating a “family” of output files for most
output file drivers. This can be valuable when generating a large amount of output, so as to not strain
network or printer facilities by processing extremely large single files. Each family member file can be
treated as a completely independent file. In addition, pl r ender hasthe ability to process a set of family
member filesasasinglelogical file.

20

Advanced Use of PLplot

To create afamily file, one must smply call pl sf amwith the familying flag f amset to 1, and the desired
maximum member size (in bytes) in bmax. pl sf amalso allowsyou to set the current family file number.
If the current output driver does not support familying, there will be no effect. This call must be made
beforecalingpl star orpl start.

If familying isenabled, the name given for the output file (on the command line, inresponsetothepl st ar
prompt, as apl st art argument, or as the result of a cal to pl sf nam becomes the name template
for the family. Thus, if you request a plmeta output file with name t est - %. pl m the files actually
created will bet est - 1. pl mt est - 2. pl m and so on, where % indicates where the member nhumber
isreplaced. If thereisno %, then the output file becomes the stem name and the created files will be like
test.plm1l,test. pl m2,andsoon. A new fileisautomatically started once the byte limit for the
current fileis passed, but not until the next page break. One may insure anew file at every page break by
making the byte limit small enough. Alternatively, if the byte limit is large you can till insure anew file
isautomatically started after a page break if you precede the call to pl eop with acall to pl f anadv.

If familying is not enabled, % is dropped from the filename if that string appears anywhere in it.

The pl gf amroutine can be used from within the user program to find out more about the graphics file
being written. In particular, by periodically checking the number of the member file currently being written
to, one can detect when a new member file is started. This information might be used in various ways;
for example you could spawn a process to automatically plrender each metafile after it is closed (perhaps
during along simulation run) and send it off to be printed.

pl render hasseveral optionsfor dealing with family files. It can process asingle member file (pl r en-

der t est. pl m 1) or theentirefamily if given only thestem name(pl r ender t est . pl m Itcanaso
create family files on output, rendering to any device that supports familying, including another metafile
if desired. The size of member files in this case is input through the argument list, and defaults to IMB
if unspecified (this may be changed during the PLplot installation, however). pl r ender can also create
asingle output file from afamilied input metéfile.

Interactive Output Devices

Here we shall discuss briefly some of the more common interactive output devices.

Many popular terminals or terminal emulators at present have a facility for switching between text and
graphics “screens’. Thisincludes the xterm emulator under X-windows, vt100's with Retrographics, and
numerous emulators for microcomputers which have adual vt100/tek4010 emulation capability. On these
devices, it is possible to switch between the text and graphics screens by surrounding your PLplot calls
by calsto pl gra and pl t ext . Thiswill alow your diagnostic and informational code output to not
interfere with your graphical output.

At present, only the xterm driver supports switching between text and graphics screens. The escape se-
guences as sent by the xterm driver arefairly standard, however, and have worked correctly on most other
popular vt100/tek4010 emulators we've tried.

When using the xterm driver, hitting a RETURN will advance and clear the page. If indeed running from
an xterm, you may resize, move, cover and uncover the window. The behavior of the X-window driver is
quite different, however. First, it is much faster, as there is no tty-like handshaking going on. Second, a
mouse click is used to advance and clear the page, rather than a RETURN.

On a tektronix 4014 compatible device, you may preview tektronix output files via the pl t ek utility.
pl t ek will let you step through the file interactively, skipping backward or forward if desired. The help
message for pl t ek isasfollows:

% pl t ek

21

Advanced Use of PLplot

Usage: pltek fil ename

At the pronpt, the following replies are recognized:
h, ? G ve this hel p nessage.

q Quit program

<n> Go to the specified page numnber.

-<n> Go back <n> pages.

+<n> Go forward <n> pages.

<Return> Go to the next page.

The output device is switched to text mode before the prompt is given, which causes the prompt to go to
the vt102 window under xterm and most vt100/tek4010 emulators.

Specifying the Output Device

The main initialization routine for PLplot ispl i ni t, which setsup all internal data structures necessary
for plotting and initializes the output device driver. The output device can be aterminal, disk file, window
system, pipe, or socket. If the output device has not already been specified when pl i ni t iscaled, the
output device will be taken from the value of the PLPLOT_DEV environment variable. If this variable
is not set (or is empty), alist of valid output devicesis given and the user is prompted for a choice. For
example:

% x01c

Plotting Options:

< 1> xwin X- W ndow (Xl i b)

< 2>tk Tcl / TK W ndow

< 3> xterm Xterm W ndow

< 4> tekt Tektroni x Term nal (4010)

< 5> tek4107t Tektroni x Term nal (4105/4107)

< 6> nmekermt M5-Kermit emul at or

< 7> versaterm Versaterm vt100/tek emul ator

< 8> vlt VLT vt 100/tek emul at or

< 9> plneta PLPLOT Native Meta-File

<10> t ekf Tektroni x File (4010)

<11> tek4107f Tektroni x File (4105/4107)

<12> ps Post Scri pt File (rnmonochrone)

<13> psc Post Script File (color)

<14> xfig Xfig file

<15> ljiip LaserJet |1 p/deskjet conpressed graphics
<16> Iljii LaserJet Il Bitmap File (150 dpi)
<17> nul | Nul | device

Enter device nunber or keyword:

Either the device number or adevice keyword is accepted. Specifying the device by keyword is preferable
in aliases or scripts since the device number is dependent on the install procedure (theinstaller can choose
which device driversto include). The device can be specified prior to thecall topl i ni t by:

* Acdltopl sdev.

e The- dev devi ce command lineargument, if the program’'s command line arguments are being passed
to the PLplot function pl par seopt s.

22

Advanced Use of PLplot

e Thevalue of the PLPLOT _DEV environment variable. Note that specifying the output deviceviapl s-
dev or the- dev command line argument will override the value given by the PLPLOT _DEV environ-
ment variable.

Additional start uproutinespl st ar andpl st art areavailablebut thesearesimply front-endstopl i n-
i t,andshould beavoided. Itispreferabletocall pl i nit directly, along with the appropriate setup calls,
for the greater amount of control this provides (see the example programs for more info).

Beforepl i ni t iscalled, you may modify the number of subpages the output deviceisdivided into viaa
call topl ssub. Subpages are useful for placing several graphson apage, but al subpages are constrained
to be of the same size. For greater flexibility, viewports can be used (see the section called “ Defining the
Viewport” for moreinfo on viewports). The routine pl adv is used to advance to a particular subpage or
to the next subpage. The screenis cleared (or a new piece of paper loaded) if a new subpage is requested
when there are no subpages left on the current page. When a page is divided into subpages, the default
character, symbol and tick sizes are scaled inversely as the square root of the number of subpagesin the
vertical direction. Thisis designed to improve readability of plot 1abels as the plot size shrinks.

PL plot hasthe ability to write to multiple output streams. An output stream correspondsto asingle logical
device to which one plots independent of al other streams. The function pl sst r mis used to switch
between streams -- you may only write to one output stream at atime. At present, an output stream is not
limited by the type of device, however, it may not be wise to attempt opening two terminal devices. An
example usage for the creation of multiple streamsis as follows:

#i nclude "pl plot.h"

mai n()
{

int nx =2, ny = 2;

pl ssub(nx, ny);
pl sdev("xwi n");
plinit();

plots for streamO

pl sstrm(1);

pl ssub(nx, ny);

pl sdev("pl neta");
pl sfnam("tst.plni);
plinit();

plots for stream1

pl sstrm(0);
plots for streamO

and so on, for sending output simultaneously to an X-window and a metafile. The default stream corre-
sponds to stream number zero. At present, the majority of output drivers can only be used by a single
stream (exceptionsinclude the metafile driver and X-window driver). Also see example program 14 (note:
only the C version is available, although it can be done equally well from Fortran).

At theend of aplotting program, it isimportant to close the plotting device by calling pl end. Thisflushes
any internal buffers and frees any memory that may have been allocated, for all open output streams. Y ou
may call pl end1 to close the plotting device for the current output stream only. Note that if PLplot is

23

Advanced Use of PLplot

initialized more than once during a program to change the output device, an automatic call to pl endl is
made before the new device is opened for the given stream.

Adding FreeType Library Support to Bitmap
Drivers

Any bitmap driver in the PLplot family should be able to use fonts (TrueType and others) that
are rendered by the FreeType library just as long as the device supports setting an individual pix-
el. Note that drivers interact with FreeType using the support routines pl D_FreeType_init,
p! D_render _freetype_text,pl D_FreeType_Destroy, pl _set _ext ended_cnap0, and
p! _RenakeFr eeType_t ext from buffer thatarecodedinpl freet ype. c.

The use of these support routinesis exemplified by thegd. c driver. Here we make some notes to accom-
pany thisdriver which should makeit easier to migrate other driversto usethe FreeTypelibrary. Every code
fragment we mention below should be surrounded with a#i f def PL_HAVE FREETYPE. . . #endi f
to quarantine these fragments for systems without the FreeType library. For interactive devices that need
caching of text drawing, reference should also be madetowi ngcc. c.

Write a call back function to plot a single pixel

First, write acall back function, of typepl D_pi xel _f p, which specifies how asingle pixel isset in the
current color. This can be of type static void. For example, inthe gd. c driver it lookslike this:

void pl D pixel _gd (PLStream *pls, short x, short vy)

{
png Dev *dev=(png_Dev *)pl s->dev;

gdl mageSet Pi xel (dev->i m out, X, Yy, dev->colour);

}

Initialize FreeType

Next, wehavetoinitializethe FreeTypelibrary. For thegd. ¢ driver thisisdoneviatwo separatefunctions
due to the order that dependent information isinitialized in the driver.

The"level 1" initialization of FreeType doestwo things: 1) callspl D_FreeType_i ni t (pl s), which

in turn allocates memory to the pls->FT structure; and 2) stores the location of the call back routine.

void init_freetype Ivl (PLStream *pls)
{

FT_Data *FT;

pl D_FreeType_init(pls);

FT=(FT_Data *)pl s->FT,;
FT- >pi xel = (pl D_pi xel _fp) pl D_pi xel _gd,;

}

24

Advanced Use of PLplot

Thisinitializationroutineiscalledattheendof pl D_i nit_png_Dev(PLStream*pl s) inthegd. c
driver:

if (freetype)

{

pl s->dev_text = 1; /* want to draw text */
init freetype Ivl(pls);

FT=(FT_Data *)pl s->FT;

FT- >snpot h_t ext =snoot h_t ext ;

}

"freetype" isaloca variable which is parsed through pl Par seDr vOpt s to determine if the user
wanted FreeType text. In that case pl s- >dev_t ext isset to 1 to indicate the driver will be rendering
it's own text. After that, we always use pl s- >dev_t ext towork out if we want FreeType or not.

Similarly, " snoot h_t ext" isalocal variable passed through pl Par seDr vOpt s to find out if the
user wants smoothing. Since there is nothing in PLStream to track smoothing, we have to set the FT-
>smooth_text flag as well at thistime.

The"level 2" initialization function initializes everything else required for using the FreeType library but
has to be called after the screen resolution and dpi have been set. Therefore, it is called at the end of
pl D_i ni t _png(),whereitlookslike:

if (pls->dev_text)

{
init freetype |v2(pls);

}

The actual function looks like this:

static void init_freetype_|v2 (PLStream *pls)

{
png_Dev *dev=(png_Dev *)pl s->dev;
FT_Data *FT=(FT_Data *)pl s->FT;

FT- >scal e=dev- >scal e;
FT- >ymax=dev- >pngy;
FT->i nvert _y=1;

i f (FT->snoot h_t ext ==1)

{

FT->ncol 0_or g=pl s->ncol 0O; /* save a copy of the
FT- >ncol 0_xt r a=NCOLOURS- (pl s- >ncol 1+pl s->ncol 0); /* work out how nmany
FT->ncol 0_wi dt h=FT->ncol 0_xtra/ (pl s->ncol 0-1); /* find out how nmany
if (FT->ncol O_w dt h>64) FT->ncol 0_wi dt h=64; /* set a maxi num nunb
pl scmapOn(FT->ncol 0_or g+(FT- >ncol 0_wi dt h*pl s->ncol 0)) ; /* redefine the size
/* the level manipulations are to turn off the pl P_state(PLSTATE CVAPO)

* call in plscnmap0 which (a) |leads to segfaults since the GD inmage is

* not defined at this point and (b) would be inefficient in any case since
* setcmap is always called |ater (see pl D bop_png) to update the driver

25

Advanced Use of PLplot

* color palette to be consistent with cmap0. */

{

PLI NT | evel _save;

| evel _save = pls->level;

pl s->l evel = 0;

pl _set _extended_cmapO(pls, FT->ncol O_wi dth, FT->ncolO_org); /* call the function
pl s->l evel = |evel _save;

}

}

}

FT->scaleis a scaling factor to convert coordinates. Thisis used by the gd. ¢ and some other drivers to
scale back alarger virtual page and this eliminate the "hidden line removal bug”. Set it to 1 if your device
driver doesn't use any scaling.

Some coordinate systems have zero on the bottom, others have zero on the top. FreeType doesit one way,
and most everything else does it the other. To make sure everything isworking OK, we haveto "flip" the
coordinates, and to do this we need to know how biginthe Y dimension the pageis, and whether we have
to invert the page or leave it alone.

* FT->ymax specifiesthe size of the page
» FT->invert_y=1tells usto invert the y-coordinates, FT->invert_y=0 will not invert the coordinates.

We also do some computational gymnastics to "expand” cmap0 if the user wants anti-aliased text. Basi-
cally, you have to work out how many spare colorsthere arein the driver after cmap0 and cmapl are done,
then set afew variablesin FT to let the render know how many colorsit's going to have at its disposal, and
call plscmapOn to resize cmap0. Thecall topl _set _ext ended_cnmap0 doesthe remaining part of the
work. Note it essential to protect that call by the pl s- >l evel manipulationsfor the reasons stated.

Add A Command to redraw text (interactive drivers only)

Plplot only cachesdrawing commands, not text plotting commands, so for interactive deviceswhich refresh
their display by replaying the plot buffer, a separate function hasto be called to redraw the text. plfreetype
knows when buffering is being used by a device driver, and will automatically start caching text when
necessary. To redraw this cached text, acall to pl _RenakeFr eeType_t ext _from buf f er hasto
be added after the driver has called pl RemakePl ot . The following exampleisfromw ngcc. c.

if (dev->waiting==1)

{

p! RemakePl ot (pl s);

#i f def PL_HAVE_FREETYPE

p! _RenmakeFreeType_text from buffer(pls);
#endi f

}

Add Function Prototypes

Next, to the top of the drivers source file add the prototype definitions for the functions just written.

26

Advanced Use of PLplot

static void pl D pixel_gd (PLStream *pls, short x, short y);
static void init_freetype_|vl (PLStream *pls);
static void init_freetype_|v2 (PLStream *pls);

Add Closing functions

Finally, add apl D_FreeType_Destroy(pl s) entry to the device "tidy" function; this command
deallocates memory allocated to the FT entry in the stream, closes the FreeType library and any open
fonts. It is also a good idea to reset CMAPO back to it's original size here if anti-aliasing was done. For
example, inthegd. c driver, it looks like this:

voi d pl D_tidy_png(PLStream *pl s)

{
fcl ose(pls->QutFile);

#i f def PL_HAVE FREETYPE
FT _Data *FT=(FT_Data *)pl s->FT;
pl scmapOn(FT- >ncol 0_org);

pl D _FreeType Destroy(pls);
#endi f

free_mem pl s->dev);

}

View Surfaces, (Sub-)Pages, Viewports and
Windows

There isawhole hierarchy of coordinate systems associated with any PLplot graph. At the lowest level a
device provides a view surface (coordinates in mm's) which can be aterminal screen or a sheet of paper
in the output device. pl i nit or pl star (or pl st art) makesthat device view surface accessible as
a page or divided up into sub-pages (see pl ssub) which are accessed with pl adv. Before a graph can
be drawn for a subpage, the program must call appropriate routines in PLplot to define the viewport for
the subpage and a window for the viewport. A viewport is a rectangular region of the subpage which is
specified in normalized subpage coordinates or millimetres. A window is a rectangular region of world-
coordinate space which ismapped directly toitsviewport. (When drawing agraph, the programmer usually
wishesto specify the coordinates of the pointsto be plotted in terms of the val ues of the variablesinvolved.
These coordinates are called world coordinates, and may have any floating-point value representable by
the computer.)

Although the usual choiceisto haveoneviewport per subpage, and onewindow per viewport, each subpage
can have more than one (possibly overlapping) viewport defined, and each viewport can have more than
one window (more than one set of world coordinates) defined.

Defining the Viewport

After defining the view surface and subpage with the appropriate call to plinit or pl star (or
pl start) and acall to pl adv it is necessary to define the portion of this subpage which is to be used

27

Advanced Use of PLplot

for plotting the graph (the viewport). All lines and symbols (except for labels drawn by pl box, pl nt ex
and pl | ab) areclipped at the viewport boundaries.

Viewports are created within the current subpage. If the division of the output device into equally sized
subpagesisinappropriate, it isbest to specify only asingle subpage which occupiesthe entire output device
(by usingplinit orbysettingnx = 1andny = 1linplstar orpl start), and use one of the
viewport specification subroutines below to place the plot in the desired position on the page.

There are four methods for specifying the viewport size, using the subroutines pl vpor, pl svpa,
pl vasp, and pl vpas which are called like this:

pl vpor (xm n, xmax, ymn, ymax);
pl svpa(xm n, xmax, ymn, ymax);
pl vasp(aspect);
pl vpas(xm n, xmax, ymn, ymax, aspect);

wherein the case of pl vpor and pl vpas, the arguments are given in normalized subpage coordinates
which are defined to run from 0.0 to 1.0 along each edge of the subpage. Thus for example,

pl vpor (0.0, 0.5, 0.5, 1.0);
uses the top left quarter of the current subpage.

In order to get a graph of known physica size, the routine pl svpa defines the viewport in terms of
absolute coordinates (millimeters) measured from the bottom | eft-hand corner of the current subpage. This
routine should only be used when the size of the view surface is known, and a definite scaling is required.

Theroutine pl vasp givesthe largest viewport with the given aspect ratio that fitsin the current subpage
(i.e. theratio of the length of the y axis to that of the x axisis equal to aspect). It aso allocates space
on the left and top of the viewport for labels.

Theroutine pl vpas givesthelargest viewport with the given aspect ratio that fitsin the specified region
(specified with normalized subpage coordinates, aswith pl vpor). Thisroutineisfunctionally equivalent
to pl vpor when a“natural” aspect ratio is chosen (done by setting aspect to 0.0). Unlike pl vasp,
this routine reserves no extra space at the edges for |abels.

Tohelptheuser call pl svpa correctly, theroutinepl gspa isprovided which returnsthe positions of the
extremities of the current subpage measured in millimeters from the bottom left-hand corner of the device.
Thus, if to set up aviewport with a10.0 mm margin around it within the current subpage, the following
seguence of calls may be used:

pl gspa(xm n, xmax, ymn, ynax);
pl svpa(10.0, xmax-xm n-10.0, 10.0, ynmax-ym n-10.0);

A further routine pl vst a isavailable which sets up a standard viewport within the current subpage with
suitable margins on each side of the viewport. This may be used for smple graphs, as it leaves enough
room for axis labels and a title. This standard viewport is that used by pl env (See the section called
“Setting up a Standard Window”).

Another way to get a specified aspect ratio is via the routine pl sasp [not!.. fix this], which sets the
global aspect ratio and must be called prior to pl st ar . An aspect ratio of 0.0 corresponds to “natural”
dimensions (i.e. fill the page); any positive value will give the specified aspect ratio. This scaling of plots
isactually doneinthe driver, and so may not work for al output devices (notethat pl r ender iscapable
of scaled aspect ratio plotsto any device whether that device supports scaling or not). In such scaled plots,
absolute plotting is done in the scaled coordinate system.

28

Advanced Use of PLplot

Defining the Window

The window must be defined after the viewport in order to map the world coordinate rectangle into the
viewport rectangle. The routine pl wi nd is used to specify the rectangle in world-coordinate space. For
example, if wewish to plot agraph showing the collector current | asafunction of the collector to emitter
voltage Ve for atransistor where O < Ic < 10.0 mA and 0 < Vce < 12.0 V, we would call the function
pl wi nd asfollows:

pl wi nd(0.0, 12.0, 0.0, 10.0);

Note that each of the arguments is a floating point number, and so the decimal points are required. If the
order of either the X limitsor Y limitsis reversed, the corresponding axiswill point in the opposite sense,
(i.e, right to left for X and top to bottom for Y). The window must be defined before any calls to the
routines which actually draw the data points. Note however that pl wi nd may aso be called to change the
window at any time. This will affect the appearance of objects drawn later in the program, and is useful
for drawing two or more graphs with different axes on the same piece of paper.

Annotating the Viewport

The routine pl box is used to specify whether a frame is drawn around the viewport and to control the
positions of the axis subdivisions and humeric labels. For our simple graph of the transistor characteristics,
we may wish to draw a frame consisting of lines on all four sides of the viewport, and to place numeric
labels along the bottom and left hand side. We can also tell PLplot to choose a suitable tick interval and
the number of subticks between the major divisions based upon the data range specified to pl wi nd. This
is done using the following statement

pl box("bcnst", 0.0, 0, "bcnstv", 0.0, 0);
The lengths of major and minor ticks on the axes are set up by the routines pl snaj and pl sni n.

Another routine pl | ab provides for text labels for the bottom, left hand side and top of the viewport.
Theselabels are not clipped, even though they lie outside the viewport (but they are clipped at the subpage
boundaries). pl | ab actually callsthe more general routine pl nt ex which can be used for plotting labels
at any point relative to the viewport. For our example, we may use

pl | ab("V#dCE#u (Volts)", "I#dC#u (mA)", "TRANSI STOR CHARACTERI STICS");

Notethat #d and #u are escape sequences (see the section called “ Escape sequencesin text”) which allow
subscripts and superscripts to be used in text. They are described more fully later in this chapter.

The appearance of axis labels may be further altered by auxiliary callsto pl pr ec, pl schr, pl sxax,
pl syax, and pl szax. Theroutine pl pr ec is used to set the number of decimal places precision for
axislabels, while pl schr modifiesthe heights of characters used for the axis and graph labels. Routines
pl sxax, pl syax, andpl szax areused to modify thedi gnmax setting for each axis, which affects how
floating point |abels are formatted.

The di grmax variable represents the maximum field width for the numeric labels on an axis (ignored if
less than one). If the numeric labels as generated by PL plot exceed this width, then PL plot automatically
switchesto floating point representation. | n this case the exponent will be placed at thetop left for avertical
axis on the left, top right for a vertical axis on the right, and bottom right for a horizontal axis.

For example, let's supposethat wehave set di gmax = 5viapl syax, andfor our plot alabel isgenerated
ay = 0.0000478. Inthis case the actual field width is longer than di grmax, so PLplot switches to
floating point. In this representation, the labdl is printed as smply 4.78 with the 10° exponent placed

separately.

29

Advanced Use of PLplot

The determination of maximum length (i.e. di gmax) for fixed point quantitiesis complicated by the fact
that long fixed point representations look much worse than the same sized floating point representation.
Further, a fixed point number with magnitude much less than one will actually gain in precision when
written as floating point. There is some compensation for this effect built into PLplot, thus the internal
representation for number of digits kept (di gf i X) may not always match the user's specification (via
di gmax). However, it will alwaysbetruethat di gf i x # di gnmax. The PLplot defaults are set up such
that good results are usually obtained without user intervention.

Finally, after the call to pl box, the user may call routines pl gxax, pl gyax, or pl gzax to obtain
information about the window just drawn. This can be helpful when deciding where to put captions. For
example, a typical usage would be to call pl gyax to get the value of di gi t s, then offset the y axis
caption by that amount (plus a bit more) so that the caption “floats’ just to the outside of the numeric
labels. Note that the di gi t s value for each axis for the current plot is not correct until after the call to
pl box iscomplete.

Setting up a Standard Window

Having to call pl adv, pl vpor, pl wi nd and pl box is excessively cumbersome for drawing simple
graphs. Subroutine pl env combines all four of these in one subroutine, using the standard viewport, and
alimited subset of the capabilities of pl box. For example, the graph described above could be initiated
by the call:

pl env(0.0, 12.0, 0.0, 10.0, 0, 0);
which is equivalent to the following series of cals:

pl adv(0);
plvsta();
pl wi nd(0.0, 12.0, 0.0, 10.0);
pl box("bcnst", 0.0, 0, "bcnstv", 0.0, 0);

Setting Line Attributes

The graph drawing routines may be freely mixed with those described in this section, allowing the user to
control linecolor, width and styles. The attributes set up by these routines apply modally, i.e, all subsequent
objects (lines, characters and symbols) plotted until the next change in attributes are affected in the same
way. The only exception to thisrule isthat characters and symbols are not affected by achangein theline
style, but are aways drawn using a continuous line.

Line color is set using the routine pl col 0. The argument is ignored for devices which can only plot in
one color, although some terminals support line erasure by plotting in color zero.

Linewidth isset using pl wi dt h. This option is not supported by all devices.

Line styleisset using theroutine pl styl or pl | sty. A broken line is specified in terms of arepeated
pattern consisting of marks (pen down) and spaces (pen up). The arguments to this routine are the number
of elementsin the line, followed by two pointers to integer arrays specifying the mark and space lengths
in micrometers. Thus aline consisting of long and short dashes of lengths 4 mm and 2 mm, separated by
spaces of length 1.5 mm is specified by:

mar k[0] = 4000;
mar k[1] = 2000;
space[0] 1500;
space[1] 1500;

30

Advanced Use of PLplot

pl styl (2, mark, space);

Toreturn to a continuous line, just call pl st yl with first argument set to zero. You canusepl | sty to
choose between 8 different predefined styles.

Setting the Area Fill Pattern

Theroutine pl pat can be used to set the areafill pattern. The pattern consists of 1 or 2 sets of parallel
lines with specified inclinations and spacings. The arguments to this routine are the number of setsto use
(1 or 2) followed by two pointersto integer arrays (of 1 or 2 elements) specifying the inclinations in tenths
of a degree and the spacing in micrometers (the inclination should be between -900 and 900). Thus to
specify an areafill pattern consisting of horizontal lines spaced 2 mm apart use:

*inc = 0;
*del = 2000;
pl pat (1, inc, del);

To set up asymmetrical crosshatch pattern with lines directed 30 degrees above and below the horizontal
and spaced 1.5 mm apart use:

*inc = 300;
*(inc+l) = -300;
*del = 1500;

*(del +1) = 1500;
pl pat (2, inc, del);

Theroutine pl pst y can be used to select from 1 of 8 predefined patterns.

The area fill routines also use the current line style, width and colors to give a virtualy infinite number
of different patterns.

Setting Color

Normally, color is used for all drivers and devices that support it within PLplot subject to the condition
that the user has the option of globally turning off the color (and subsequently turning it on again if so
desired) using pl scol or.

The PLplot color model allows the user to set the current color from a wide range of colors using two
distinct color maps. Color map0 (discussed in the section called “ Color Map0”) has discrete colors with
no particular order and is most suited to coloring the background, axes, lines, and labels, and color mapl
(discussed in the section called “Color Mapl”) has continuously changing colors and is most suited to
plots (see the section called “ Contour and Shade Plots’) in which data values are represented by colors.
Setting the background color is a special case that is handled exclusively by color map O (as discussed in
the section called “Color Map0”). The user can change the current color (as opposed to the background
color) at any point in the plot by selecting any of the colors from either color map 0 or 1 using cals to
pl col 0 or pl col 1. When the current color is changed all subsequent drawing actions will utilize the
new color until it is changed again.

Color Map0

Color map0 is most suited to coloring the background, axes, lines, and labels. Generally, the default color
map0 palette of 16 colors is used. (exanpl es/ ¢/ x02c. c illustrates these colors.) The default back-
ground color istaken from theindex 0 color which isblack by default. The default foreground color isred.

31

Advanced Use of PLplot

There are anumber of options for changing the default red on black colors. The user may set the index 0
background color using the command-line bg parameter or by calling pl scol bg (or pl scol 0 witha
0index) beforepl i ni t . During the course of the plot, the user can change the foreground color as often
asdesired using pl col 0 to select the index of the desired color.

For more advanced useit ispossibleto define an arbitrary map0 pal ette of colors. Theuser may set the num-
ber of colors in the map0 palette using the command-line ncol O parameter or by calling pl scrmapOn.
pl scol 0 setsthe RGB value of the given index which must be less than the maximum number of col-
ors (which is set by default, by command line, by pl scnapOn, or even by pl scmap0). Alternatively,
pl scrmap0 sets up the entire map0 color palette. For all these ways of defining the map0 palette any
number of colors are allowed in any order, but it is not guaranteed that the individual driverswill actually
be able to use more than 16 colors.

Color Map1l

Color mapl ismost suited to plots (see the section called “ Contour and Shade Plots’) in which datavalues
are represented by colors. The data are scaled to the input mapl range of floating point numbers between
0. and 1. which in turn are mapped (using pl col 1) to colors using a default or user-specified mapl
color transformation. Thus, there are calls to pl col 1 from within the code for pl shade (see src/
pl shade. c) andpl sur f 3d (seesr c/ pl ot 3d. ¢) to give acontinuous range of color corresponding
to the data being plotted. In addition pl col 1 can be used to specify the foreground color using the mapl
continuous color palette (see the commented out section of exanpl es/ ¢/ x12c. ¢ which gives an ex-
ample of this for a histogram), but normally pl col O is a better tool for this job (see the section called
“Color Map0”) since discrete colors often give a better-looking result.

For more advanced use it is possible to define an arbitrary mapl palette of colors. The user may set the
number of colors in this palette using the command-line ncol 1 parameter or by calling pl scrmapin.
Furthermore, pl scmapll can be used to set the mapl color palette using linear interpolation between
control points specified in either RGB or HL S space.

There is a one-to-one correspondence between RGB and HLS color spaces. RGB space is characterized
by three 8-bit unsigned integers corresponding to the intensity of the red, green, and blue colors. Thus, in
hexadecimal notation with the 3 bytes concatenated together the RGB val ues of FFO000, FFFF00, 00FFO0,
OOFFFF, 0000FF, FFOOFF, 000000, and FFFFFF correspond to red, yellow, green, cyan, blue, magenta,
black, and white.

HLS (hue, lightness, and saturation) space is often conceptually easier to use than RGB space. One useful
way tovisualize HL S spaceisasavolume made up by two coneswith their basesjoined at the“ equator”. A
given RGB point correspondsto HL S point somewhere on or inside the double cones, and vice versa. The
hue corresponds to the “longitude” of the point with 0, 60, 120, 180, 240, and 300 degrees corresponding
to red, yellow, green, cyan, blue, and magenta. The lightness corresponds to the distance along the axis
of the figure of a perpendicular dropped from the HL S point to the axis. This values ranges from 0 at the
“south pole” to 1 at the “north pole’. The saturation corresponds to the distance of the HLS point from
the axis with the on-axis value being 0 and the surface value being 1. Full saturation corresponds to full
color while reducing the saturation (moving toward the axis of the HLS figure) mixes more gray into the
color until at zero saturation on the axis of the figure you have only shades of gray with the variation of
lightness along the axis corresponding to agray scale.

Here are some C-code fragmentswhich use pl scnapll to set the mapl color palette. Thisfirst example
illustrates how to set up a gray-scale palette using linear interpolation in RGB space.

if[0] =0.;

if1 =1.;

/* RGB are rescaled to the range fromO to 1. for input to plscmapll.*/
r[0] = 0.;

32

Advanced Use of PLplot

ri1] = 1.;
gl0] =0.;
ol1] = 1.;
b[O0] = 0.;
b[1] = 1.;
pl scmapll (1, 2, i, r, g, b, NULL);

This second example illustrates doing the same thing in HL S space.

if[0] =0.;
if1] = 1.;
/* Hue does not matter for zero saturation.*/
h[0] = 0.;
h[1] = 0.;
/* Lightness varies through its full range.*/
[[0] =0.;
1] =1.;
/* Saturation is zero for a gray scale.*/
s[0] = 0.;
s[1] = 0.;
/* Note the first argument which specifies HLS space. */
pl scmapll (0, 2, i, h, |, s, NULL);

This final example using pl scmapll illustrates how the default mapl color palette is set with just 4
control points (taken fromsrc/ pl ctrl . c).

pl cmapl_def ()

Initializes color map 1.

i nner ones being very close to one of the vertices of the HLS double
cone. The vertex used (black or white) is chosen to be the closer to
t he background color. |If you don't |ike these settings you can al ways

*

*

*

*

* The default initialization uses 4 control points in HLS space, the two
*

*

*

* initialize it yourself.

static void
pl cmapl_def (voi d)

{
PLFLT i[4], h[4], 1[4], s[4], vertex = O.;

/* Positions of control points */

0; /* left boundary */

0.45; /* just before center */
0.55; /* just after center */
1; /* right boundary */

/* For center control points, pick black or white, whichever is closer to bg
/* Be careful to pick just short of top or bottomelse hue info is |lost */

if (plsc->cmap0 != NULL)
vertex = ((float) plsc->cmapO[0].r +

33

Advanced Use of PLplot

(float) plsc->cmap0[0].g +
(float) plsc->cmap0[0].b) / 3. / 255.;

if (vertex < 0.5)
vertex = 0.01;

el se

vertex = 0.99;

/* Set hue */

h[0] = 260; /* low blue-violet */

h[1] = 260; /* only change as we go over vertex */
h[2] = 0; /* high: red */

h[3] = 0; /* keep fixed */

/* Set lightness */

[[0] =0.5 /* low*/

1] = vertex; /* bg */

[[2] = vertex; /* bg */

[[3] = 0.5, [/* high */

/* Set saturation -- keep at maxinmm */
s[0] = 1;

s[1] = 1;

s[2] = 1;

s[3] = 1;

c_pl scmapll (0, 4, i, h, I, s, NULL);

Finally, pl scrmap1 isan additional method of setting the mapl color palette directly using RGB space.
No interpolation is used with pl scmapl so it is the programmer's responsibility to make sure that the
colors vary smoothly. Here is an example of the method taken from exanpl es/ ¢/ x08c. ¢ which sets
(yet again) the gray-scale color palette.

for (i=0;i<n_col;i++)
re[i] =9g[i] = bb[i] =i*256/n_col;
pl scmapl(rr, gg, bb, n_col);

Setting Character Attributes

Plplot uses two separate font systems to display characters. The traditional system uses Hershey fonts
which are availablefor all device drivers, while the recently introduced unicode system is currently avail-
able only for the ps, psc, png, jpeg, and gif devices. For details on how to enable the unicode font system
for additional device driversusing the FreeType library, see the section called “ Adding FreeType Library
Support to Bitmap Drivers’.

Hershey fonts

There are two Hershey font character sets included with PLplot. These are known as the standard and
extended character sets. The standard character set is a subset of the extended set. It contains 177 charac-

Advanced Use of PLplot

tersincluding the ascii charactersin a normal style font, the Greek alphabet and severa plotter symbols.
The extended character set contains almost 1000 characters, including four font styles, and several math,
musical and plotter symbols.

The extended character set is loaded into memory automatically when pl st ar or pl start iscaled.
The standard character set isloaded by calling pl f ont | d. The extended character set requires about 50
KBytes of memory, versus about 5 KBytesfor the standard set. pl f ont | d can be used to switch between
the extended and standard sets (one set is unloaded before the next is loaded). pl f ont | d can be called
beforepl st ar .

When the extended character set isloaded there are four different font stylesto choose from. In this case,
theroutine pl f ont setsup the default Hershey font for all character strings. It may be overridden for any
portion of a string by using an escape sequence within the text, as described below. This routine has no
effect when the standard font set is loaded. The default font (1) is simple and fastest to draw; the others
are useful for presentation plots on a high-resolution device.

The font codes are interpreted as follows:

o font = 1:norma (sans-serif) font

e font = 2:roman (serif) font
« font = 3:itdicfont
o font = 4:scriptfont

Unicode fonts

The advantages of the unicode fonts over the more traditional PLplot Hershey fonts are the availability of
many additional glyphs (including mathematical symbols and glyphs from other than western-European
languages) and much better display of characters on computer screens using anti-aliasing and hinting.
Unicode fonts are obtained by specifying acommand-line option of -drvopt text for the devices (currently
ps, psc, png, jpeg, gif, and wingcc) where it has been implemented.

For the ps and psc devices, there is a fixed relationship between the FCI (font characterization integer,
see the section called “FCI”) and the actual Type 1 fonts that are being used. This fixed relationship is
specified in the Typellookup array in include/plfci.h. This array maps the font-family attributes of sans-
serif, serif, monotype, script, and symbol to the standard postscript font families called Helvetica, Times-
Roman, Courier, Times-Roman, and Symbol. (Thereisno script font family amongst the 35 standard Type
1 postscript fonts so that iswhy we map the font-family attribute of script to Times-Roman.) Similarly, this
array maps the font-style attributes of upright, italic or oblique and the font-weight attributes of medium
or bold to the appropriate variety of the Helvetica, Times-Roman, Courier, and Symbol font families that
are part of the 35 standard Type 1 postscript fonts. These standard postscript fonts are normally installed
on auser's system using the gsfonts package.

For the devices handled by the FreeType library (currently png, jpeg, and gif) there is a configurable
relationship between the FCI (font characterization integer, seethe section called “ FCI”) and the TrueType
fonts that are actually used.

The TrueType fonts corresponding to the 30 possible valid FCls can be specified using cmake op-
tions. The defaults for the 30 cmake variables PL_FREETYPE_FONT[_MODIFIER] (where FONT
is one of MONO, SANS, SCRIPT, SERIF or SYMBOL and the optional MODIFIER is one of
BOLD, BOLD_ITALIC, BOLD_OBLIQUE, ITALIC or OBLIQUE) are documented in cmake/mod-
ules/freetype.cmake. On Windows these defaults use standard Windows fonts. On all other platforms de-
faults are taken from fonts available from the ttf-freefont font package. We recommend this font pack-
age because it has a rather complete set of glyphs for most unicode blocks. (We also recommend the

35

Advanced Use of PLplot

gucharmap application for determining other unicode font possibilities on your system that are available
viathe FreeType library.)

For al systems, the 30 possible TrueType fonts can be specified at run time using the following environ-
ment variables:

« PLPLOT_FREETYPE_SANS FONT

« PLPLOT_FREETYPE_SERIF_FONT

« PLPLOT_FREETYPE_MONO_FONT

« PLPLOT_FREETYPE_SCRIPT_FONT

« PLPLOT_FREETYPE_SYMBOL_FONT

« PLPLOT_FREETYPE_SANS ITALIC_FONT

« PLPLOT_FREETYPE_SERIF_ITALIC_FONT

« PLPLOT_FREETYPE_MONO_ITALIC_FONT

« PLPLOT_FREETYPE_SCRIPT_ITALIC_FONT

« PLPLOT_FREETYPE_SYMBOL_ITALIC_FONT

« PLPLOT_FREETYPE_SANS OBLIQUE_FONT

« PLPLOT_FREETYPE_SERIF_OBLIQUE_FONT

« PLPLOT_FREETYPE_MONO_OBLIQUE_FONT

« PLPLOT_FREETYPE_SCRIPT_OBLIQUE_FONT

« PLPLOT_FREETYPE_SYMBOL_OBLIQUE_FONT

« PLPLOT_FREETYPE_SANS BOLD FONT

« PLPLOT_FREETYPE_SERIF BOLD_FONT

« PLPLOT_FREETYPE_MONO BOLD_FONT

« PLPLOT_FREETYPE_SCRIPT_BOLD_FONT

« PLPLOT_FREETYPE_SYMBOL_BOLD_FONT

« PLPLOT_FREETYPE_SANS BOLD_ITALIC_FONT

« PLPLOT_FREETYPE_SERIF BOLD_ITALIC_FONT

« PLPLOT_FREETYPE MONO_BOLD_ITALIC FONT
« PLPLOT_FREETYPE_SCRIPT_BOLD_|TALIC_FONT
« PLPLOT_FREETYPE_SYMBOL_BOLD_ITALIC_FONT
« PLPLOT_FREETYPE_SANS BOLD OBLIQUE_FONT
« PLPLOT_FREETYPE_SERIF_BOLD_OBLIQUE_FONT
« PLPLOT_FREETYPE_MONO_BOLD_OBLIQUE_FONT

36

Advanced Use of PLplot

FCI

« PLPLOT_FREETYPE_SCRIPT_BOLD_OBLIQUE_FONT
« PLPLOT_FREETYPE_SYMBOL_BOLD_OBLIQUE_FONT

On Unix/Linux systems if these environment variables are not specified with an absolute path starting
with "/", then the absolute path is specified by the cmake variable PL_FREETYPE_FONT_PATH or at
run time with the environment variable PLPLOT_FREETYPE_FONT_DIR.

We specify the properties of unicode fontswith the FCI (font characterization integer). The FCI isa 32-bit
unsigned integer whose most significant hexadecimal digit is marked with an 0x8 (0x80000000 is ORed
with the FCI value to mark it) to distinguish it from a unicode (UC$4) integer (whose maximum value
Ox7fffffff). Users obtain the current FCI by calling pl gf ci and store anew FCI to be used at the start of
each subsequent string using pl sf ci . Independent hexadecimal values within the FCI are characterized
by the hexdigit and hexpower. The hexpower is defined as the power of 16 or number of hexadecimal
places to the left of the "decimal place” in the FCI where the hexdigit is stored. The interpretation of the
hexdigit and hexpower valuesin the FCI are givenin Table 3.3, “FCI interpretation”.

Table 3.3. FCI interpretation

hexdigit --> 0 1 2 3 4
Font attribute| hexpower

font-family 0 sans-serif serif monospace script symbol
font-style 1 upright italic oblique
font-weight 2 medium bold

Note the maximum value of hexdigit is 7 and the maximum value of hexpower is 6 so there is substantial
room for expansion of this scheme. On the other hand, since each font attribute is independent of the rest,
what is implemented now gives us a maximum of 30 different font possibilities which is probably more
than enough for most plotting purposes.

Escape sequences in text

The routines which draw text all allow you to include escape sequences in the text to be plotted. These are
character sequences that are interpreted as instructions to change fonts, draw superscripts and subscripts,
draw non-ASCI|I (e.g. Greek), and so on. All escape sequences start with anumber symbol (#) by default.
Some language interfaces have the capability of changing this default, but we will assume (#) in the
remaining documentation of the escape sequences.

The following escape sequences are defined:

» #u: move up to the superscript position (ended with #d)
» #d: move down to subscript position (ended with #u)
 #Db: backspace (to allow overprinting)

o ##: number symbol

» #+: toggle overline mode

 #-:toggle underline mode

» #gx: Greek letter corresponding to Roman letter x (see below)

37

Advanced Use of PLplot

» #f n: switch to normal (sans-serif) font

o #fr: switch to Roman (serif) font

o #fi :switchtoitalic font

» #f s: switch to script font

e #(nnn) : Hershey character nnn (1 to 4 decimal digits)

* #[nnn] : unicode character nnn (Nnn can be decimal or hexadecimal [e.g., starting with 0x]) (UNI-
CODE ONLY).

» #<0x8nnnnnnn>: absolute FCI to be used to change fonts in mid-string. (nnnnnnn must be exactly
7 digits). (UNICODE ONLY).

e #<0xmm>: change just one attribute of the FCI in mid-string where m is the hexdigit and n is the
hexpower. If more than two digitsare given (so long asthe eighth digit does not mark this as an absolute
FCI, see above) they are ignored. (UNICODE ONLY).

* #<FCl COMMAND STRI NG >:the FCI COMMAND STRING iscurrently oneof "sans-serif", "serif",
"monospace”, "script”, "symbol”, "upright", "italic", "oblique" "medium", or "bold" (without the sur-
rounding quotes). These FCI COMMAND STRINGS change one attribute of the FCI according to their
name. (UNICODE ONLY).

Sections of text can have an underline or overline appended. For example, the string S(freq) is obtained
by specifying " #+S#+(#-freq#-)".

Greek | ettersare obtained by #g followed by aRoman letter. Table 3.4, “ Roman Characters Corresponding
to Greek Characters’ shows how these letters map into Greek characters.

Table 3.4. Roman Characters Corresponding to Greek Characters

Roman A B G E| z | v H | K L | ™
Greek A B r A E z H o | K Al M
Roman N c | o P | R s | T U F | x| o | w
Greek N = o | n P b2 T Y | & | X W | Q
Roman a b g d e z y h i k | m
Greek o | Bl y | 8| €| T | n 0 K | A W
Roman n c 0 p r S t u f X o} w
Greek v H 0 i p o T v () X W w

The escape sequences #f n, #f r , #f i , #f s, and #(nnn) are designed for the four Hershey fonts, but
an effort has been made to allow some limited forward compatibility so these escape sequences have
a reasonable result when unicode fonts are being used. However, for maximum flexibility when using
unicode fonts, these 5 escape sequences should be replaced by using the 4 escape sequences #[nnn] ,
#<0x8nnnnnnn>, #<0xm>, or #<FCI COVMAND STRI NG > as appropriate.

Character size adjustment

The routine pl schr is used to set up the size of subsequent characters drawn. The actual height of a
character is the product of the default character size and a scaling factor. If no call is madeto pl schr,
the default character size is set up depending on the number of subpages defined in the call to pl st ar

38

Advanced Use of PLplot

or pl start, and the scale is set to 1.0. Under normal circumstances, it is recommended that the user
does not alter the default height, but ssmply use the scale parameter. This can be done by calling pl schr

withdef = 0.0 and scal e set to the desired multiple of the default height. If the default height is
to be changed, def is set to the new default height in millimeters, and the new character height is again
setto def multiplied by scal e.

Theroutine pl ssymsets up the size of al subsequent characters drawn by callsto pl poi nand pl sym
It operates analogoudly to pl schr as described above.

Three Dimensional Surface Plots

PLplot includes routines that will represent a single-valued function of two variables as a surface. In this
section, we shall assume that the function to be plotted is Z[X] [Y] , where Z represents the dependent
variable and X and Y represent the independent variables.

Asusual, wewouldliketorefer toathreedimensional point (X, Y, Z) intermsof somemeaningful user-
specified coordinate system. These are called three-dimensional world coordinates. We need to specify
the ranges of these coordinates, so that the entire surface is contained within the cuboid defined by xmi n
<X <xmax,ymn <y <ymax, and zm n <z < zmax. Typicaly, we shall want to view the surface
from avariety of angles, and to facilitate this, a two-stage mapping of the enclosing cuboid is performed.
Firstly, it is mapped into another cuboid called the normalized box whose size must also be specified by
the user, and secondly this normalized box is viewed from a particular azimuth and elevation so that it can
be projected onto the two-dimensional window.

This two-stage transformation process alows considerable flexibility in specifying how the surface is
depicted. The lengths of the sides of the normalized box are independent of the world coordinate ranges
of each of the variables, making it possible to use “reasonable” viewing angles even if the ranges of the
world coordinates on the axes are very different. The size of the normalized box is determined essentially
by the size of the two-dimensional window into which it isto be mapped. The normalized box is centered
about the origin in the x and y directions, but rests on the planez = 0. It is viewed by an observer
located at altitude al t and azimuth az, where both angles are measured in degrees. The altitude should
be restricted to the range zero to ninety degrees for proper operation, and represents the viewing angle
above the xy plane. The azimuth is defined so that when az = 0, the observer sees the xz plane face
on, and as the angleisincreased, the observer moves clockwise around the box as viewed from above the
xy plane. The azimuth can take on any value.

The first step in drawing a surface plot is to decide on the size of the two-dimensional window and the
normalized box. For example, we could choose the normalized box to have sides of length

A reasonablerange for the x coordinate of the two-dimensional window is-2.5to +2.5, since the length of
the diagonal acrossthe base of the normalized box is sqrt(22+42) =2 5grt(5), which fitsinto this coordinate
range. A reasonable range for the y coordinate of the two dimensional window in this caseis-2.5 to +4,
as the the projection of the normalized box liesin thisrange for the allowed range of viewing angles.

The routine pl wi nd or pl env is used in the usual way to establish the size of the two-dimensional
window. The routine pl w3d must then be called to establish the range of the three dimensional world
coordinates, the size of the normalized box and the viewing angles. After calling pl w3d, the actual surface
isdrawn by acall to pl ot 3d.

For example, if the three-dimensional world-coordinate ranges are -10.0 < X < 10.0,-3.0c y < +7.0, and
0.0 < z 8.0, we could use the following statements:

39

Advanced Use of PLplot

xmn2d = -2.
xmax2d =
ym n2d =
ymax2d = ;
pl env(xm n2d, xmax2d, ym n2d, ymax2d, 0, -2);
basex =
basey =

hei ght = 3.0;

Xmn ;

Xmax

ymn

ymax
zmn
zmax

alt = 4

side = 1,
pl w3d(basex, basey, height, xmn, xmax, ymn, ymax, zmn, zmax, alt, az);
pl ot 3d(x, vy, z, nx, ny, opt, side);

The values of the function are stored in atwo-dimensional array z[] [] wherethe array element z[i]
[j] containsthevalue of the function at the point x;, y;. (The two-dimensional array z is avectored array
instead of afixed sizearray. z pointsto an array of pointerswhich each point to arow of the matrix.) Note
that the val ues of the independent variables x; and y; do not need to be equally spaced, but they must lie on
arectangular grid. Thus two further arrays x[nx] and y[ny] arerequired as argumentsto pl ot 3d to
specify the values of the independent variables. Thevaluesinthe arraysx and y must be strictly increasing
with the index. The argument opt specifies how the surface is outlined. If opt = 1, alineisdrawn
representing z as a function of x for each value of y, if opt = 2, alineis drawn representing z as a
function of y for each value of x, and if opt = 3, anet of linesis drawn. The first two options may be
preferable if one of the independent variables is to be regarded as a parameter, whilst the third is better
for getting an overall picture of the surface. If side is equal to one then sides are drawn on the figure so
that the graph doesn't appear to float.

Theroutinepl mesh issimilarto pl ot 3d, except that it isused for drawing mesh plots. Mesh plotsallow
you to see both the top and bottom sides of a surface mesh, while 3D plots alow you to see the top side
only (like looking at a solid object). The side option is not available with pl nmesh.

Labelling a three-dimensional or mesh plot is somewhat more complicated than a two dimensional plot
due to the need for skewing the charactersin the label so that they are parallel to the coordinate axes. The
routine pl box3 thus combines the functions of box drawing and labelling.

Contour and Shade Plots

Severa routines are available in PLplot which perform a contour or shade plot of data stored in a two-
dimensional array. The contourer uses a contour following algorithm so that it is possible to use non-
continuous line styles. Further, one may specify arbitrary coordinate mappings from array indicesto world
coordinates, such asfor contoursin apolar coordinate system. In this caseit is best to draw the distinction
between the C, Fortran 95, and Fortran 77 interfaces so these are handled in turn.

Contour Plots from C

pl cont isthe routine callable from C for plotting contours. This routine has the form:

pl cont (z, nx, ny, kx, Ix, ky, ly, clevel, nlevel, pltr, pltr_data);

40

Advanced Use of PLplot

where z isthetwo-dimensional array of sizenx by ny containing samples of the function to be contoured.
(z is a vectored two-dimensional array as described in the previous section. It is not a fixed-size two-
dimensional array.) The parameterskx, | x, ky and | y specify the portion of z that is to be considered.
Thearray cl evel of lengthnl evel isalist of the desired contour levels.

The path of each contour isinitially computed in terms of the values of the array indices which range from
0 to nx- 1 inthe first index and from 0 to ny- 1 in the second index. Before these can be drawn in the
current window (see the section called “ Defining the Window™”), it is necessary to convert from these array
indices into world coordinates. This is done by passing a pointer pl t r to a user-defined transformation
functiontopl cont . For Cuseof pl cont (and pl shade, see next subsection) we haveincluded directly
in the PLplot library the following transformation routines: pl t r O (identity transformation or you can
enter aNULL argument to get the same effect); pl t r 1 (linear interpolation in singly dimensioned coor-
dinate arrays); and pl t r 2 (linear interpolation in doubly dimensioned coordinate arrays). Examples of
the use of these transformation routines are givenin exanpl es/ ¢/ x09c. ¢, exanpl es/ ¢/ x14c. c,
and exanpl es/ ¢/ x16c. c. These samethree exampl es also demonstrate a user-defined transformation
functionmypl t r which is capable of arbitrary translation, rotation, and/or shear. By defining other trans-
formation subroutines, it is possible to draw contours wrapped around polar grids etc.

Shade Plots from C

NEEDS DOCUMENTATION. Follow the plshade and plshades usage in exanpl es/ ¢/ x??c. c.

Contour Plots from the Fortran 95 interface

NEEDSDOCUMENTATION. Follow the plcont usage (with avariety of overloaded formsavailable with
different arguments) in exanpl es/ f 95/ x??f . f 90.

Shade Plots from the Fortran 95 interface

NEEDSDOCUMENTATION. Follow the plshade and plshades usage (with avariety of overloaded forms
available with different arguments) in exanpl es/ f 95/ x??f . f 90.

Contour Plots from the Fortran 77 interface

The routines mentioned above are not recommended for use directly from Fortran 77 due to the need
to pass a function pointer. That is, the transformation function is written in C and can not generally be
changed by the user. The call for routine pl cont f or t r an77 from Fortran 77 is then:

call plcont (z, nx, ny, kx, Ix, ky, ly, clevel, nlevel);

When called from Fortran 77, this routine has the same effect as when invoked from C. The interpretation
of al parameters (see pl cont) isalso the same except thereis no transformation function supplied asthe
last parameter. Instead, a 6-element array specifying coefficients to use in the transformation is supplied
viathe named common block pl pl ot (see code). Since this approach is somewhat inflexible, the user is
recommended to call either of pl conO, pl conl, or pl con2 instead for Fortran 77.

The three routines recommended for use from Fortran 77 are pl conO, pl conl, and pl con2. These
routines are similar to existing commercial plot package contour plotters in that they offer successively
higher complexity, with pl conO utilizing no transformation arrays, while those used by pl conl and
pl con2 are one and two dimensional, respectively. The call syntax for eachis

call plcon0 (z, nx, ny, kx, Ix, ky, ly, clevel, nlevel);

call plconl (z, nx, ny, kx, Ix, ky, ly, clevel, nlevel, xgl1, ygl);

41

Advanced Use of PLplot

call plcon2 (z, nx, ny, kx, Ix, ky, ly, clevel, nlevel, xg2, yg2);

The pl conO routine is implemented via a call to pl cont with a very simple (identity) transforma
tion function, while pl conl and pl con2 use interpolating transformation functions as well as a call
topl cont.

The transformation arrays are used by these routines to specify a mapping between the computational
coordinate system and the physical one. For example, the transformation to polar coordinates might look
like:

doi =1, NX
doj =1, NY
xg(i, j) =r
yg(i, j) =r
enddo
enddo

=r(i) * cos(theta(j))
=r(i) * sin(theta(j))

assuming the user had already set up arraysr and t het a to specify the (r, gy values at the gridpoints
in his system. For this example, it is recommended that the user add an additional cell in theta such that
xg(i, Ny+1) = xg(i, 1) andyg(i, Ny+1) = yg(i, 1) sothatthecontoursshow the proper
periodic behavior in g (see a'so example program 9).

The transformation function not only specifies the transformation at grid points, but also at intermediate
locations, vialinear interpolation. For example, inthe pl t r 1 transformation function used by pl con1,
the 1-d interpolation to get t x as afunction of x lookslike (in C):

ul = (PLINT)X;

ur = ul + 1;
du = x - ul;
xlI = *(xg+ul);
Xr = *(xg+ur);

*tx = xI * (1-du) + xr * du;

while in Fortran 77 this might look like:

I xI = x
Ixr =1xl +1
dx = x - IxI
xI = xg(lxl)
xr = xg(lxr)
tx = xlI * (1-dx) + xr * dx

Shade Plots from the Fortran 77 interface

NEEDS DOCUMENTATION. Follow the plshade* and plshades* usageinexanpl es/ f 77/ x??f . f .

Legends and color bars

Thepl | egend andpl col or bar routinesareavailablein PLplot to provide users with the capability of
visually annotating their plots with alegend (aseries of patterned boxes, lines, or symbolswith associated

42

Advanced Use of PLplot

explanatory UTF-8 text) or a color bar (an annotated subplot representing a continuous range of colors
within the main plot and typically identifying certain colors with certain numerical values using an axis).
pl | egend isuseful for visually annotating most two-dimensional plots. See standard examples 4 and 26
for some examples. pl col or bar is especially useful for annotating continuous shade plots generated
by pl shades. See standard example 16 for an example.

The pl | egend and pl col or bar routines provide the users complete and convenient control of the
size and position of the results on the plot and also return size data that makes it straightforward to stack
different legend or colorbar results together on the plot (see standard example 33 for an example of this
capability). Furthermore, the pl | egend and pl col or bar routines provide the user with many differ-
ent style possibilities for the results. Because of al these features, pl | egend and pl col or bar have
an extensive argument list. So we recommend first-time users of pl | egend and pl col or bar use ex-
amples 4, 16, and 26 as a tutorial on how to use these PL plot capabilities in a simple way, and for more
advanced use we recommend that users study thepl | egend and pl col or bar documentation and also
example 33 which attempts to exercise most capabilities of these two PLplot functions.

43

Chapter 4. Deploying programs that
use PLplot

This chapter provides some information on the issue of delivering programs that use PLplot: what files
should be installed and where, what environment variables are involved and related matters.

The scenario is this: Y ou have created one or more programs that run successfully on your devel opment
machine and now you need to install them on the machine of a user.

One solution is to provide him or her with the full development environment that you use, but that isin
general only an option if your user is comfortable with making programs themselves. A more common
situation is that your user just wants the executabl e programs and wants to get using them right away. We
will focus on this particular solution, asthere are afew non-trivia issues.

To be absolutely clear about what we are describing, hereis a summary:
* Your program must run on amachine that does not have PL plot installed from the sources.
» Thereisno development environment that you can rely on.

* The program should be installed in a self-contained directory structure (which can be/ usr /| ocal
or c: \ pr ogr amfiles or whatever, but need not be so).

Under Linux, the easiest way to install a binary version of PLplot on a user's machine is to use PLplot
deb binary packagesfor the Debian [http://www.debian.org] distribution, and PL plot rpm binary packages
for rpm-based distributions. (See the download area [http://plplot.sourceforge.net/download.php] of the
PLplot web sitefor |ocations of debsand rpms.) Build the application on the build machine using theresults
of thepkg-config --cflags --1ibs pl pl otdcommand, and copy the resulting executable(s)
to the users machines.

Under Unix (and also under Linux if you would prefer to use anewer version of PLplot thanisavailablein
the debs or rpms), agood way to deploy binary PL plot and applications that depend on that binary PLplot
on users machinesis as follows:

» Use the cmake option - DCMAKE | NSTALL_PREFI X=/ usr/ 1 ocal / pl pl ot (or some other
unique but consistent directory that is available on the build machine and all users' machines).

* Build and ingtall as normal on the build machine.

» Copy theinstalled PLplot tree, / usr /| ocal / pl pl ot , into atarball.

» Unpack that tarball on all users machinesin the samelocation/ usr /| ocal / pl pl ot .

« Build the application(s) on the build machine using either the make or cmake based build system in /
usr/local/plplot/share/plplotX.Y .Z/examples where X.Y.Z is the plplot version, and copy the resulting
executable(s) to the users machines. Since the PLplot install location is consistent on all machines, the

application should work the same way on al machines.

On Windows, and also those rare Linux/Unix cases where you cannot install the PLplot install treein a
consistent location on users' machines, then there are some additional options you need to consider.

There are three situations depending on how you configure and build the PLplot libraries:

44

http://www.debian.org
http://www.debian.org
http://plplot.sourceforge.net/download.php
http://plplot.sourceforge.net/download.php

Deploying programs that use PLplot

1. You usethe static versions of the PLplot libraries and devices which are not dynamically loaded. !
2. You use the shared versions of the PLplot libraries and devices which are not dynamically loaded.

3. You use the shared versions of the PLplot library and devices which are dynamically loaded. This
combination is the default option under Unix/Linux.

In the first case the program will contain all the code it needs to work, but to run successfully, it needs
to find the font files, pl st nd5. f nt and pl xt nd5. f nt . The mechanism used in PLplot to find these
filesisfarly smple:

* Itlooks at a number of built-in places, determined at thetime the PLplot library itself was installed and
built. For deployment these places areirrelevant in general.

* Itlooksat the environment variablesPLPLOT LI B and PLPLOT_HQOVE. (Actually, this happensonly,
if the corresponding compiler macros PLPLOT LI B_ENV and PLPLOT_HOVE _ENV were defined at
compiletime.)

e (TODO: remark about Mac)
Note: Thisis also the place to put the geographical map files, if you happen to use them.

The environment variables should point to the directory holding the two font files or the one above (one
variable is enough though):

e PLPLOT_LI B should point to the directory actually holding these files

e PLPLOT_HQVE should point to the directory that holds asubdirectory “1 i b” whichinturn holds these
files.

If it can find these, PLplot can doitsjob.

Note: Thisisthe case for instance when you use the static PLplot library on Windows (see the directory
sys\wi n32\ nsdev\ pl pl i b).

Inthe second casethefont and map filesarefound asin thefirst case. In addition, you also require another
environment variable so the PLplot shared libraries can be found at run time by the run-time loader. The
details depend on the system you are working on, but here are some common platforms:

e Most UNIX, BSD and Linux systems use an environment variable LD LI BRARY_PATH which indi-
cates directories where shared libraries can be found. Some use SHLI B_PATH, like HPUX.

e OnWindowsthe PATH variableisused to find the DLLs, but beware: Windows uses anumber of places
to find the DLLs a program needs and the ordering seems to depend on some intricate details. It seems
easiest and safest to put the DLLsin the same directory as your program.

* On MacOSX, ... TODO

In the third (default) case, the PLplot fonts and maps are found asin thefirst case, and the shared libraries
are found as in the second case, but in addition the separated dynamic devices have to be found as well.

When PL plot usesdynamic devices, it first buildsup alist of them, by examining adirectory which contains
files describing those devices: the* . dri ver _i nf o files. Each of thesefilesindicates what the relevant
properties for the device or devices. Then when the device is actually needed, the corresponding shared
object (or plug-in or DLL depending on your terminology) is dynamically loaded.

LUNIX-like systemslibraries can be static or shared, thefirst type becoming part of the program, the second existing as a separate file. On Windows
the terms are respectively static and dynamic (the latter type is also known as DLL).

45

Deploying programs that use PLplot

The directory that contains all these files (the device descriptions as well as the actual libraries and the
description filesthat libtool uses) isadirectory determined at the time you configured PL plot which istyp-
ically something like/ usr/ | ocal / pl pl ot/ i b/ pl pl ot5. 3. 1/ dri ver sd. Thisdirectory must
be pointed to by the PLPLOT_DRV_DI R environment variable. Again for deployment, only the environ-
ment variableis of rea interest.

To summarize the case where you don't have a deb or rpm option, and you must use inconsistent install
locations on your users machines:

» Thefollowing environment variables are important:

e PLPLOT_HQOVE or PLPLOT_LI B to indicate the position of font files (and also of the various geo-
graphic maps)

e LD LI BRARY_PATH, SHLI B_PATH or PATHto find the dynamic/shared libraries
« PLPLOT_DRV_DI Rto find the device descriptions
e Thefollowing files being part of PLplot must be distributed along with your program:

e Thefont files(pl st nd5. f nt and pl xt nd5. f nt) and, possibly, if you use them, the geographic
map files.

e The PLplot shared libraries
» The device description files and the device shared object files

All the environment variables, except LD LI BRARY_ PATH and equivalents, can be set within the pro-
gram (by using asmall configuration file or by determining the position of thefilesrelativeto the program's
location). They just have be set before PLplot isinitialized.

46

Chapter 5. The PLplot Display Driver
Family

Driversthat provide screen displays are described in this chapter. Each of the drivers hasalist of options,
and these may be set as outlined in the section called “ Command Line Arguments’.

The Xwin Driver (X-Windows)

The Xwin driver draws plotsin an X-window. Although some of the newer features are not supported, it
remains the reference driver for PLplot.

Plots are displayed one page at atime. The pager is advanced by pressing the Enter key, and may only
be advanced in the forward direction.

Anti-aliasing is not supported, and the Xwin driver is not unicode-enabled.
The available driver options are:

 sync: Synchronized X server operation (0[1)

» nobuffered: Sets unbuffered operation (0|1)

* noinitcolors: Sets cmapO allocation (0|1)

* defvis: Usethe Default Visual (0]1)

* usepth: Use pthreads (0[1)

The Tk Driver

is the prototype of awhole new interaction paradigm. See next chapter.

The AquaTerm Driver (Mac OS X)

The AquaTerm driver isaMac OS X specific driver that is used with the AquaTerm Graphics Terminal.
It is unicode enabled. Text, lines and shades are anti-aliased.

There are no options...

The wxWidgets Driver (Linux, Mac OS X, Win-
dows)

Thebasic wxWidgets driver'sfeatures and user interface are described in the section called 'Driver Basics.
Thefile driversREADME.wxwidgets describes how you can use the PLplot library within your wxWid-
gets application.

wxWidgets Driver Basics

ThewxWidgetsdriver plotsin aFrame provided by thewxWidgetslibrary. Thedriver isquite complete but
lacks many of the GUI features of the TK driver. All plots are available at once an one can switch between

47

The PLplot Display Driver Family

all plots by pressing Alt-n. The application can be quit with Alt-x. These functions are also available in
the menu. After the last plot one will advance again to the first plot. Anti-aliasing is supported and and
the wxWidgets driver is unicode enabled. It is also possible to address the wxWidgets driver from within
awxWidgets application - thisis described in the next section.

The available driver options (used with the - dr vopt command-line argument) are:
* text: Use TrueType fonts (0]1); default 1
* smooth: switch on/off anti-aliasing (0|1); default 1

The text option toggles between TrueType and Hershey fonts. The Hershey fonts provide a reference
implementation for text representation in PLplot.

The smooth option will turn on or off text smoothing for True Type fonts. Thiswill increase the time for
aplot considerably.

48

Chapter 6. The PLplot Output Driver
Family

Drivers which produce output files are described in this chapter. Each of the drivers has alist of options,
and these may be set as outlined in the section called “ Command Line Arguments’.

The GD Driver

The GD driver produces png, jpeg, and gif images, using devices by the same name. The GD driver is
unicode enabled. Text is anti-aliased, but lines and shades are not.

The available driver options are:
* optimize: Optimize PNG palette when possible

» def_black15: Defineidx 15 as black. If the background is "whiteish" (from "-bg" option), force index
15 (traditionally white) to be "black"

» swp_red15: Swapindex 1 (usualy red) and 1 (usually white); always done after "black15"; quite useful
for quick changes to web pages

* 8hit: Palette (8 bit) mode
o 24bit: Truecolor (24 bit) mode
* text: Usedriver text (FreeType)

» smooth: Turn text smoothing on (1) or off (0)

The PDF Driver

A basic version of a pdf driver has been added to PLplot. This driver is based on the libharu library see:
libharu.org [http://libharu.org/]. At present only the Hershey fonts are used and there is no support for pdf
or ttf fonts. Compression of the pdf output is not enabled and the paper size can't be chosen. All these
issues will be addressed in later releases.

Options?

The PostScript Driver

The PostScript driver produces publication-quality PostScript output. The driver providestwo devices: the
ps device for black-and-white plots, and the psc device for color plots.

This driver is unicode enabled, and PostScript Type | fonts are used. Type | fonts do not have al of the
available unicode symbols represented. For this reason, Hershey fonts are used for drawing symbols by
default, unless specified otherwise using the driver options.

The available driver options are:
* text: Use PostScript text (0|1); default 1

» color: Use color (0|1); default 1

49

http://libharu.org/
http://libharu.org/

The PLplot Output Driver Family

* hrshsym: Use Hershey fonts for symbols (0[1); default 1

The TrueType PostScript Driver

ThisisaPostScript driver that supports TrueType fonts. This allows accessto afar greater range of fonts
and characters than is possible using Type 1 PostScript fonts (see the section called “ The PostScript Dri-
ver”). It is the driver to use for generating publication quality output using PLplot. The driver provides
two devices:. the ps-ttf device for black-and-white plots and the ps-ttfc device for color plots.

The driver reguires the LASI (v1.0.5), pango and pangoft2 libraries to work. The pango and pan-
goft2 libraries are widely distributed with most Linux distributions and give the psttf driver full
complex text layout (CTL) capability (see http://plplot.sourceforge.net/examples.php?demo=24 [http://
plplot.sourceforge.net/examples.php?demo=24] for an example of this capability). The LASi library isnot
part of most distributions at this time. The source code can be downloaded from http://www.unifont.org/
lasi/. The library is small and easy to build and install. Make sure you use LASI-1.0.5. The psttf device
driver uses new capabilitiesin this version of LASi and no longer works with LASi-1.0.4.

The available driver options are:
* text: Use TrueType fonts for text (O[1); default 1
 color: Use color (0|1); default 1

 hrshsym: Use Hershey fonts for symbols (0[1); default O

The LaTeX PostScript Driver

This is a PostScript device driver that writes out its results in two files. (1) The encapsulated postscript
(EPS) file contains al the postscript commands for rendering the plot without characters, and (2) the
LaTeX file contains afragment of LaTeX that reads in the EPS file and renders the plot characters using
LaTeX commands (and LaTeX fonts!) in alignment with the EPS file to produce a combined result.

Suppose you create the EPS and LaTeX fileswith the following command: . / x01c -dev pstex -0
x01c. eps. TheEPSfileisthenstoredinx01c. eps andtheLaTeX fragmentisstoredinx01c. eps_t.
Then you may use the generated fileswith thexO1lc. t ex LaTeX code that follows:

\ docunentcl ass{articl e}
\ usepackage[dvi ps] { gr aphi cx}
\ begi n{ docunent }
\'i nput {x01c. eps_t}
\ end{ docunent }

and generate PostScript resultsusing the LaTeX fontswith thefollowing command: | at ex x01c. t ex;
dvi ps -f <x0lc.dvi >x01c.ps . Theresultslook good (aside from an obvious bounding-box
problem that still needs to be fixed with this device) and should be useful for LaTeX enthusiasts.

There are no available driver options.

The SVG Driver

The SVG driver produces Scalable V ector Graphicsfilesthat are compliant with the SVG 1.1 specification
as defined here: http://www.w3.0rg/Graphics/SV G/. The driver is unicode enabled and both text and lines

50

http://plplot.sourceforge.net/examples.php?demo=24
http://plplot.sourceforge.net/examples.php?demo=24
http://plplot.sourceforge.net/examples.php?demo=24

The PLplot Output Driver Family

are anti-aliased. As SVG isjust an XML based graphics language, the visual quality of the resulting plot
will depend on the SV G rendering engine that is used and what fonts that are available to it.

51

Part Ill. Language Bindings

Table of Contents

T A LBNGUBGE ... ettt ettt 55
OVEIVIBIV .ttt ettt ettt ettt e et et e ettt b n e et e ab e e e et e e e enaas 55

THE BINGINGS ...ttt ettt ettt e e e e 55

THIN BINAING ettt r e 55

The ThiCK BiNAINGSeiiiiieeiei e 56

Standard Thick Binding Using Enhanced Namesccoiiiiiiiiiiiiiiiiiiecceieeeeen 56

Thick Binding Using Traditional NamMESoooiiiiiiiiiiiiccii e 57

THE EXAMPIES ...t 57
ObtaiNiNg the SOFtWEIEuiiiiiii e 57
Obtaining an Ada COMPITENuiiiii e e 57

Download and install PLPIOLeiiiiiieieii e e 58

The Ada bindings to PLPIOLcouuuiiiii e 58

How to use the Ada bindiNgSuiiiiiiiee e 58

Ada 95 VErsUS Ada 2005coouuniiiiiiiieeiiii et 58

GNAT VErsUS NON-GNAT .ot 58

Sample command 1IN PrOJECTuuu i 59

Unique Features of the Adabindingsoveiiiiiiiiii e 60
High-level features for simplified plottingc.ooveiiiiiiiiiii e, 60

Integer Options GIVen AdaNAMESiiiiiiiiiaiii e 62

N0 TS et 63

Parts That Retain @ C FIAVOTcouuiiiiiii et 64
= oo = T 1o To [TP PP PPT P POPPPTRRPPPIN 64

KINOWN V@ITANCES ...ttt ettt e et e et e et eeeena s 64
DOCUMENEALION ...ttt ettt et ettt ettt et e e et e e e e e e e ene e e ennen 64

AP s 64
COMPITBLION NOLESeeeet ettt ettt et e e et e e e e et e e e e e e e e eeanns 65

Ada 95 Versus Ada 2005ooeeruniieiiiieeei et 65

GNAT DEPENUENCE ...eeevieeeeii ettt ettt ettt ettt a et na e e eneans 65
PLPIOL_AUXITTBIY .ottt e e et e e e e eees 65

Notes for Apple MacintoSh OS X USE'Suuiiiiiiieiiiiiiee ettt eeeans 65
Using ApPIE'S XCOOE IDEooiiiiiiiiiii e 65

F o U= = o PP 66

D PP PR OPPTTR 66

GINAT FOr OS X ottt e et e e e s 66

S I O =g To 1= L= PP 67
9. A CH+ Interface fOr PLPIOLo e e e 69
Motivation for the CH+ INEEITACEiiiiiii e 69
Design of the PLPIOt CH+ INEEITACEuuiiiii e 69
Stream/OBJECE THENLILYeeveieiiii e 69
NamesPace MaNBgEMENTccuuiiriieiii et r e e e e e 70
ADSraction Of Data LBYOULoceeuriieiiiiiieeiiii et 70

Collapsing the AP ... e 71
Specializing the PLPIOt CH+ INEEITACEiiiiiici e 71
Status Of the CHt INEEITACEiiiie e 72

10. FOItran 77 LANQUBZEuoeeunietieiti et e et e e e e et et e et e e et r et e e e et et e e e e eena e 73
11, FOrtran 95 LAnQUBZEueeuuiitieiti ettt et ettt e et e e et r et e e e et e e e e eaa e 76
12, OCaMI LANGQUAGE ...eeveneeeetie ettt ettt ettt ettt et e et e e et e et e e e e ab e e e enba e e eennes 80
OVEIVIBIV .ttt ettt ettt e ettt e et e e et et e et e ab e et e tb e e e enaaas 80

THE BINGINGS ...ttt ettt eaaas 80

COrE BINAING ...ttt ettt e et et e e e aees 80
OCaml-specific variations to the core PLPIot APIooooiiiiii e 80

53

Language Bindings

OCaml high level 2D plotting APlcoiniiee e e 81

ThE EXAMPIES e e 81
Obtaining the SOfIWEAIEccuuiii e e eaes 81
Obtaining the OCaml COMPILErcoviiiii e 81

How to use the OCaml BINAINGSocvuiiiiiii e e e e e e 81

How to setup findlib for use with the OCaml bindings..........c.ccoccciviiiiiiiiiiie e 81

Sample command line project (Core API)oiiiiii e 82

Sample command line project (OCaml-specific API)cooviiiiiiiiii e 82

Sample tOPIEVEl PIOJECE .. cvviiii e e e 83

KINOWN TSSUBS ...ttt ettt et et e e et e e e e e et e e e e e e e e aeees 84

13. UsSiNg PLPIOE frOmM PEI .oeee e e e 85
14. Using PLPIOL from Pythonc.ouiiii e 87
15. USING PLPIOE fIOM TCl oouiiiiiiiii i e e e e e e e e e e e e e eees 88
Motivation for the Tcl Interface to PLPIOLccuviiiiniiii e e 88
Overview of the Tcl Language Bindingcccuveiiiiiiiiiiiiii e e e 89

The PLPIot TCl MatrixX EXTENSIONuiiiiiiiiiicii e e e e e e e s e e e e e aeas 91
Using Tcl Matrices from TCluiivnii e 91

UsiNg Tcl MatriceS frOmM € ..ovuiiiiniiii e e e e e 93

Using Tcl Matrices from CH .ouuiiiiiiii e e e e 93

Extending the Tcl MatrixX faCilityooeveiiiiiiii e, 94
Contouring and Shading from TCloiiiiii e 95
Drawing a Contour PIot from TClcoouiiiiiiii e 95

Drawing a Shaded PIOt from TCloovvniiiii e 97
Understanding the Performance Characteristics of TClcooeviiiiiiiiiiii e, 97

16. Building an Extended WISHoiiiiii e e 99
Fgl oo (U e[To o I8 (o TN o PP 99
MOLIVELION FOr TCl it e e e e s 99
Capabilities OF TCl .oovniiiiii e e e 99

ACGUITING Tl oeniii i e e e e e e e e e e aes 100

F g1 (8o (o g T (o TN I G PP 100
INtroduction t0 [INCr TCl] ..vvvnii e e e e e e 101
PLPIOt EXTENSIONS 10 TCl 1uvuiiiiiciieci e e e e e e e e e e aaaas 101
Custom EXLENSIONS 10 TCl 1ovvuniiiiiiieie e e s 102
WISH CONSLIUCHION vttt e e e et e e et eeeae s 102

WISH LINKING oetniiiiieiii e e e e e e e e et e et e e et e e et e e e e eanaes 104

WISH ProgramiMingoouuieeieieeiieeeie e s e e e e e e st e e st e e et e et esan e eaanaeannnas 104

17. Embedding Plots in Graphical User INterfacesc.ovviiviiiiiiiiiin e 105

Chapter 7. Ada Language

This document describes the Ada bindings to the PLplot technical plotting software, how to obtain the
necessary software components, and how to use them together.

Overview

The Adabindings for PLplot provide away for Ada programmers to access the powerful PLplot technical
plotting facilities directly from Ada programs while working completely in Ada; the Ada programmer
never needs to know or worry that PLplot itself iswritten in another language.

There are a thin binding and two thick bindings provided. The thin binding presents the application pro-
gramming interface (API) in aform very similar to the C API, athough in 100% Ada. The thick bindings
present the API in aform to which Ada programmers will be more accustomed and add some ease-of -use
features. It is expected that the thick bindings will be preferred.

The Bindings

The bindings are a re-expression and extension of the C-language API and as such are a kind of abstract
layer between the user's code and the PLplot binary library. Additionally, there are a few capabilities not
in the official API but nonetheless which are available to the C programmer which are included in the
bindings and thus are directly available to the Ada programmer.

Thethin binding is alayer between the thick bindings and the underlying C code. It ismainly a program-
ming conveniencefor the devel oper of the bindings; thisisacommon implementation for foreign language
bindings and for the most part, the user can ignore it.

There are two thick bindings provided for the convenience of the user. Either may be used and they both
provide exactly the same functionality. The thick bindings are the user's main concern with programming
for PLplot.

Thin Binding

Thethinbinding, inthefilespl pl ot t hi n. ads andpl pl ot t hi n. adb, ismostly adirect and obvious
mapping of the C application programming interface (API) to Ada. Thus, for example, wherea C program
such as pl col O requires a single integer argument, there is a corresponding Ada program also called
p!l col O which aso requires asingle integer argument. (pl col 0 happensto set the drawing color using
a number which is associated with a set of colors.) Various constants from the C APl are aso included
here. Numeric types as defined in PLplot are associated with numeric typesin Adain the thin binding by
use of Ada'stype system. Thus, the thin binding refersto the PL plot-centric type PLFLT for floating-point
types while the thick binding uses the usual Adatype Long_Fl oat .

Many of the comments from the C source header file (similar in purpose to an Ada specification file) have
been retained in the thin binding, even when they are no longer make sense. These might be pruned at
some point to facilitate reading the Ada source.

Also included in the thin binding are some other declarations which help the Ada binding to mesh well
with C by emulating certain data structures which are needed in some rather specialized usages aswell as
providing certain subprogram pointer types.

The Ada programmer working with either of the thick bindings will have to refer to the thin binding
relatively rarely, if ever, and mainly to examine the subroutine pointer declarations and the several variant

55

Ada Language

record types which are used mostly for contour and three-dimensional plots. However, some of these have
been subt ype-ed or r enanes-ed in the thick bindings so even less reference to the thin binding will
be necessary. The goal is to put everything of interest to the user in the thick bindings and the user need
not bother with the thin binding.

The Thick Bindings

The thick bindings provide most of the information that the Ada programmer needs. Normally, only one
of the two thick bindings would be used per user program but it should be possible to include both but
that scenario would be unusual.

There are three main aspects of the thick bindings. providing an aternative access to the PLplot API,
extending the PLplot functionality with some easy-to-use features, and overlaying Adadata structures and

types.

Inthefirst aspect, thethick bindings provideafully Adainterfaceto the entire PLplot library. Packagesare
wi t h-ed and use-d asnormal Adacode. Adaarrays can be passed as usual, hot requiring the array length
or start or end indices to be passed separately. All necessary Ada types are made to match the underlying
C types exactly.

The second aspect of the thick bindings is to provide some simplified ways to get alot of plotting done
with only one or two subroutine calls. For example, a single call to Simple Plot can display from one
to five "y's" as a function of a single "X" with default plot appearances chosen to suit many situations.
Other simple plotters are available for three-dimensional and contour plots. Manipulating PLplot's colors
issimilarly made easy and some default color schemes are provided.

The third main aspect of the thick binding is to use Ada data structures and Ada's type system extensively
to reduce the chances of inappropriate actions. For example, Adaarraysare used throughout (as opposed to
C's pointer-plus-offset-while-carrying-al ong-the-si ze-separatel y approach). Quantities which have natural
range limits are subt ype-d to reflect those constraints. The hope is that program errors will result in
more-familiar Ada compilation or run-time errors rather than error reports from the PLplot library or no
reportsat all. However, there remain afew instances where the typing could beimproved and PL plot errors
will till be reported from time to time.

Both the specification and body for the standard thick (and thin) binding contain the C subroutine name
as a comment line immediately above the Ada procedure declaration; this should help in making the as-
sociations between "Ada' names and "PLplot" names. Also, the subroutine-specific comments from the
C API have been retained verbatim.

Standard Thick Binding Using Enhanced Names

The distinguishing feature of this thick binding (the "standard” binding) is to provide more descriptive
names for PLplot subroutines, variables, constants, arguments, and other objects. Most Ada programmers
will be more comfortable using these names. For example, in the C API as well as the thin Ada binding
and the other thick Adabinding, the procedure pl col 0(1) setsthe drawing color to red. In the standard
thick binding, the same thing is accomplished by writing Set _Pen_Col or (Red) . The Ada program
may just aswell write Set _Pen_Col or (1) sincethebinding merely setsaconstant Red to be equal to
the integer 1. Many such numeric constants from the C API are given names in thisthick binding. These
renamed integers are discussed more fully in Section 7.2.

The disadvantage of this renaming isthat it makes referring to the PL plot documentation somewhat awk-
ward. There might be, at some time, a utility for easing this problem by providing an HTML file with
links so that a "normal" PLplot name can be linked to the "Ada' name along with the appropriate entry
in the Ada specification, as well as another HTML file with links from the "Ada" name directly to the

56

Ada Language

PL plot web page that documents that name. It might also be possible to provide an alternate version of
the documentation with the enhanced names used. (The developer of the bindings has a sed file prepared
which makes most of the subroutine-name substitutions.) However, this thick binding retains the original
C subprogram names as comments immediately above the function or procedure name in the code listing
soitisrelatively easy to locate the relevant item in the PL plot documentation.

One simple rule applies in reading the PLplot APl documentation: the argument names are in the same
order in Ada as in the PLplot documentation (the names are different) except that all array lengths are
eliminated. The PLplot documentation, for each subroutine, shows a "redacted" version which should be
correct for Ada as well as other languages which have proper arrays.

The standard bindings are in the Adafiles pl pl ot . ads and pl pl ot . adb.

Thick Binding Using Traditional Names

This thick binding provides exactly the same functionality as the standard thick binding but retains the
original names as used in the C code and the PL plot documentation.

The traditiona hbindings ae in the Ada files plplot_traditional.ads and
pl pl ot _traditional.adb.

The Examples

An important part of the Ada bindings is the examples, some 33 of which demonstrate how to use many
of the features of the PLplot package. These examples also serve as atest bed for the bindings in Ada
and other languages by checking the Postscript files that are generated by each example against those
generated by the C versions. These examples have been completely re-written in Ada(but retain a C flavor
in the names that are given to objects). All of the Ada examples generate exactly the same Postscript as
the C versions, Examples 14 and 17 excepted since those operate interactively and don't (normally) make
Postscript. Two versions of each example are available, one calling the standard binding and the other the
traditional binding. (In development, a sed script does almost all of the conversion automatically.)

Obtaining the Software

There are three software components that you will need: an Ada compiler, the PLplot library, and the Ada
bindings.

Obtaining an Ada compiler

You will need an Ada compiler in order to use the Ada PLplot bindings. There are several compilers
available. Here, we will focus on the free, open source compiler that is included with the GNU Compiler
Collection, (gcc) which is at the center of much of the open source software movement. The gcc Ada
compilerisknownasGNAT, for GNU NY U AdaTranglator, where NY U standsfor New Y ork University.
(Although GNAT was originally developed at NY U, it has for many years been devel oped and supported
commercialy by AdaCore with academic and pro versions available.)

Your computer may aready have GNAT installed, or you can download it from gcc.gnu.org [http://
gce.gnu.org/]. Another route to obtaining GNAT is from the AdaCore page, libre2.adacore.com [https://
libre2.adacore.com/]. There are versions for many operating systems and processorsincluding Apple's OS
X or its open source version Darwin, Linux, and Windows. The gcc and AdaCore versions differ in their
licenses. Download the version that you need and follow the installation instructions.

57

http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
https://libre2.adacore.com/
https://libre2.adacore.com/
https://libre2.adacore.com/

Ada Language

Download and install PLplot

PL plot can be downloaded from the PL plot project page at sourceforge.net [http://sourceforge.net/projects/
plplot]. Follow the installation instructions after downloading. The installation process requires that your
computer has CMake installed. OS X users can try installing PLplot in its entirety from MacPorts. The
advantage of using MacPortsisthat al installation dependencies are automatically installed for you.

The Ada bindings to PLplot

Thethird major software component isthe bindingsthemsel ves; they areincluded with the PL plot software
itself.

The bindings themselves are six Ada source files named (using GNAT filename extensions)
pl pl ot.ads, plplot.adb, plplot _traditional.ads, plplot_traditional.adb,
p! pl ot hi n. ads, and plplotthin.adb. Thee ae two additiona files,
pl pl ot _auxiliary. ads andpl pl ot _auxi li |l ary. adb which will be discussed later, in Sec-
tion 9.

How to use the Ada bindings
Ada 95 versus Ada 2005

The bindingswill work for either Ada 95 or Ada 2005 but thereisadightly subtle point regarding the use
and declaration of vectors and matrices. The package PLpl ot _Auxi | i ary declaresthe types

type Real _Vector is array (lnteger range <>) of Long_Fl oat;
type Real _Matrix is array (lnteger range <> |Integer range <>) of Long_Fl oat;

These declarations mimic exactly the declarations described in Annex G.3, Vector and Matrix Ma
nipulation, of the Ada 2005 reference manual when the generic package therein described is special-
ized for Long_Fl oat . The reason for this approach is to avoid requiring the user program to wi t h
Ada. Nuneri cs. Long_Real _Arrays simply to gain accessto these types and in the process require
linking to the BLAS and LAPACK numericadl libraries.

Ada 2005 introduced an annex G.3 which formally defines vector and matrix support to Ada, along with
some common mathematical operations on those types. (This feature is a specific to vectors and matrices
and extends the usual array apparatus.) The Ada PLplot user has a choice on how to deal with this. The
default, asdescribed in PLpl ot _Auxi | i ary. ads, hasReal _Vect or and Real _Mat ri x declared
therein, separate from the Ada 2005 declarations. This alows the widest compatibility and does not re-
quire an Ada 2005 compiler. However, many userswill want to gain the benefit of the built-in declarations
of 2005. Thisis easily done: Read the short commentsin PLpl ot _Auxi | i ary. ads on how to com-
ment-out two lines and uncomment three lines. Either configuration will compile correctly, but depending
on the Cmake configuration to expose a 2005 compiler in the later case. (Note that at some pointsin the
documentation, Ada 2005 is referred to as Ada 2007, including some Cmake flags.)

This policy was changed in SVN version 11153. Before this, the type of compiler (Ada 95 or Ada 2005)
had to be specified at the time that PL plot was built, and in the case of Ada 2005, the BLAS and LAPACK
libraries had to be present and were subsequently linked.

GNAT versus non-GNAT

The bindings were made using the GNAT compiler and there is a dight dependence on that compil-
er. Specifically, the Unrestri ct ed_Access attribute of GNAT was used in making the function

58

http://sourceforge.net/projects/plplot
http://sourceforge.net/projects/plplot
http://sourceforge.net/projects/plplot

Ada Language

Matrix_To_ Pointers inpl plotthin.adb andin afew callbacks. Matri x_To_Poi nters
is called whenever an Ada matrix (2D array) is passed to a PLplot subroutine. For more about
Unrestricted Access attribute, see Implementation Defined Attributes in the GNAT
Reference Manual. This dependency shouldn't be difficult to remove by either incorporating the
GNAT code which implements it, by following the TO-DO comment near the function definition in
pl pl ot t hi n. adb, or by providing the proper aliasing.

Another GNAT dependency is used to parse command line argumentsin a C-like way.

Pragma Warnings (Off, "some text") and Pragma Warnings (On, "some text") are used in the bindings to
suppress warnings about a particular method used to interface with C code. These pragmasarealso usedin
Ada Examples 21 to suppress a particular warning. Pragma Warningsisa GNAT extension. Non-GNAT
usage could simply remove these pragmas with the resulting warnings ignored as they are benign.

Most of the GNAT dependencies can be found by searching the source code for "GNAT",
"Unrestricted_Access andPragnma War ni ngs."

The GNAT dependence, though dlight, will no doubt frustrate users of other Ada compilers. We welcome
comments from those users, especially comments with specific suggestions on how to remove any GNAT-
specific usages.

Sample command line project

Itisinstructiveto present asimple examplethat can be compiled and run from the command line. Although
this example is specific to one installation, it should be fairly straightforward to adapt it to another instal-
lation. Toward that end, it is helpful to understand the PLplot lingo of "build directory” and "installation
directory."

Here isa simple program that will generate a plot of part of a parabola.

with
PLpl ot _Auxi liary,
PLpl ot ;

use
PLpl ot _Auxi liary,
PLpl ot ;

procedure Sinple_Exanple is
X, ¥y : Real Vector(-10 .. 10);

begi n
for i in x'range |oop
x(i) := Long_Float(i);
y(i) = x(i)**2;
end | oop;
Initialize_ PLplot; -- Call this only once.
Sinple Plot(x, y); -- Make the plot.
End_PLpl ot ; -- Call this only once.

end Si mpl e_Exanpl e;

Next isabash script that will compile, bind, and link it. It isinstallation-specific in that pathsto the GNAT
compiler, PLplot libraries, and BLAS (Basic Linear AlgebraSystem) and LAPACK (Linear AlgebraPack-
age) are hard-coded. You will have to adjust the paths to fit your installation. Some Linux installations
which have GNAT 4.3 or later (Ada 2005) pre-installed might have already set the paths to the BLAS
and LAPACK libraries.

59

Ada Language

(Note that the G.3 Annex of Ada 2005, in the GNAT version, depends heavily on BLAS and LAPACK.
These packages are tried-and-true packages that are available from several places in either C or Fortran
versions. The present example is specific to OS X which has both C and Fortran versions pre-installed.)

#!1/ bi n/ bash

/usr/ | ocal / ada- 4. 3/ bi n/ gnat rake si npl e_exanpl e. adb \
-al/usr/local/plplot_build_dir/bindings/ada \

-alL/usr/ 1 ocal/pl plot_build_dir/bindi ngs/ada/ CMakeFi | es/ pl pl ot adad. dir \
-largs \

fusr/local/plplot/lib/libplplotd.dylib\

/ Devel oper/ SDKs/ MacOSX10. 4u. sdk/usr/lib/libblas.dylib \

/ Devel oper/ SDKs/ MacOSX10. 4u. sdk/ usr/1ib/1i bl apack. dylib

The resulting binary program can be run by typing ./simple_example

Unique Features of the Ada bindings

The Ada bindings have been augmented with a number of features which are intended to simplify the use
of PLplot. They include high-level features for smplified plotting (such as easy foreground-background
control, a collection of "simple plotters,” and easy color map manipulations), integer options which have
been given meaningful names, and a few other focused additions. Many users will find that they can do
most of their work using the "simple plotters’.

High-level features for simplified plotting

Foreground-background control

Draw_On_Black, Draw_On_White
The default for PLplot is to draw its graphics on a black background. A white background can be used
instead with Dr aw_On_Whi t e or reset to the original mode with Dr aw_On_Bl ack. Each of these

mani pul ates color map 0 by swapping black and white so that e.g.with Dr aw_On_ Wi t e, formerly white
lines on a black background automatically become black lines on a white background.

Simple Plotters

Severa high-level but flexible plotters are available and more might be added in the future. It is expected
that many userswill find that these high-level routines are adequate for most of their day-to-day plotting.

Multiplot_Pairs

Plot up to five x-y pairs with easy labelling, coloring, line width and styles, justification, and zooming.
Simple_Plot

Plot up to five y's against a single x with easy labelling and automatic line colors and styles.
Simple_Plot_Log X

Sameas Si npl e_PI ot but with logarithmic x-axis.

60

Ada Language

Simple_Plot_Log_ Y

Sameas Si npl e_PI ot but with logarithmic y-axis.
Simple_Plot_Log_XY

Sameas Si npl e_PI ot but with logarithmic x- and y-axes.
Simple_Plot_Pairs

Plot up to five x-y pairs with easy labelling and automatic line colors and styles.
Single_Plot

Plot asinglex-y pair with flexiblelabels, axis styles, colors, linewidth and style, justification, and zooming.
Simple_Contour

Make a contour plot with labels
Simple_Mesh_3D

Easy 3D mesh plot with labels, zooming, and perspective controls
Simple_Surface_3D

Easy 3D surface plot with labels, zooming, and perspective controls

Simple color map manipulations

PLplot provides extensive manipulation and control of two separate color maps, color map 0 and color
map 1. The Adabinding makes basic manipulations easier and al so addsfacilities for making snapshots of
color map 0 so that any state of the map can easily be restored later. Aninitial snapshot is taken when the
packageisinitialized so that the default color settings can always be restored after having been changed.

Another set of features lets the user reset the 16 individual colorsin color map O after a color definition
has been changed. It isimportant to note that while Set _Pen_Col or (Red) (p! col 0 inthe tradition-
al binding) normally does what it says, Red simply has the value 1. If the user changes the color map
so that 1 corresponds to another color, then Set _Pen_Col or (Red) will draw in that color instead
of red. To always assure that red is drawn even if the color map has been changed for integer 1, use
Set _Pen_Col or (Reset _Red) instead. These 16 "reset" functions return the appropriate default in-
teger for the specified color but also reset that ot in the color table so that a subsequent call such as
Set _Pen_Col or (Red) will aso cause drawingin red.

Color map 1 also gets a easy-to-use makeover for Ada users. There are several pre-built color themes
that are useful for quickly making surface and mesh plots, Col or _Themes_For _Map_1 Type.These
color themes can be quickly applied with Qui ck_Set _Col or _Map_1.

Miscellaneous other Ada features include a pre-built mask function for Shade_Regi ons that does no
masking; perhapsthe most useful purposeisto provide atemplate for writing mask functionsthat do mask.
And thereis a handy function for calculating the contour levels for making contour plots.

 Color table snapshots
Make Snapshot O Col or _Map_0O

Rest ore_Snapshot O _Col or _Map_0

61

Ada Language

Restore_Default_Snapshot O Col or_Map 0

Color resetting functions for the 16 colors of color map 0

Reset Bl ack, Reset Red, ..., Reset Wite

Easy manipulation of color map 1

Pre-built color themes for color map 1: Col or _Thenmes_For _Map_1 Type

Quick application of pre-built color themes: Qui ck_Set _Col or _Map_1

Other features

A pre-built mask functionfor Shade_Regi ons that doesno masking: Mask_Funct i on_No_Mask

An eay way to caculate an aray of contour levels for contour plots
Cal cul at e_Cont our _Level s

Integer Options Given Ada Names

The C version of PLplot uses a number of integers to mean specific things. Unfortunately, the meaning
is lost when it it consigned to being a mere integer with no name. The Ada binding partialy rectifies
this situation by giving namesto these integer constants. The integer can still be used if desired. (A more
complete and safer rectification would use enumerated types.)

Below is alisting of at least the contexts in which these "re-namings' have been applied. In some cases
the entirerange of valuesis listed, but if there are more than about four such values for each context, only
asampling isgiven.

I nstances

Colors: Plot_Color_Type

0 isBlack, 1 isRed, etc
Justification for plots: Just i fi cati on_Type
User Justified

Not Justified

Justified
Justified_Square_Box
Axisstyles: Axi s_Styl e_Type
Li near _Major _Gid
Linear Mnor _Gid

€etc.

Font styles: Font _Styl e_Type

Nor mal _Font

62

Ada Language

Roman_Font
Italic_Font
Scri pt _Font
e Character sets: Char act er _Set _Type
St andar d_Char act er _Set
Ext ended_Char act er _Set
» Plot orientation: Ori ent ati on_Type
Landscape
Portrait
» Modesfor parsing command line arguments. Par se_Mode_Type
E.g. PL_PARSE_PARTI AL
» Descriptions of map outlines (continents, states, etc.): Map_Type
Conti nents
USA and_St at es
Continents_and_Countries
USA States_and Continents
» Various style and view options for 3D and surface plots
E.g.Lines_Paral l el _To_X
 Kind of gridding algorithm for interpolating 2D datato agrid: Gri ddi ng_Al gorit hm Type
E.g.Gid_Bivariate_ Cubic_Spline_Approximation
» Flagsfor histogram style
E.g. Hi st ogr am Def aul t
» Flagsfor histogram binning
E.g.Bi n_Def aul t
» Namesfor color space models
Hue, Lightness, Saturation: HLS
Red, Green, Blue: RGB

One-offs

To provide convenient string handling in a fashion that is familiar to Ada programmers, function ver-
sions which return a St r i ng type are provided of Get _Devi ce_Nane, Get _Ver si on_Nunber,

63

Ada Language

and Get _Qut put _Fi |l e_Nane (pl gdev, pl gver, and pl gf namin the traditional binding). These
functions replace the procedure-style subprograms that are described in the C API documentation.

Overloaded Set _Li ne_Styl e (pl styl in the traditional binding) with a version that takes a single
argument, Def aul t _Cont i nuous_Li ne. This replaces the awkward situation of calling the normal
versions of these procedures with unused arguments simply to set the line style to the default, continuous,
line.

The contour plotter Cont our _Pl ot _I rregul ar _Dat a (pl f cont inthetraditional binding) is pro-
vided for making contour plotsfrom irregularly spaced data. Thisfeature is not documented in the PLplot
API documentation.

The custom label function Set _Cust om Label (pl sl abel f unc in the traditional binding) can be
called with null arguments to revert to using the default labelling scheme. Alternately, an Ada-only pro-
cedure with no arguments, Use_Def aul t _Label s, isprovided. See Adaexample 19 (x19a. adb or
xt hi ck19a. adb) for ausage example.

The custom coordinate transform setter, Set _Cust om Coor di nat e_Tr ansf orm (pl strans-
f or minthetraditional binding) can be called with null argumentsto clear any previous custom coordinate
transformsthat the user has set, thus reverting to the default coordinate transform. Alternately, an Ada-on-
ly procedure with no arguments, Cl ear _Cust om _Coor di nat e_Tr ansf or m is provided. See Ada
example 19 (x19a. adb or xt hi ck19a. adb) for a usage example.

Parts That Retain a C Flavor

There remains at least one area in the Ada bindings which is still affected by the C underpinnings. This
might be cleaned up in future versions. There might be other residual C influence aswell.

Map-drawing

pl mapform as caled by Draw Latitude_Longitude (p! map) and
Draw Latitude_Longitude (pl neri di ans)

Thisisthe only placein the PLplot bindingswhere a C subprogram calls an Ada subprogram while passing
an array. If the array is unconstrained, there is no guarantee that it will work because C has no way of
telling Adawhat offset to use for the beginning of the array. But passing a constrained array is acceptable
with the downside that the array size must be fixed within the bindings as being large enough to handle
any situation; currently, itissizedas0 .. 2000. See Example 19 for how thisishandled in by the user
program. The constrained array is called Map_For m Constrai ned_Array.

Known Variances

Documentation

API

In numerous placesin the documentation, afeatureislisted or described as" C only." Many of thesefeatures
are actually available in Ada. For example, in Cont our _Pl ot (pl cont inthetraditional binding), the
transformation from array indices to world coordinates is mentioned as " C only" but is actually available
in Ada.

The C documentation for pl scrmapll , (Set _Col or _Map_1_ Pi ecewi se in thethick binding) and
pl scmapll a (Set _Col or _Map_1 Pi ecewi se_And_Al pha in the thick binding) states that if

64

Ada Language

the last argument is a null pointer, the behavior is as though a proper-length array of al Fal se val-
ues was passed. In Ada, these procedures are overloaded to allow a last argument that can be ei-
ther an array of Boolean or a value of the enumerated type type At Hue Path Type is
(Al't _Hue Path _None, At Hue Path All).

Compilation notes
Ada 95 Versus Ada 2005

Asdiscussed in Section 6.1, the bindings are made to work with Ada 95 and Ada 2005, but specia steps
need to be taken in order to access the numerical capabilities of Ada 2005 to the extent that vectors and
arrays of the type defined in the Ada Reference Manual Annex G.3 are required to be passed to PLplot
routines.

GNAT Dependence

Thereis adight but significant dependence on the GNAT version of Ada. This is discussed more fully
in Section 6.2

PLplot_Auxiliary

The bindings include files PLpl ot _Auxi | i ary. ads and PLpl ot _Auxi | i ary. adb. These files
are currently used to provide a few convenience subprograms that are used in the examples. Howev-
er, they are also associated with the above-mentioned facility to easily accommodate accessing the G.3
Annex vector-matrix manipulation facilities. If not for the desire for this easy "switching" ability, the
PLpl ot _Auxi | i ary package could be removed from thewi t h parts of the other binding files. Even
so, it could be still removed with minor modificationsto thewi t h portions of the other binding files. But
due to the other functions provided therein, they would still need to be referenced by most of the Ada
examples.

Notes for Apple Macintosh OS X users

The following comments apply to users of Apple Macintosh computers which run OS X. OS X users may
use Apple's free integrated development environment (IDE) or may prefer other methods such as using a
favorite editor and building from the command line.

OS X users should be aware that an excellent graphical termina program is available and is highly rec-
ommended. It is called AquaTerm and is a full Cocoa program with window control. Performing a cut
operation places a PDF of the front window on the clipboard, a convenience when working with other
graphics or word processing programs.

Using Apple's Xcode IDE

The Macintosh Ada community has made a plug-in for Apple's free X code integrated development envi-
ronment (IDE) that makes programming Adain X code possible. The plug-in isincluded with the compiler
that isavailable at www.macada.org [http://www.macada.org/]. Since X code isbased on gcc, it ispossible
to work in the various gcc languages as well as to incorporate binaries such as the PLplot library.

In order to make an Xcode project, drag-and-drop source files and the PLplot library file to the Groups
& Files pane of an Ada project. There are a few idiosyncrasies that you may encounter so make sure to
contact the very friendly Macintosh Ada mailing list at www.macada.org [http://www.macada.org/] or
study the FAQ at that same siteif you have any difficulties.

65

http://www.macada.org/
http://www.macada.org/
http://www.macada.org/
http://www.macada.org/

Ada Language

[This plug-in still works for some older versions of Xcode but not for newer versions, as of 2013.]

AquaTerm

AquaTermisadisplay option available on Macintosh computers using OS X and is supported by PLplot. It
isanative Cocoagraphics"terminal " that ishighly recommended. All output isantialiased and iseasily cut-
and-pasted in OS X's native PDF format. Get it here [http://sourceforge.net/projects/aquaterm/files]. It can
also beinstalled from either the Fink [http:/fink.thetis.ig42.org/] or MacPorts [http://www.macports.org/]
projects.

X11

Apple supplies the X11 windowing system that is popular on some other Unix and Linux operations sys-
tems. Formerly it was available as part of the Developer Toolsbut as of OS X 10.8 it isaseparate installa
tion. All PLplot programs made with the Adabindingswill run on X11. In fact, sometypes of interactivity
such as Example 17 will not run on Apple's Terminal .app and should be run on X11 (or some other output
device such as TCL/TK).

GNAT for OS X

A web site for OS X users is at www.macada.org [http://www.macada.org/macada/\Welcome.html]. Al-
though rather dated, the mailing list is still active. Assistance can be found at other places on the web
including the usenet comp.lang.ada.

66

http://sourceforge.net/projects/aquaterm/files
http://sourceforge.net/projects/aquaterm/files
http://fink.thetis.ig42.org/
http://fink.thetis.ig42.org/
http://www.macports.org/
http://www.macports.org/
http://www.macada.org/macada/Welcome.html
http://www.macada.org/macada/Welcome.html

Chapter 8. C Language

(OLD, NEEDS DOCUMENTATION UPDATING) The argument types given in this manual (PLFLT
and PLINT) are typedefs for the actual argument type. A PLINT is actually a type | ong and should
not be changed. A PLFLT can be either af | oat or doubl e; this choice is made when the package is
installed and on a Unix system (for example) may result in a PLplot library named | i bpl pl ot . a in
single precisionand | i bpl pl ot d. a in double precision.

These and other constants used by PLplot are defined in the main header file pl pl ot . h, which must be
included by the user program. This file also contains al of the function prototypes, machine dependent
defines, and redefinition of the C-language bindings that conflict with the Fortran names (more on this
later). pl pl ot . h obtainsitsvaluesfor PLFLT, PLINT, and PLARGS (amacro for conditionally gener-
ating prototype argument lists) from FLOAT (typedef), INT (typedef), and PROTO (macro), respectively.
The latter are defined inthefilechdr . h. Theuser isencouraged to use FLOAT, INT, and PROTO in hig/
her own code, and modify chdr . h according to taste. It is not actually necessary to declare variables as
FLOAT and INT except when they are pointers, as automatic conversion to the right type will otherwise
occur (if using a Standard C compiler; else K& R style automatic promotion will occur). The only codein
p! pl ot . h that directly depends on these settings is as follows:

#i ncl ude "pl plot/chdr.h"
/* change from chdr.h conventions to plplot ones */

typedef FLOAT PLFLT;
typedef INT PLINT;
#def i ne PLARGS(a) PROT(a)

PLplot is capable of being compiled with Standard C (ANSI) mode on or off. This is toggled via the
macro PLSTDC, and set automatically if _ STDC__is defined. If PLSTDC is defined, all functions are
prototyped as alowed under Standard C, and arguments passed exactly as specified in the prototype.
If PLSTDC is not defined, however, function prototypes are turned off and K&R automatic argument
promotion will occur, eqg. float → double, int &arr; |ong. Thereisno middie
ground! A PLplot library built with PLSTDC defined will not work (in general) with aprogram built with
PLSTDC undefined, and vice versa. It is possiblein principle to build alibrary that will work under both
Standard C and K& R compilers simultaneoudly (i.e. by duplicating the K& R promotion with the Standard
C prototype), but this seems to violate the spirit of the C standard and can be confusing. Eventually we
will drop support for non-standard C compilers but for now have adopted this compromise.

In summary, PLplot will work using either a Standard or non-standard C compiler, provided that you :
* Include the PLplot main header file pl pl ot . h.

» Make sure al pointer arguments are of the correct type (the compiler should warn you if you forget,
so don't worry, be happy).

» Do not link a code compiled with PLSTDC defined to a PLplot library compiled with PLSTDC unde-
fined, or vice versa

» Use prototypes whenever possible to reduce type errors.

Note that some Standard C compilers will give warnings when converting a constant function argument
to whatever isrequired by the prototype. These warnings can be ignored.

67

C Language

The one additional complicating factor concerns the use of stub routinesto interface with Fortran (see the
following section for more explanation). On some systems, the Fortran and C name spaces are set up to
clobber each other. More reasonable (from our viewpoint) is to agree on a standard map between name
spaces, such as the appending of an underscore to Fortran routine names asis common on many Unix-like
systems. The only case where the shared Fortran/C name spaces do any good is when passing a pointer to
alike datatype, which represents only asmall fraction of the cases that need to be handled (which includes
constant values passed on the stack, strings, and two-dimensional arrays).

Thereare several waysto deal with thissituation, but the least messy from auser's perspectiveisto redefine
those PL plot C function names which conflict with the Fortran-interface stub routines. The actual function
namesarethe same asthosedescribed in thisdocument, but witha“c " prepended. These macro definitions
appear inthepl pl ot . h header fileand are otherwise harmless. Thereforeyou can (and should) forget that
most of the names are being redefined to avoid the conflict and simply adhere to the bindings as described
in this manual. Codes written under old versions of PLplot (previous to 5.0) will require a recompile,
however.

For more information on calling PLplot from C, please see the example C programs (x01c. ¢ through
x19c. c) distributed with PLplot.

68

Chapter 9. A C++ Interface for PLplot

PLplot has long had C and Fortran bindings, presenting a fairly conventional API to the applications
programmer. Recently (1994 onwards) PL plot has been growing interfaces (language bindings) to avariety
of other languages. In this chapter we discuss the PL plot C++ support provided in the PLplot distribution.
Of course many other approaches are possible, perhaps even in use by PL plot users around the world. The
purpose of this chapter then isto explain the rationale and intended usage for the bundled C++ language
support.

Motivation for the C++ Interface

PLplot has afairly complex C API. There are lots of functions, and severa facilities have multiple entry
points with similar names but different argument lists. (Think contouring, shading). Often these differing
argument lists are to accommodate a variety of data storage paradigms, one of which you are expected
to be using!

Especially in the case of the 2-d API's for contouring and shading, sophisticated C++ users may feel a
special sense of exasperation with the datalayout prescriptions, sincethey are extremely primitive, pointer
rich, and prone to awide class of memory leaks and other sorts of programming errors. Many C++ users
know good and well that better ways exist (templated matrix classes, etc), but historically have not been
able to use these more sophisticated techniques if the contained data ever needed to get plotted.

Besides the 2-d API functions, there is aso the multiple output stream capability of PLplot. Anyone who
knows C++ well, and who has used multiple output streamsin PLplot, has probably noticed striking ssim-
ilarities between the PLplot PLSt r eam pointer and the C++ t hi s pointer. Although multiple output
streams have not been widely used in PLplot applications in the past, the availability of the plframe Tk
widget, and the extended wish concept, is making it much more attractive to use multiple output streams.

Unfortunately, if you do write a Tk extended wish application, and endow your interface with multiple
plframes, the event driven character of X applications makesit difficult to ensure that PL plot output shows
up in the right plframe window. If a plot is generated to one plframe, the PLplot PLSt r eampointer is
directed to that stream. If auser then pushes a Tk button which should generate aplot to adifferent plframe,
the plot goes to the old plframe instead! Schemes for controlling this can be imagined, but the logic can
be complex, especialy in the face of the ability to /also/ make plots to the same plframe from either Tcl
or C++.

Beyond this, the C API is downright "ugly" for a significant number of the functions, particularly those
which return values by accepting pointers to variables in their argument lists, and then changing them
in that way. Sophisticated C++ users generally take considerable pride in banishing the offensive bare
pointer from their code, and consider it disgusting to have to insert &'sjust in order to make a cal to an
API function.

In order to address these issues (and more), | have begun constructing a C++ interface to PLplot. The
purpose of this missive isto describe its architecture and usage.

Design of the PLplot C++ Interface
Stream/Object Identity

A C++ classnamed pl st r eamhasbeen introduced. It'scentral purposeis provide aspecific, object based
encapsulation of the concept of a PLplot output stream. Any output produced using apl st r eamobject,

69

A C++ Interface for PLplot

will go to the PLplot output stream associated with that object, regardless of what stream may have been
active before.

In order to write a multiple output stream PLplot application, a C++ program can declare pl st r eam
objects, and invoke drawing methods on those objects, without regard to ordering considerations or other
coherency considerations. Although this has obvious simplification benefit even for smple programs,
the full benefit is most easily appreciated in the context of Tk extended wish applications in which a
pl st r eamcan be associated with each plframe.

Namespace Management

ThePLplot C APl iscomposed of a set of drawing functions, all prefixed with "pl*, in an effort to prevent
namespace collision. However, the prefix "pl" is gratuitous, and in particular is unnecessary in a C++
context. Thepl st r eamclass mirrors most of the PLplot C API, but does so by dropping the "pl" prefix.
Thepl st r eamclass thus servesto collect the PL plot drawing functions into a scope in which collisions
with other similarly named functionsis not a concern. So, where a C programmer might write:

plsstrm(1);
plenv(...);
plline(...);

The C++ programmer can write:

plstreamp(...);
p.env(...);
p.line(...);

Isthat an important benefit? The utility varies with the number of output streamsin use in the program.

plmkstrm() is replaced by object declaration. plsstrm() is replaced by method invocation on the desired
output stream object. plgstrm() is rendered irrelevant.

The skeptic may say, "But you have to type the same number of characters! Y ou've replaced 'pl' with 'p.!,
except it could be worse for alonger object name." True. BUT, in this new scheme, most plotswill not be
generated by invoking methods on a specific stream object, but rather by deriving from pl st r eam and
invoking methods of "this" object. See the section on derivation below.

Abstraction of Data Layout

The pl st r eamclass will provide an abstract interface to the 2-d drawing functions. Instead of forcing
the C++ user to organize datain one of asmall set of generally brain dead data layouts with poor memory
management properties, potentially forcing the C++ user to not use a superior method, or to copy data
computed in one layout format to another for plotting (with conseguent bug production), the pl st r eam
2-d plotting functions will accept an abstract layout specification. The only thing which isimportant to the
2-d drawing functions is that the data be "indexable". They should not care about data layout.

Consequently, an abstract class, "Contourable_Data" isprovided. Thisclass providesapurevirtual method
which accepts indexes, and is to be made to produce a function value for the user's 2-d datafield. It is of
no concern to PL plot how the user does this. Any mapping between index and data which the user wishes
to use, may be used.

70

A C++ Interface for PLplot

This methodology allows the C++ user to compute data using whatever storage mechanism he wants.
Then, by deriving aclass from PLplot's Contourable Data abstract class, he can provide a mapping to his
own data layout.

Note that this does /not/ mean that the C++ user's internal data layout must be derived from PLplot's
Contourable Dataclass. Supposefor examplethat the user datais stored in a C++ "matrix" class. To make
this data contourable, the user may define a class which specializes the indexing concept of the PLplot
Contourable Dataclass to his matrix class. For example:

class Matrix { ... };

cl ass Contourable_Matrix : public Contourable Data {
Matri x& m

publi c:

Contourable_Matrix(Matrix& m) : m(_m {}

PLFLT operator()(int i, int j) const { return n(i,j); }
b

plstreamp(...);

Matrix m

/1 Code to fill mwth data
Cont ourabl e_Matrix cm(m;
p.shade(cm ...);

In thisway the C++ user is completely freed from the tyranny of moronic data layout constraints imposed
by PLplot's C or Fortran API.

Collapsing the API

Use of abstraction as in C) above will allow a single method in pl st r eamto perform the services of
multiple functions in the C API. In those cases where multiple functions were provided with different
data layout specifications, but similar functionality, these can all be collapsed into one, through the use
of the abstract interface technique described above. Moreover, function name overloading can be used to
simplify the namespace for those cases where multiple functions were used to get variations on a basic
capability. For example, a single name such as contour or shade can be used for multiple methods taking
different argument sets, so that for example, one can make simple plots of rectangular data sets, or more
complex generalized coordinate mappings.

Specializing the PLplot C++ Interface

The pl st reamclassis an idea candidate for derivation. By inheriting from pl st r eam the user can
construct a new class which is automatically endowed with the ability to plot to a specific PLplot output
stream in a coherent manner without having to worry about interplay with other pl st r eam(or derived
type) objects. Moreover, new, higher level, plotting functionality can be constructed to provide even more
simplicity and ease of use than the PLplot API.

The PLplot maintainers (Geoff and Maurice) expect to introduce a class plxstream in the future which
provides superior support for constructing graphics with multiple plots per page, easier specification of
plot adornments, etc. This should significantly ease one aspect of PLplot usage which we regard as being
clumsy at thistime.

Beyond that, users may find it useful to derive from pl st r eam(or later plxstream whenever it finally
makes its appearance) for the purpose of making "application specific" output streams. For example, aC

71

A C++ Interface for PLplot

++ program will normally have a variety of objects which constitute the fundamental entitiesin the code.
These could all be made to be "atomically plotted” by providing suitable methods. For example:

class Cat { ... };
class Dog { ... };
class Bear { ... };
class Fish { };

cl ass zoostream: public plstream{
public:

void plot(const Cat&c) { ... }
void plot(const Dog& d) { ... }
void plot(const Bear& b) { ... }
void plot(const Fish& f) { }
b

Presumably the PLplot user community can think of even more imaginative uses... :-).

Status of the C++ Interface

Theclasspl st r eam(and the other abstraction classesinpl st r eam h) providedin PLplot 4.99; (alpha)
are to be considered as works in progress. By the standards outlined above, the work has barely begun.
At thistime, pl st r eamis mostly a one to one mirror of the C API, which isto say, it is still far from
the goals of simplification and abstraction outlined above. As such, it can be expected to change radically
over the course of time. (We don't quote schedules--how long have you been waiting for 5.0? :-).

In any event, we would welcome improvement submissions along the lines of those above, but we would
strongly discourage people from using pl st r eamif they are expecting it to be rock solid. It will be
changing, to become more like the design goals elucidated above.

So, if you like the ideas described above, and are willing to accept the burden of "upgrading” your code as
the class pl st r eamevolves, then feel free to useit. Just don't whine when | fix some of the methods to
take references instead of pointers, when | eliminate some of the redundant methods to use the collapsed
form, etc.

72

Chapter 10. Fortran 77 Language

As discussed in the preceding section, PLplot's integer representation is a PLINT and its floating point
representationisaPLFLT. To the Fortran 77 user, this most commonly translatesto atypei nt eger and
typer eal , respectively. Thisis somewhat system dependent (and up to the installer of the package) so
you should check the release notes to be sure, or just try it and see what happens.

Because the PLplot kernel is written in C, standard C syntax is used in the description of each PLplot
function. Thusto understand thismanual it ishelpful to know alittle about C, but fortunately thetrandation
isvery easy and can be summarized here. Asan example, theroutinepl | i ne call from C would look like:

plline(n,x,y);
while from Fortran 77 it would look like:
call plline(n,x,y)

typically with n declared astypei nt eger and x, y declared astyper eal (arraysin thiscase). Each C
language type used in the text trandates roughly as follows:

PLFLT real
PLINT integer
char * character
PLFLT * real or red array
PLFLT ** real array
"string" "string'
array[Q] array(1)

In C there are two waysto pass avariable --- by value (the default) or by reference (pointer), whereas only
thelatter isused by Fortran 77. Thereforewhen you seereferencesinthetext to either an ordinary argument
or apointer argument (e.g. * dat a), you simply use an ordinary Fortran 77 variable or array name.

The PLplot library comes with a set of Fortran 77 interface routines that allow the exact same call syntax
(usually) regardless of whether calling from C or Fortran 77. In some cases, this means the subroutine name
exceeds 8 charactersin length. Nearly every Fortran 77 compiler available today allows subroutine names
longer than 8 characters, so this should not be a problem (although if it ever is, in principle a truncated
name could be defined for that platform).

These “stub” routines handle transforming the data from the normal Fortran 77 representation to that
typicaly used in C. Thisincludes:

» Variables passed by valueinstead of by reference.

Fortran 77 passes all subroutine arguments by reference, i.e., a pointer to the argument value is pushed
on the stack. In C al values, except for arrays (including char arrays), are passed by value, i.e., the
argument value itself is pushed on the stack. The stub routine converts the Fortran 77 call by reference
toacall by value. Asan example, hereis how the plpoin stub routine works. In your Fortran 77 program
you might have a call to plpoin that looks something like

73

Fortran 77 Language

call plpoin(6,x,y,9)

where x and y are arrays with 6 elements and you want to plot symbol 9. As strange asit seems (at least
to C programmers) the constants 6 and 9 are passed by reference. This will actually call the following
C stub routine (included in entirety)

#i ncl ude "pl pl ot/ pl stubs. h"

voi d

PLPO N(n, x, y, code)

PLI NT *n, *code;

PLFLT *x, *y;

{

c_plpoin(*n, x, y, *code);

}

All this stub routine does is convert the number of points (* n and the symbol * code to call by value
(i.e. pushestheir value on the stack) and then calls the C plpoin library routine.

Get mapping between Fortran 77 and C namespace right (system dependent).

Theexternal symbols (i.e. function and subroutine names) asyou seethem in your program often appear
differently to the linker. For example, the Fortran 77 routine names may be converted to uppercase
or lowercase, and/or have an underscore appended or prepended. This translation is handled entirely
via redefinition of the stub routine names, which are macros. There are severa options for compiling
PLplot that simplify getting the nametrand ation right (NEEDSDOCUMENTATION IF THESE STILL
EXIST). In any case, once the name trandlation is established during installation, name trandlation is
completely transparent to the user.

Trandation of character string format from Fortran 77 to C.

Fortran 77 character strings are passed differently than other quantities, in that a string descriptor is
pushed on the stack along with the string address. C doesn't want the descriptor, it wants a NULL
terminated string. For routinesthat handl e strings two stub routines are necessary, one written in Fortran
77 and one written in C. Your Fortran 77 program calls the Fortran 77 stub routine first. This stub
converts the character string to a null terminated integer array and then calls the C stub routine. The C
stub routine converts the integer array (typel ong) to the usual C string representation (which may be
different, depending on whether your machine uses a big endian or little endian byte ordering; in any
casetheway itisdonein PLplot is portable). See the pl nt ex stubsfor an example of this.

Note that the portion of a Fortran 77 character string that exceeds 299 characters will not be plotted by
the text routines (pl nt ex and pl pt ex).

Multidimensional array arguments are changed from row-dominant to column-dominant ordering
through use of atemporary array.

In Fortran 77, arrays are always stored so that the first index increases most rapidly as one steps through
memory. Thisis called “row-dominant” storage. In C, on the other hand, the first index increases least
rapidly, i.e. “column-dominant” ordering. Thus, two dimensional arrays (e.g. as passed to the contour
or surface plotting routines) passed into PLplot must be transposed in order to get the proper two-
dimensional relationship to the world coordinates. This is handled in the C stub routines by dynamic

74

Fortran 77 Language

memory allocation of atemporary array. Thisisthen set equal to the transpose of the passed in array and
passed to the appropriate PLplot routine. The overhead associated with this is normally not important
but could be afactor if you are using very large 2d arrays.

This al seems a little messy, but is very user friendly. Fortran 77 and C programmers can use the same
basic interfaceto thelibrary, which isapowerful plusfor thismethod. The fact that stub routines are being
used is completely transparent to the Fortran 77 programmer.

For more information on calling PLplot from Fortran 77, please see the example Fortran 77 programs (/
exanpl es/ f 77/ x??f . f) through distributed with PLplot.

75

Chapter 11. Fortran 95 Language

As discussed in the preceding section, PLplot's integer representation is a PLINT and its floating point
representationisaPLFLT. To the Fortran 95 user, this most commonly translatesto atypei nt eger and
typer eal , respectively. This is somewhat system dependent (and up to the installer of the package) so
you should check the release notes to be sure, or just try it and see what happens.

Because the PLplot kernel is written in C, standard C syntax is used in the description of each PLplot
function. Thusto understand thismanual it ishelpful to know alittleabout C, but fortunately thetrandation
isvery easy and can be summarized here. Asan example, theroutinepl | i ne call from C would look like:

plline(n, x,y);

The argument n is the number of points that make up the line and the arguments x and y are arrays of
floating-point numbers containing the x- and y-coordinates of the points.

In C you need to specify the array dimensions explicitly, whereas in Fortran 95 the array dimension can
be implicit, which leads to less mistakes. Theinterfaceto pl | i ne would ideally look like this:

interface
subroutine plline(x,y)
real, dimension(:) :: X, Yy

end subroutine plline
end interface

This is the way of calling PLplot routines in Fortran 95 - it is less error-prone than the Fortran 77 way
(see the chapter on Fortran 77). !

Thereisone slight complication: PLplot can be compiled with either single-precision reals or double-pre-
cision reals. It is very important to keep the variables that are passed to PLplot in the same precision.
Fortunately, Fortran 95 provides the KI ND mechanism for this.

The actud interfaceto pl | i ne therefore looks like:

interface

subroutine plline(x,y)

real (kind=plflt), dinmension(:) :: X, Yy
end subroutine plline

end interface

The parameter pl f 1 t is defined in the PLpl ot module and should be used consistently with all real
variables that you pass to PL plot routines.

Here is a short overview of how C data types correspond to Fortran 95 data types:

PLFLT real (kind=plflt)

! The Fortran 77 way is still available: you can call the routine pl | i nef 77 that has the same argument list as the Fortran 77 routine pl | i ne.
Thisis not documented, however, other than by this note.

76

Fortran 95 Language

PLINT integer
char * character
PLFLT * real (kind=plflt) or real (kind=plflt), dimension(:)
PLFLT ** real (kind=plflt), dimension(:,:)
"string" "string'
array[Q] array(1)

In C there are two ways to pass a variable --- by value (the default) or by reference (pointer), whereas
only the latter is used by Fortran 95. Therefore when you see references in the text to either an ordinary
argument or a pointer argument (e.g. * dat a), you simply use an ordinary Fortran 95 variable or array
name (the interfacing routines take care of any transformations that may be necessary).

The PLplot library comes with a set of Fortran 95 interface routines that allow the same call semantics
(usually) regardless of whether calling from C or Fortran 95. In some cases, the Fortran 95 interface uses
implicit array dimensions, so that it has fewer arguments than the C counterpart.

These “stub” routines handle transforming the data from the normal Fortran 95 representation to that
typically used in C. Thisincludes:

» Variables passed by value instead of by reference.

Fortran 95 passes all subroutine arguments by reference, i.e., a pointer to the argument value is pushed
on the stack. In C all values, except for arrays (including char arrays), are passed by value, i.e., the
argument value itself is pushed on the stack. The stub routine converts the Fortran 95 call by reference
toacall by value. Asan example, hereis how the plpoin stub routine works. In your Fortran 95 program
you might have a call to plpoin that looks something like

real (kind=plIft), dinmension(6) :: x, y
X = ...

call plpoin(x,y,9)

where X and y are arrays with 6 elements and you want to plot symbol 9. The routine pl poi n calls
the underlying routine pl poi nf 77:

subroutine plpoin(x, y, code)
i nt eger ;. code
real (kind=plflt), dinension(:) :: X, ¥y

call plpoinf77(size(x), X, y, code)

end subroutine plpoin

Thistakes care of the size of the arrays - it isnot possible to transfer thisinformation to C in animplicit
way.

Ihe routine plpoinf77isimplementedin Cto take care of the question passby value or passby reference:

2PLPO Nisamacro that get tranglated into the correct name for this routine - various Fortran compilers use different conventions, such as adding
an underscore or translating the name into capitals.

77

Fortran 95 Language

#i ncl ude "pl pl ot/ pl stubs. h"

voi d

PLPO N(n, x, y, code)
PLI NT *n, *code;
PLFLT *x, *vy,;

{

c_plpoin(*n, x, y, *code);

All this stub routine does is convert the number of points (* n and the symbol * code to call by value
(i.e. pushestheir value on the stack) and then callsthe C plpoin library routine.

» Get mapping between Fortran 95 and C namespace right (system dependent).

Theexternal symbols (i.e. function and subroutine names) asyou seethem in your program often appear
differently to the linker. For example, the Fortran 95 routine names may be converted to uppercase or
lowercase, and/or have an underscore appended or prepended. This translation is handled entirely via
redefinition of the stub routine names, which are macros. During the build process, the properties of the
build environment are detected and the correct compiler options are used.

Once the name trand ation is established during installation, name translation is completely transparent
to the user.

e Trandation of character string format from Fortran 95to C.

Fortran 95 character strings are passed differently than other quantities, in that a string descriptor is
pushed on the stack along with the string address. C doesn't want the descriptor, it wants a NULL
terminated string. For routines that handl e strings two stub routines are necessary, one written in Fortran
95 and one written in C. Your Fortran 95 program calls the Fortran 95 stub routine first. This stub
converts the character string to a null terminated integer array and then calls the C stub routine. The C
stub routine converts the integer array (typel ong) to the usual C string representation (which may be
different, depending on whether your machine uses a big endian or little endian byte ordering; in any
casetheway itisdonein PLplot is portable). See the pl nt ex stubs for an example of this.

Note that the portion of a Fortran 95 character string that exceeds 299 characters will not be plotted by
the text routines (pl nt ex and pl pt ex).

» Multidimensional array arguments are changed from row-dominant to column-dominant ordering
through use of atemporary array.

In Fortran 95, arrays are always stored so that the first index increases most rapidly as one steps through
memory. Thisis called “row-dominant” storage. In C, on the other hand, the first index increases least
rapidly, i.e. “column-dominant” ordering. Thus, two dimensiona arrays (e.g. as passed to the contour
or surface plotting routines) passed into PLplot must be transposed in order to get the proper two-
dimensional relationship to the world coordinates. This is handled in the C stub routines by dynamic
memory allocation of atemporary array. Thisisthen set equal to the transpose of the passed in array and
passed to the appropriate PLplot routine. The overhead associated with this is normally not important
but could be afactor if you are using very large 2d arrays.

This al seems a little messy, but is very user friendly. Fortran 95 and C programmers can use the same
basic interfaceto thelibrary, which isapowerful plusfor thismethod. The fact that stub routines are being
used is completely transparent to the Fortran 95 programmer.

78

Fortran 95 Language

For more information on calling PLplot from Fortran 95, please see the example Fortran 95 programs (/
exanpl es/ f 95/ x??f . f) distributed with PLplot.

79

Chapter 12. OCaml Language

This document describes the OCaml bindings to the PL plot technical plotting software, how to obtain the
necessary software components and how to use them together.

Overview

The OCaml bindingsfor PLplot provideaway for OCaml programmersto accessthe powerful PLplot tech-
nical plotting facilities directly from OCaml programs while working completely in OCaml—the OCaml
programmer never needs to know or worry that PLplot itself iswritten in another language.

The Bindings

The OCaml bindings for PLplot provide an interface to the PLplot C API. In addition to providing access
to the core functions of the C API, the OCaml PLplot interface also includes a set of higher-level plotting
functions which, while built on top of the core PLplot AP, retain more of an OCaml flavor.

The OCaml PLplot API is defined within the Plplot module. In general, it is suggested to include the line
open Pl pl ot in OCaml code using PLplot. The function and constant definitions are named such that
they should avoid namespace collisionswith other libraries. Core PLplot functionshaveapl prefix, while
constant constructors/variant types have a PL__ prefix.

The core binding provides a close to direct mapping to the underlying C library. It followsthe C API very
closely, with the exception of afew parameters which become redundant under OCaml (ex. array lengths
are determined automatically by OCaml and function callbackswhich are handled slightly differently than
in C). An OCaml user of PLplot does not need to worry about memory management issues as they are
handled automatically by the bindings.

There are also a selection of functions which provide support for operations outside of the base C API.
These higher level functions are defined within the Pl pl ot . Pl ot and Pl pl ot . Qui ck_pl ot mod-
ules.

Core Binding

The core binding is mostly adirect and obvious mapping of the C application programming interface (API)
to OCaml. Thus, for example, whereaC function suchaspl col 0 requiresasingleinteger argument, there
is a corresponding OCaml function also called pl col O which also requires a single integer argument.
(p! col 0 happens to set the drawing color using a number which is associated with a set of colors).
Various constants from the C APl are also included here as OCaml variant types with a PL__ prefix to
avoid namespace clasheswhen the Pl pl ot moduleisopened. For example, wherethe C PLplot API uses
GRI D_* to select between the data gridding methods, the OCaml APl usesPL_GRI D_*.

OCaml-specific variations to the core PLplot API

Several of the PLplot core functions allow the user to provide atransformation callback function to adjust
the location of the plotted data. Thisis handled differently in the OCaml bindings than in order to keep
the interface between C and OCaml as ssmple as possible. Rather than passing transformation functions
directly to each PLplot function which supports a coordinate transformation, the coordinate transform
functions are set globally usingthepl set _pl tr andpl set _napf or mfunctions. Similarly, the func-
tionspl unset _pltr and pl unset _nmapf or mcan be used to clear the globally defined coordinate
transformation function. Note that the transform functions are only used in the functions which support
theminthe C API (ex. pl map)- they are not automatically applied to plotted data in other function calls

80

OCaml Language

(ex. pl I'i ne). For demonstrations of their use, see OCaml PLplot examples 16 and 20 for pl set _pltr
and example 19 for pl set _mapf orm

OCaml high level 2D plotting API

In additionto thecore PL plot API, the OCaml bindings provide two moduleswhich provideamore OCaml-
likeinterface: Pl pl ot . Pl ot and Pl pl ot . Qui ck_pl ot . Pl pl ot . Pl ot providesasimplified nam-
ing scheme for plotting functions, as well as the means to more easily track multiple plot streams at once.
Pl pl ot . Qui ck_pl ot provides functions to quickly plot points, lines, data arrays (images) and func-
tions without the need for any plot setup or boilerplate.

The Examples

An important part of the OCaml bindings is the examples, some 31 of which demonstrate how to use
many of the features of the PLplot package. These examples also serve as a test bed for the bindings in
OCaml and other languages by checking the Postscript files that are generated by each example against
those generated by the C versions. These examples have been completely re-written in OCaml (but retain
aC flavor in their structure and the names that are given to objects). All of the OCaml examples generate
exactly the same Postscript asthe C versions.

Obtaining the Software

There are three software components that you will need: the OCaml compiler, the PLplot library, and the
camlidl stub code generator for OCaml bindingsto C libraries.

Obtaining the OCaml compiler

Y ou will need the OCaml compiler in order to build and use the OCaml PLplot bindings. OCaml includes
both a byte code compiler (ocamlc) and a native code compiler (ocamlopt). Both of these are supported
by PLplot.

Your computer may aready have OCaml installed, or you can download it from caml.inria.fr [http://
caml.inriafr/]. Several Linux distributionsincluding Debian, Ubuntu and Fedorahave OCaml binary pack-
ages available. Another route to obtaining OCaml is by using GODI, a source-based distribution of OCaml
and anumber of OCaml libraries. GODI can be retrieved from godi.camlcity.org [http://godi.camicity.org/
]. GODI has support for building and installing under Linux, Apple's OS X and MS Windows.

How to use the OCaml bindings

The three examples provided below illustrate the avail able methods for generating plots with PLplot from
OCaml. They proceed in order from lowest-level to highest-level.

How to setup findlib for use with the OCaml bindings

The following examples require that findlib [http://projects.camlcity.org/projects/findlib.ntml] and its
associated tools (i.e., ocamlfind) areinstalled in in your $PATH.

If PLplot was installed under a non-standard prefix, or any prefix where findlib does not check automat-
ically for OCaml libraries, then the following environment variables can be set to tell findlib where to
look for PLplot:

81

http://caml.inria.fr/
http://caml.inria.fr/
http://caml.inria.fr/
http://godi.camlcity.org/
http://godi.camlcity.org/
http://projects.camlcity.org/projects/findlib.html
http://projects.camlcity.org/projects/findlib.html

OCaml Language

export OCAMLPATH=$PLPLOT | NSTALL_PREFI X/ | i b/ ocani : $OCAMLPATH
export LD LI BRARY_PATH=$PLPLOT | NSTALL_PREFI X/ | i b/ ocam / st ubl i bs: $LD_L| BRA

Sample command line project (core API)

Hereisasimple examplethat can be compiled and run from the command line. Theresult will beaprogram
that generates a plot of part of a parabola using only the core PLplot API.

(* Open the Plplot nmodule to give access to all of the PLpl ot
val ues without the need to add the "Plplot." prefix. *)
open Pl pl ot

l et sinple_exanple () =
(* Sanple at 20 points, ranging from-10.0 to 10.0 *)
let xs = Array.init 21 (fun xi -> float xi -. 10.0) in
let ys = Array.map (fun x -> x**2.0) xs in

(* Initialize PLplot *)
plinit ();

(* Draw the plot wi ndow axes *)
plenv (-10.0) 10.0 0.0 100.0 0 O;

(* Draw the parabola points as a series of line segnments *)
plline xs ys;

(* End the plotting session *)
plend ();

0

let () = sinmple_exanmple ()

Save this code as si npl e_exanpl e_core. m . The following command can then be used to build
the example:

ocanl find opt -package plplot -linkpkg -0 sinple_exanple_core sinple_exanp

The resulting binary program can be run by typing . / si npl e_exanpl e_core

Sample command line project (OCaml-specific API)

Hereisanother examplethat can be compiled and run from the command line. Theresult will be aprogram
that generates aplot of part of a parabolasimilar to the above example, but now using the OCaml-specific
PLplot API rather than the core PLplot API.

(* Open the Plplot nmodule to give access to all of the PLpl ot
val ues without the need to add the "Plplot." prefix.
Aliasing the nodule P to the nodule Plot will save some typing

82

OCaml Language

wi t hout further nanmespace pollution. *)
open Pl pl ot
nodule P = Pl ot

l et sinmple_exanple () =
(* Initialize a new plot, using the wi ndowed Cairo device
("xcairo") *)
let p =
P.init (-10.0, 0.0) (10.0, 100.0) P.G eedy (P.Wndow P. Cairo)
in

(* Draw the parabola *)
P.plot ~streamp [P.func P.Blue (fun x -> x ** 2.0) (-10.0, 10.0)];

(* Draw the plot axes and close up the plot streamusing the default

spaci ng between tick marks. *)
P.finish ~streamp ();

0

let () = sinmple_exanmple ()

Save this code as si npl e_exanpl e_ocamnl . m . The following command can then be used to build
the example:

ocam find opt -package plplot -1inkpkg -0 sinple_exanple_ocam sinple_exan

The resulting binary program can be run by typing . / si npl e_exanpl e_ocam

Sample toplevel project

The OCaml interactive toplevel (ocami) provides a very useful tool for code testing, development and
interactive data anaysis.

TheQui ck_pl ot module providesaset of functionsfor producing quick, simple two-dimensional plots
from both the toplevel and stand-alone OCaml programs. Here is a set of commands which can be used in
atoplevel session to produce aplot of a portion of a parabola, similar to the compiled examples above.

#use "topfind";;

#require "plplot”;;

open Plplot;;

Quick_plot.func ~nanes:["Parabola”] [(fun x -> x ** 2.0)] (-10.0, 10.0);

Conversely, the above ocam session could be expressed in a compiled OCaml program:
Pl pl ot. Quick_plot.func ~nanes:["Parabola"] [(fun x -> x ** 2,0)] (-10.0, 1

Save this code as si npl e_exanpl e_qui ck. m . The following command can then be used to build
the example:

83

OCaml Language

ocam find opt -package plplot -1inkpkg -o sinple_exanpl e_quick sinple_exan

The resulting binary program can be run by typing . / si npl e_exanpl e_qui ck

Known Issues

There are currently no known issues with the OCaml PLplot bindings. If you discover any problemswith
PL plot or the OCaml bindings, please report them to the PL plot development mailing list.

Chapter 13. Using PLplot from Perl

There are no proper bindings for the Perl language delivered with the PL plot sources. However, a PLplot
interface has been added to the Perl Data Language (PDL) since version 2.4.0. If the PLplot library isin-
stalled in the system, it isautomatically detected by the PDL configuration script, such that PL plot support
for PDL should work out of the box. For further information see the PDL homepage [http://pdl.perl.org].

The PDL PLplot interface (PDL::Graphics::PLplot) can interact with PLplot in two ways: (1) A low level
mapping one to one mapping of perl functionsto PLplot API functionsand (2) A high level object oriented
wrapper that simplifies generating 2D plots. The PLplot source distribution contains multiple exampl es of
how to use the low level interface (see examples/perl). A key thing to note is that, due to the architecture
of PDL, al the array arguments to a function come first, followed by the scalars. This means that the
argument order for some of the functionsin the PLplot API is different when called from PDL.

Here is an usage example comparing the low level and the object oriented interfaces to PLplot.
use PDL;
use PDL:: Graphics::PLplot;

pdl (0..5);
$x ** 2;

ny $x
my Sy

low | evel interface

pl sdev ("xw n");

plinit ();
plcol0 (1);

plenv (-0.5, 5.5, -1, 26, 0, 0):
plline ($x, $y);

plend ();
OO interface

ny $pl = PDL:: G aphics::PLplot->new (DEV => "xwin",);
$pl - >xypl ot ($x, Py, TITLE => 'X vs. Y');
$pl - >cl ose;

Thereisalso aPerl PLplot interface on CPAN [http://www.cpan.org] which is not dependent on PDL. The
Perl moduleis called Graphics::PL plot [http://search.cpan.org/~tjenness/Graphics-PLplot/] and is appro-
priate for small dataarrays. The APl isvery similar to the C APl except that if the number of elementsin
an array isrequired by the C function the perl interface calculatesit automatically. Also, return values are
returned and not supplied as arguments. Here is the PDL example above translated to Graphics::PLplot:

use Graphics::PLplot gw :all /;

@
@

(0..5);
map {$_ * $_} @;

85

http://pdl.perl.org
http://pdl.perl.org
http://www.cpan.org
http://www.cpan.org
http://search.cpan.org/~tjenness/Graphics-PLplot/
http://search.cpan.org/~tjenness/Graphics-PLplot/

Using PLplot from Perl

pl sdev ("xw n");

plinit ();
plcol0 (1);

plenv (-0.5, 5.5 -1, 26, 0, 0);
plline (\@&, \@);

plend ();

86

Chapter 14. Using PLplot from Python

NEEDS DOCUMENTATION, but hereisthe short story. We currently (February, 2001) have switched to
dynamic loading of plplot following the generic method given in the python documentation. Most (???) of
the PLplot common API has been implemented. (For a complete list see plmodules.c and plmodules2.c).
With this dynamic method all the xw??.py examples work fine and should be consulted for the best way
to use PLplot from python. Y ou may haveto set PY THONPATH to the path where plmodule.so islocated
(or eventualy installed). For more information see examples/python/README

pytkdemo and the x??.py examples it |oads use the plframe widget. Thus, this method does not currently
work under dynamicloading. They have only worked inthe past using the static method with much hacking
and rebuilding of python itself. We plan to try dynamic loading of al of PLplot (not just the plmodule.c
and plmodule2.c wrappers) including plframe (or a python-variant of this widget) into python at some
future date to see whether it is possible to get pytkdemo and the x??.py examples working under dynamic
loading, but only theindividual stand-alone xw??.py demos work at the moment.

87

Chapter 15. Using PLplot from Tcl

PLplot has historically had C and Fortran language bindings. PLplot version 5.0 introduces a plethora of
new programming options including C++ (described earlier) and several script language bindings. The
Tcl interface to PLplot (which the PLplot maintainers regard as the “primary” script language binding)
is described in this chapter, with further discussion of Tcl related issues following in additional chapters.
But Tcl is certainly not the only script language option. Bindings to Perl, Python, and Scheme (which is
actually another compiled language, but still has some of the flavor of a VHLL) are in various stages of
completion, and are described in separate chapters. Use the one that suits you best--or try them all!

Motivation for the Tcl Interface to PLplot

Therecent emergence of several high quality VHLL script languagessuch asTcl, Perl, Python and arguably
even some Lisp variants, is having a profound effect upon the art of computer programming. Tasks which
have traditionally been handled by C or Fortran, are beginning to be seen in anew light. With relatively
fast processors now widely available, many programming jobs are no longer bound by execution time,
but by “human time”. Rapidity of initial development and continued maintenance, for asurprisingly wide
class of applications, is far more important than execution time. Result: in a very short period of time,
say from 1993 to 1995, script languages have exploded onto the scene, becoming essential tools for any
serious programmer.

Moreover, the entire concept of “speed of execution” needs revising in the face of the gains made in
computer hardware in recent years. Saying that script language processing is slower than compiled lan-
guage processing may be undeniable and simultaneoudly irrelevant. If the script language processing is
fast enough, then it is fast enough. Increasingly, computational researchers are finding that script based
tools are indeed fast enough. And if their run time is fast enough, and their development and maintenance
time is much much better, then why indeed should they not be used?

Even in afield with several high visibility players, Tcl has distinguished itself as a leading contender.
There are many reasons for this, but perhaps the most important, at least as it relates to the PLplot user
community, isthat Tcl was designed to be extensible and embeddable. Thewhole purposeof Tcl, asit name
(Tool Command Language) indicates, isto be acommand language for other tools. In other words, the fact
that Tcl is capable of being a standalone shell is interesting, even useful, but nonetheless incidental. The
real attraction of Tcl isthat it can bethe shell language for your code. Tcl can easily be embedded into your
code, endowing it immediately with a full featured, consistent and well documented script programming
language, providing all the core features you need in a programming language: variables, procedures,
control structures, error trapping and recovery, tracing, etc. But that is only the beginning! After that, you
can easily extend Tcl by adding commands to the core language, which invoke the capabilities of your
tool. It isin this sense that Tcl is atool command language. It is a command language which you can
augment to provide access to the facilities of your tool.

But Tcl ismorethan just an embeddable, extensible script language for personal use. Tcl isan industry, an
internet phenomenon. There are currently at least two high quality books, with more on theway. Thereis
an industry of service providersand educators. Furthermore, literally hundreds of Tcl extensionsexist, and
are readily available over the net. Perhaps the most notable extension, Tk, provides a fantastic interface
to X Windows widget programming, permitting the construction of Motif like user interfaces, with none
of the hassles of actually using Motif. Some of these extensions endow Tcl with object oriented facilities
philosophically similar to C++ or other object oriented languages. Other extensions provide script level
access to system services. Others provide a script interface to sockets, RPC, and other network program-
ming protocols. The list goes on and on. Dive into the Tcl archive, and see what it has for you!

88

Using PLplot from Tcl

So, the answer to the question “Why do we want a Tcl interface to PLplot?’ is very simple. “Because
we we are using Tcl anyway, as the command language for our project, and would like to be able to do
plotting in the command language just as we do so many other things.”

But there is more than just the aesthetics of integration to consider. There are also significant pragmatic
considerations. If you generate your PLplot output via function calls from a compiled language, then in
order to add new diagnostics to your code, or to refine or embellish existing ones, you have to edit the
source, recompile, relink, and rerunthe code. If many iterationsare required to get the plot right, significant
time can be wasted. This can be especialy true in the case of C++ code making heavy use of templates,
for which many C++ compilers will have program link times measured in minutes rather than seconds,
even for trivial program changes.

In contrast, if the diagnostic plot is generated from Tcl, the development cycle looks more like: start the
shell (command line or windowing), source a Tcl script, issue the command to generate the plot, notice
abug, edit the Tcl script, resource the script, and regenerate the plot. Notice that compiling, linking, and
restarting the program, have all been dropped from the development cycle. The time savings from such
a development cycle can be amazing!

Overview of the Tcl Language Binding

Each of the PLplot calls available to the C or Fortran programmer are also available from Tcl, with the
same name and generally the same arguments. Thus for instance, whereasin C you can write:

plenv(0., 1., 0., 1., 0, 0);
pllab("(x)", "(y)", "The title of the graph");

you can how writein Tcl:

plenv 01 0100
pllab "(x)" "(y)" "The title of the graph"

All the normal Tcl rules apply, there is nothing special about the PLplot extension commands. So, you
could write the above as:

set xmin O0; set xmax 1; set ymn 0; set ynax 1
set just 0; set axis O

set xlab (x)

set ylab (y)

set title "The title of the graph”

pl env $xm n $xmax $ym n $ymax $j ust SPaxi s

pl 1l ab $xl ab $ylab $title

for example. Not that there is any reason to be loquacious for its own sake, of course. The point isthat you
might have things like the plot bounds or axis labels stored in Tcl variables for some other reason (tied
to a Tk entry widget maybe, or provided as the result of one of your application specific Tcl extension
commands, etc), and just want to use standard Tcl substitution to make the PLplot calls.

Go ahead and try it! Enter pl t cl to start up the PLplot extended Tcl shell, and type (or paste) in the
commands. Or put them in afile and source it. By this point it should be clear how incredibly easy it is
to use the PLplot Tcl language binding.

89

Using PLplot from Tcl

In order to accommodate the ubiquitous requirement for matrix oriented data in scientific applications,
and in the PLplot API in particular, PLplot 5.0 includes a Tcl extension for manipulating matrices in
Tcl. This Tcl Matrix Extension provides a straightforward and direct means of representing one and two
dimensiona matricesin Tcl. The Tcl Matrix Extension is described in detail in the next section, but we
mention its existence now just so that we can show how the PLplot Tcl API works. Many of the PLplot
Tcl API functions accept Tcl matrices as arguments. For instance, in C you might write:

float x[100], y[100];
/* code to initialize x and y */

plline(100, x, Yy);

In Tcl you can write:

matrix x f 100
matrix y f 100

code to initialize x and vy

plline 100 x vy

Some of the PLplot C function calls use pointer argumentsto allow retrieval of PLplot settings. These are
implemented in Tcl by changing the value of the variable whose name you provide. For example:

pl tcl > pl gxax

wrong # args: should be "plgxax digmax digits "
pltcl> set digmax 0

0

pltcl> set digits 0

0

pltcl> plgxax digmax digits

pltcl> puts "di gmax=$di gmax di git s=$di gits"

di gmax=4 di gits=0

Thisexample showsthat each PLplot Tcl command isdesignedtoissuean error if youinvokeit incorrectly,
which in this case was used to remind us of the correct arguments. We then create two Tcl variables to
hold the results. Then we invoke the PLplot pl gxax function to obtain the label formatting information
for the x axis. And finally we print the results.

People familiar with Tcl culture may wonder why the pl g* series functions don't just pack their results
into the standard Tcl result string. The reason is that the user would then have to extract the desired field
with either | i ndex or r egexp, which seems messy. So instead, we designed the PLplot Tcl API to ook
and feel as much like the C API as could reasonably be managed.

In general then, you can assume that each C function is provided in Tcl with the same name and same
arguments (and one or two dimensional arraysin C are replaced by Tcl matrices). There are only a few
exceptions to this rule, generally resulting from the complexity of the argument types which are passed
to some functions in the C API. Those exceptional functions are described below, all others work in the
obvious way (analogous to the examples above).

90

Using PLplot from Tcl

See the Tcl example programs for extensive demonstrations of the usage of the PLplot Tcl API. To run
the Tcl demos:

% pl tcl

pltcl> source tcldenvos.tcl
pltcl> 1

pltcl> 2

Alternatively, you can run pl ser ver and sourcet kdenos. tcl .

Inany event, the Tcl demos providevery good coverage of the Tcl API, and consequently serve asexcellent
examples of usage. For the most part they draw the same plots as their C counterpart. Moreover, many
of them were constructed by literally inserting the C code into the Tcl source file, and performing fairly
mechanical transformations on the source. This should provide encouragement to anyone used to using
PLplot through one of the compiled interfaces, that they can easily and rapidly become productive with
PLplotin Tcl.

The PLplot Tcl Matrix Extension

Tcl does many things well, but handling collections of numbers is not one of them. You could make
lists, but for data sets of sizes relevant to scientific graphics which is the primary domain of applicability
for PLplot, the extraction time is excessive and burdensome. Y ou could use Tcl arrays, but the storage
overhead is astronomical and the lookup time, while better than list manipulation, is still prohibitive.

To cope with this, a Tcl Matrix extension was created for the purpose of making it feasible to work with
large collections of numbersin Tcl, in away which is storage efficient, reasonably efficient for accesses
from Tcl, and reasonably compatible with practices used in compiled code.

Using Tcl Matrices from Tcl

Much like the Tk widget creation commands, the Tcl mat r i x command considersitsfirst argument to be
the name of a new command to be created, and the rest of the arguments to be modifiers. After the name,
the next argument can bef | oat ori nt or contractions thereof. Next follow a variable number of size
arguments which determine the size of the matrix in each of its dimensions. For example:

matrix x f 100
matrix y i 64 64

constructs two matrices. x is afloat matrix, with one dimension and 100 elements. y is an integer matrix,
and has 2 dimensions each of size 64.

Additionally, an initializer may be specified, with a syntax familiar from C. For example:
matrix x f 4 ={ 1.5, 2.5, 3.5, 4.5}

A Tcl matrix is acommand, and as longtime Tcl users know, Tcl commands are globally accessible. The
PL plot Tcl Matrix extension attemptsto lessen theimpact of thisby registering avariableinthelocal scope,
and tracing it for insets, and deleting the actual matrix command when the variable goes out of scope. In
thisway, a Tcl matrix appears to work sort of like avariable. It is, however, just anillusion, so you have
to keep thisin mind. In particular, you may want the matrix to outlive the scope in which it was created.

91

Using PLplot from Tcl

For example, you may want to create a matrix, load it with data, and then pass it off to a Tk megawidget
for display in a spreadsheet like form. The proc which launches the Tk megawidget will complete, but the
megawidget, and the associated Tcl matrix are supposed to hang around until they are explicitly destroyed.
To achieve this effect, create the Tcl matrix with the - per si st flag. If present (can be anywhere on the
line), the matrix is not automatically deleted when the scope of the current proc (method) ends. Instead,
you must explicitly clean up by using either the 'del ete' matrix command or renaming the matrix command
nameto {}. Now works correctly from within [incr Tcl].

As mentioned above, the result of creating a matrix is that a new command of the given name is added to
the interpreter. Y ou can then evaluate the command, providing indices as arguments, to extract the data.
For example:

pltcl> matrix x f = {1.5, 2.5, 3.5, 4.5}

i nsufficient dinensions given for Matrix operator
pltcl> mtrix x f 4 = {1.5 2.5 3.5, 4.5}
pltcl>x 0

1. 500000

pltcl> x 1

2. 500000

pltcl> x 3

4.500000

pltcl> x *

1. 500000 2.500000 3.500000 4.500000
pltcl> puts "x\[1\]=[x 1]"

x[1] =2. 500000

pltcl> puts "xX\[*\] = :[x *]:"

x[*] = :1.500000 2.500000 3.500000 4.500000:
pltcl> foreach v [x *] { puts $v }

1. 500000

2. 500000

3. 500000

4.500000

pltcl> for {set i 0} {$i < 4} {incr i} {
if {[x $i] < 3} {puts [x $i]} }

1. 500000

2. 500000

X

Notefrom the abovethat the output of evaluating amatrix indexing operationissuitablefor usein condition
processing, list processing, etc.

Y ou can assign to matrix locationsin a similar way:

pltcl>x 2 =7

pltcl> puts ":[x *]:"

:1. 500000 2.500000 7.000000 4.500000:
pltcl>x * =3

pltcl> puts ":[x *]:"

Note that the* provides a means of obtaining an index range, and that it must be separated fromthe=by a
space. Future versions of the Tcl Matrix extension may allow alternative ways of specifying index ranges
and may assign the obvious meaning to an expression of the form:

92

Using PLplot from Tcl

X *= 3

However this has not been implemented yet...

In any event, the mat r i x command also supports an i nf o subcommand which reports the number of
elementsin each dimension:

pltcl> x info

4

pltcl> matrix y i 8 10
pltcl>y info

8 10

Using Tcl Matrices from C

Normally you will create a matrix in Tcl, and then want to pass it to C in order to have the data filled
in, or existing data to be used in a computation, etc. To do this, pass the name of the matrix command
as an argument to your C Tcl command procedure. The C code should include t ¢l Mat ri x. h, which
has a definition for the t cl Mat ri x structure. You fetch a pointer to the t cl Mat ri x structure using
theTcl _Get Matri xPt r function.

For example, in Tcl:

matrix x f 100
wacky X

andin C:

int wackyCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[])

{

tclMatrix *w,

w = Tcl _CetMatrixPtr(interp, argv[1]);

To learn about what else you can do with the matrix once inside compiled code, readt cl Matri x. h to
learn the definition of thet cl Mat ri x structure, and see the examples in files like t cl API . ¢ which
show many various uses of the Tcl matrix.

Using Tcl Matrices from C++

Using aTcl matrix from C++isvery much likeusing it from C, exceptthatt cl Mat ri x. h contains some
C++ wrapper classes which are somewhat more convenient than using the indexing macros which one has
to use in C. For example, here is a tiny snippet from one of the authors codes in which Tcl matrices are
passed in from Tcl to a C++ routine which is supposed to fill them in with values from some matrices
used in the compiled side of the code:

93

Using PLplot from Tcl

if (item== "vertex_coords") {
tclMatrix *matxg = Tcl _GetMatrixPtr(interp, argv[l]);
tclMatrix *matyg = Tcl _GetMatrixPtr(interp, argv[2]);

Mat 2<f | oat > xg(ncu, ncv), yg(ncu, ncv);
cg->Cet _Vertex_Coords(xg, yg);

Tcl vat Fl oat txg(matxg), tyg(matyg);

for(1=0; i < ncu; i++)
for(j=0; j < ncv; j++) {
txg(i,j) = xg(i,j);
;yg(i,j) = yg(i,j);

There are other things you can do too, see the definitions of the Tcl Mat Fl oat and Tcl Mat | nt classes
intcl Matri x. h.

Extending the Tcl Matrix facility

The Tcl matrix facility provides creation, indexing, and information gathering facilities. However, con-
sidering the scientifically inclined PLplot user base, it is clear that some users will demand more. Conse-
quently thereisamechanism for augmenting the Tcl matrix facility with your own, user defined, extension
subcommands. Consider xt kO4. c. In this extended wish, we want to be able to determine the minimum
and maximum values stored in amatrix. Doing thisin Tcl would involve nested |oops, which in Tcl would
be prohibitively slow. We could register a Tcl extension command to do it, but since the only sensible data
for such acommand would be a Tcl matrix, it seems nice to provide thisfacility as an actual subcommand
of the matrix. However, the PL plot maintainers cannot foresee every need, so amechanism is provided to
register subcommands for use with matrix objects.

The way to register matrix extension subcommandsisto call Tcl _Mat ri xI nst al | Xt nsn:

typedef int (*tclMatrixXtnsnProc) (tclMtrix *pm Tcl _Interp *interp,
int argc, char *argv[]);

int Tcl _Matrixlnstall Xtnsn(char *cnd, tcl MatrixXtnsnProc proc);
In other words, make a function for handling the matrix extension subcommand, with the same function

signature (prototype) ast cl Mat ri xXt nsnPr oc, and register the subcommand name aong with the
function pointer. For example, xtk04.c has:

int mat_max(tcl Matrix *pm Tcl _Interp *interp,
int argc, char *argv[])

{

float max = pm >fdata[0];
int i;

for(i=1; i < pm>len; i++)

if (pm>fdata[i] > max)
max = pm>fdata[i];

94

Using PLplot from Tcl

sprintf(interp->result, "%", max);
return TCL_CK;
}

int mat_mn(tclMatrix *pm Tcl _Interp *interp,
int argc, char *argv[])

{

float mn = pm >fdata[0];
int i;

for(i=1; i < pm>len; i++)

if (pm>fdata[i] < min)
mn = pm>fdatali];

sprintf(interp->result, "%", mn);
return TCL_CK;
}

Then, inside the application initialization function (Tcl _Appl ni t () tolongtime Tcl users):

Tcl _Matrixlnstall Xtnsn("max", mat_nmax);
Tcl _Matrixlnstall Xtnsn("mn", mat_mn);

Then we can do things like:

di no 65: xtk04

Ymtrix x f 4 = {1, 2, 3, 1.5}
% X mn

1. 000000

% X max

3. 000000

Your imagination is your only limit for what you can do with this. Y ou could add an FFT subcommand,
matrix math, BLAS, whatever.

Contouring and Shading from Tcl

Contouring and shading has traditionally been one of the messier things to do in PLplot. The C APl has
many parameters, with complex setup and tear down properties. Of special concern is that some of the
parameters do not have a natural representation in script languages like Tcl. In this section we describe
how the Tcl interface to these facilities is provided, and how to useit.

Drawing a Contour Plot from Tcl

By way of reference, the primary C function call for contouring is:

voi d plcont(PLFLT **f, PLINT nx, PLINT ny, PLINT kx, PLINT [Xx,
PLI NT ky, PLINT Iy, PLFLT *clevel, PLINT nlevel,

95

Using PLplot from Tcl

void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer),
PLPoi nter pltr_data);

This is a fairly complex argument list, and so for this function (and for plshade, described below) we
dispense with trying to exactly mirror the C API, and just concentrate on capturing the functionality within
aTcl context. To begin with, the datais provided through a 2-d Tcl matrix. The Tcl matrix carries along
its size information with it, so nx and ny are no longer needed. The kx, | x, ky and | y variables are
potentially still useful for plotting a subdomain of the full data set, so they may be specified in the natural
way, but we make this optional since they are frequently not used to convey anything more than what
could beinferred from nx and ny. However, to simplify processing, they must be supplied or omitted asa
set (al of them, or none of them). cl evel issuppliedasal-d Tcl matrix, andsonl evel canbeomitted.

Finally, we have no way to support function pointers from Tcl, so instead we provide token based support
for accessing the three coordinate transformation routines which are provided by PLplot, and which many
PL plot users use. There are thus three courses of action:

* Provide no pltr specification. In thiscase, pl t r 0 isused by default.

» Specifypltrl x y wherex andy are 1-d Tcl matrices. Inthiscase pl t r 1 will be used, and the 1-
d arrays which it needs will be supplied from the Tcl matricesx andy.

e Specifypltr2 x y wherex andy are 2-d Tcl matrices. Inthiscase pl t r 2 will be used, and the 2-
d arrays which it needs will be supplied from the Tcl matricesx andy.

Now, there can be no question that thisis both more concise and less powerful than what you could get in
C. Theloss of the ahility to provide a user specified transformation function is regrettable. If you really do
need that functionality, you will have to implement your own Tcl extension command to do pretty much
the same thing as the provided Tcl extension command pl cont (whichisint cl API . ¢ in function
pl cont Cnd()), except specify the C transformation function of your choice.

However, that having been said, we recognize that one common use for this capability is to provide a
special version of pl t r 2 which knows how to implement a periodic boundary condition, so that polar
plots, for example, can be implemented cleanly. That is, if you want to draw contours of a polar data set
defined on a64 x 64 grid, ensuring that contour lineswould actually go all the way around the origin rather
than breaking off like a silly pacman figure, then you had basically two choicesin C. Y ou could copy the
data to a 65 x 64 grid, and replicate one row of data into the spare slot, and then plot the larger data set
(taking care to replicate the coordinate arrays you passed to pltr2 in the same way), or you could make a
special version of pl t r 2 which would understand that one of the coordinates was wrapped, and perform
transformations accordingly without actually making you replicate the data.

Since the former option isugly in general, and hard to do in Tcl in particular, and since the second option
iseven more difficult to doin Tcl (requiring you do make a specia Tcl extension command as described
above), we provide special, explicit support for this common activity. Thisis provided through the use of
anew, optional parameter wr ap which may be specified asthe last parameter to the Tcl command, only if
you areusing pl t r 2. Supplying 1 will wrap in thefirst coordinate, 2 will wrap in the second coordinate.

The resultant Tcl command is:

plcont f [kx Ix ky ly] clev [pltr x y] [wap]

Note that the brackets here are used to signify optional arguments, not to represent Tcl command substi-
tution!

96

Using PLplot from Tcl

TheTcl demox09. t ¢l provides examplesof all the capabilities of thisinterface to contouring from Tcl.
Note in particular, x09_pol ar which does a polar contour without doing anything complicated in the
way of setup, and without getting a pacman as the output.

Drawing a Shaded Plot from Tcl

The Tcl interface to shading works very much like the one for contouring. The command is:

pl shade z xmin xmax ymn ynmax \

sh mn sh_max sh_cmap sh_color sh width \
mn col mnwid max_col max_w d \

rect [pltr x y] [wap]

where nx and ny were dropped since they are inferred from the Tcl matrix z, def i ned was dropped
sinceit isn't supported anyway, and pl fi | | wasdropped sinceit wasthe only valid choice anyway. The
pl t r spec and wr ap work exactly as described for the Tcl pl cont described above.

The Tcl demo x16. t cl contains extensive demonstrations of use, including a shaded polar plot which
connects in the desirable way without requiring specia data preparation, again just like for pl cont de-
scribed previously.

Understanding the Performance Characteris-
tics of Tcl

Newcomersto Tcl, and detractors (read, “ proponents of other paradigms’) often do not have aclear (new-
comers) or truthful (detractors) perspective on Tcl performance. In this section we try to convey a little
orientation which may be helpful in working with the PLplot Tcl interface.

“Tcl isslow!” “Yeah, so what?’

Debates of thisform frequently completely missthe point. Yes, Tcl is definitely slow. It isfundamentally
a string processing language, is interpreted, and must perform substitutions and so forth on a continual
basis. All of that takestime. Think millisecondsinstead of microsecondsfor comparing Tcl codeto equiv-
aent C code. On the other hand, this does not have to be problematic, even for time critical (interactive)
applications, if the division of labor is done correctly. Even in an interactive program, you can use Tcl
fairly extensively for high level control type operations, aslong as you do the real work in acompiled Tcl
command procedure. If the high level control codeis slow, so what? So it takes 100 milliseconds over the
life the process, as compared to the 100 microsecondsit could have taken if it werein C. Big deal. On an
absol ute time scale, measured in units meaningful to humans, it's just not alot of time.

The problem comes when you try to do too much in Tcl. For instance, an interactive process should not
be trying to evaluate a mathematical expression inside a doubly nested loop structure, if performance is
going to be a concern.

Casein point: Compare x16.tcl to x16c¢.c. The code looks very similar, and the output looks very similar.
What is not so similar is the execution time. The Tcl code, which sets up the data entirely in Tcl, takes
awhile to do so. On the other hand, the actual plotting of the data proceeds at a rate which is effectively
indistinguishable from that of the compiled example. On human time scales, the difference is not mean-
ingful. Conclusion: If the computation of the data arrays could be moved to compiled code, the two pro-
grams would have performance close enough to identical that it really wouldn't be an issue. We left the
Tcl demos coded in Tcl for two reasons. First because they provide some examples and tests of the use

97

Using PLplot from Tcl

of the Tcl Matrix extension, and secondly because they allow the Tcl demos to be coded entirely in Tcl,
without requiring special customized extended shells for each one of them. They are not, however, agood
example of you should do thingsin practice.

Now look at t k04 and xt k04. ¢, youwill seethat if the datais computed in compiled code, and shuffled
into the Tcl matrix and then plotted from Tcl, the performance is fine. Almost al the time is spent in
plshade, in compiled code. Thetimetaken to do the small amount of Tcl processing involved with plotting
is dwarfed by the time spent doing the actual drawing in C. So using Tcl cost almost nothing in this case.

So, the point is, do your heavy numerical calculations in a compiled language, and feel free to use Tcl
for the plotting, if you want to. You can of course mix it up so that some plotting is done from Tcl and
some from a compiled language.

98

Chapter 16. Building an Extended
WISH

Beginning with PLplot 5.0, a new and powerful paradigm for interaction with PLplot isintroduced. This
new paradigm consists of an integration of PLplot with apowerful scripting language (Tcl), and extensions
tothat languageto support X Windowsinterface development (Tk) and object oriented programming ([incr
Tcl]). Taken together, these four software systems (Tcl/Tk/itcl/PLplot) comprise a powerful environment
for the rapid prototyping and development of sophisticated, flexible, X Windows applications with access
to the PLplot API. Yet that is only the beginning—Tcl was born to be extended. The true power of this
paradigm is achieved when you add your own, powerful, application specific extensions to the above
quartet, thus creating an environment for the development of wholly new applications with only a few
keystrokes of shell programming ...

Introduction to Tcl

The Tool Command Language, or just Tcl (pronounced “tickle”) is an embeddable script language which
can be used to control awide variety of applications. Designed by John Ousterhout of UC Berkeley, Tcl is
freely available under the standard Berkeley copyright. Tcl and Tk (described below) are extensively doc-
umented in a new book published by Addison Wesley, entitled “Tcl and the Tk toolkit” by John Ouster-
hout. This book is a must have for those interested in developing powerful extensible applications with
high quality X Windows user interfaces. The discussion in this chapter cannot hope to approach the level
of introduction provided by that book. Rather we will concentrate on trying to convey some of the excite-
ment, and show the nuts and bolts of using Tcl and some extensions to provide a powerful and flexible
interface to the PLplot library within your application.

Motivation for Tcl

The central observation which led Ousterhout to create Tcl was the realization that many applications
require the use of some sort of a special purpose, application specific, embedded “macro language’. Ap-
plication programmers cobble these “tiny languages’ into their codes in order to provide flexibility and
some maodicum of high level control. But the end result is frequently a quirky and fragile language. And
each application hasadifferent “tiny language” associated with it. Theideabehind Tcl, then, wasto create
asingle “core language” which could be easily embedded into a wide variety of applications. Further, it
should be easily extensible so that individual applications can easily provide application specific capabil-
ities available in the macro language itself, while still providing a robust, uniform syntax across a variety
of applications. To say that Tcl satisfies these requirements would be a spectacular understatement.

Capabilities of Tcl

The mechanics of using Tcl are very straightforward. Basically you just have to include thefilet cl . h,
issue some API callsto create a Tcl interpreter, and then evaluate a script file or perform other operations
supported by the Tcl API. Then just link against | i bt ¢l . a and off you go.

Having donethis, you have essentially created ashell. That is, your program can now execute shell scripts
in the Tcl language. Tcl provides support for basic control flow, variable substitution file i/o and subrou-
tines. In addition to the built in Tcl commands, you can define your own subroutines as Tcl procedures
which effectively become new keywords.

But the real power of this approach is to add new commands to the interpreter which are realized by
compiled C codein your application. Tcl provides astraightforward API call which allowsyou to register

99

Building an Extended WISH

a function in your code to be called whenever the interpreter comes across a specific keyword of your
choosing in the shell scriptsit executes.

Thisfacility allowsyou with tremendous ease, to endow your application with a powerful, robust and full
featured macro language, trivially extend that macro language with new keywordswhich trigger execution
of compiled application specific commands, and thereby raise the level of interaction with your code to
one of essentially shell programming via script editing.

Acquiring Tcl

Thereare several important sources of info and codefor Tcl. Definitely get the book mentioned above, and
the source code for the Tcl and Tk toolkits can be downloaded from The Tcl developer Xchange [http://
www.tcl.tk/software/tcltk/downl oad.html].

Additionally thereisanewsgroup, conp. | ang. t cl whichiswell read, and an excellent placefor people
to get oriented, find help, etc. Highly recommended.

Inany event, in order to usethe Tk driver in PLplot, you will need Tcl-8.2 and Tk-8.2 (or higher versions).
Additionally, in order to use the extended WISH paradigm (described below) you will need iTcl-3.1 (or
ahigher version).

However, you will quitelikely find Tcl/Tk to be very addictive, and the great plethora of add-ons available
at har bor will undoubtedly attract no small amount of your attention. It has been our experience that
all of these extensions fit together very well. You will find that there are large sectors of the Tcl user
community which create so-called “MegaWishes’ which combine many of the available extensions into
asingle, heavily embellished, shell interpreter. The benefits of this approach will become apparent asyou
gain experience with Tcl and Tk.

Introduction to Tk

As mentioned above, Tcl is designed to be extensible. The first and most basic Tcl extension is Tk, an
X11 toolkit. Tk provides the same basic facilities that you may be familiar with from other X11 toolkits
such as Athena and Motif, except that they are provided in the context of the Tcl language. There are
C bindings too, but these are seldom needed—the vast magjority of useful Tk applications can be coded
using Tcl scripts.

If it has not become obvious already, it is worth noting at this point that Tcl is one example of afamily of
languages known generally as“Very High Level Languages’, or VHLL's. Essentially a VHLL raisesthe
level of programming to a very high level, allowing very short token streams to accomplish as much as
would be required by many scores of the more primitive actions available in a basic HLL. Consider, for
example, the basic “Hello World!” application written in Tcl/Tk.

#! /usr/l ocal/bin/wish -f

button .hello -text "Hello Wrld!" -conmand "destroy ."
pack .hello

That'sit! That'sall thereistoit. If you have ever programmed X using atraditional toolkit such as Athena
or Motif, you can appreciate how amazingly much more convenient thisis. If not, you can either take our
word for it that thisis 20 times|ess code than you would need to use a standard toolkit, or you can go write
the same program in one of the usual toolkits and see for yourself...

We cannot hope to provide a thorough introduction to Tk programming in this section. Instead, we will
just say that immensely complex applications can be constructed merely by programming in exactly the

100

http://www.tcl.tk/software/tcltk/download.html
http://www.tcl.tk/software/tcltk/download.html
http://www.tcl.tk/software/tcltk/download.html

Building an Extended WISH

way shown in the above script. By writing more complex scripts, and by utilizing the additional widgets
provided by Tk, one can create beautiful, extensive user interfaces. Moreover, this can be donein atiny
fraction of the time it takes to do the same work in a conventional toolkit. Literally minutes versus days.

Tk provides widgets for labels, buttons, radio buttons, frames with or without borders, menubars, pull
downs, toplevels, canvases, edit boxes, scroll bars, etc.

A look at the interface provided by the PLplot Tk driver should help give you a better idea of what you
can do with this paradigm. Also check out some of the contributed Tcl/Tk packages available at harbor.
There are high quality Tk interfaces to a great many familiar Unix utilities ranging from mail to info, to
SQL, to news, etc. Thelist is endless and growing fast...

Introduction to [incr Tcl]

Another extremely powerful and popular extension to Tcl is[incr Tcl]. [incr Tcl] isto Tcl what C++ isto
C. The analogy is very extensive. Itcl provides an object oriented extension to Tcl supporting clustering
of procedures and dataintowhat iscalledani t cl _cl ass.Ani t cl _cl ass can have methods aswell
asinstance data. And they support inheritance. Essentially if you know how C++ relatesto C, and if you
know Tcl, then you understand the programming model provided by Itcl.

In particular, you can use Itcl to implement new widgets which are composed of more basic Tk widgets.
A file selector isan example. Using Tk, one can build up avery nicefile selector comprised of more basic
Tk widgets such as entries, listboxes, scrollbars, etc.

But what if you need two file selectors? You have to do it al again. Or what if you need two different
kinds of file selectors, you get to do it again and add some incremental code.

This is exactly the sort of thing object orientation is intended to assist. Using Itcl you can create an
itcl _class FileSel ector andthenyou caninstantiate them freely aseasily as:

Fil eSel ector .fsl
.fs1 -dir . -find "*.cc"

and so forth.

These high level widgets composed of smaller Tk widgets, are known as* megawidgets’. Thereisadevel-
oping subculture of the Tcl/Tk community for designing and implementing megawidgets, and [incr Tcl]
is the most popular enabling technology.

In particular, it is the enabling technology which is employed for the construction of the PLplot Tcl ex-
tensions, described below.

PLplot Extensions to Tcl

Following the paradigm described above, PLplot provides extensionsto Tcl aswell, designed to allow the
use of PLplot from Tcl/Tk programs. Essentially the idea here isto allow PLplot programmersto achieve
two goals:

» To access PLplot facilities from their own extended WISH and/or Tcl/Tk user interface scripts.
» TohavePLplot display its output in awindow integrated directly into the rest of their Tcl/Tk interface.

For instance, prior to PLplot 5.0, if a programmer wanted to use PLplot in a Tcl/Tk application, the best
he could manage was to call the PLplot C API from compiled C code, and get the output via the Xwin

101

Building an Extended WISH

driver, which would display in it's own toplevel window. In other words, there was no integration, and
the result was pretty sloppy.

With PLplot 5.0, there is now a supported Tcl interface to PLplot functionality. Thisis provided through
a“family” of PLplot megawidgetsimplemented in [incr Tcl]. Using thisinterface, a programmer can get
a PLplot window/widget into a Tk interface as easily as:

PLWn .plw
pack .plw

Actually, there's the update/init business—need to clear that up.

The PLW n class then mirrors much of the PLplot C API, so that a user can generate plots in the PLplot
widget entirely from Tcl. Thisis demonstrated in thet k02 demo,

Custom Extensions to Tcl

By this point, you should have a pretty decent understanding of the underlying philosophy of Tcl and Tk,
and the whol e concept of extensions, of which [incr Tcl] and PLplot are examples. These alone are enough
to allow the rapid prototyping and development of powerful, flexible graphical applications. Normally the
programmer simply writes a shell script to be executed by the Tk windowing shell, wish. It isin vogue
for each Tcl/Tk extension package to build it's own “extended WISH”. There are many examples of this,
and indeed even PLplot's plserver program, described in an earlier chapter, could just as easily have been
called plwish.

In any event, as exciting and useful as these standalone, extended windowing shells may be, they are
ultimately only the beginning of what you can do. The real benefit of this approach is realized when you
make your own “extended WISH”, comprised of Tcl, Tk, any of the standard extensions you like, and
finally embellished with a smattering of application specific extensions designed to support your own
application domain. In this section we give a detailed introduction to the process of constructing your own
WISH. After that, you're on your own...

WISH Construction

The standard way to make your own WISH, as supported by the Tcl/Tk system, is to take a boilerplate
file, t KAppl ni t . c, edit to reflect the Tcl/Tk extensions you will be requiring, add some commands to
the interpreter, and link it all together.

Here for example is the important part of the t k02 demo, extracted from the file xt k02. ¢, which is
effectively the extended WISH definition file for the t k02 demo. Comments and other miscellany are
omitted.

#i ncl ude "tk.h"
#i nclude "itcl.h"

[* 0.0 %
i nt nypl ot Cd (CientData, Tcl _Interp *, int, char **);
i nt

Tcl _Applnit(interp)

102

Building an Extended WISH

Tcl _Interp *interp; /* Interpreter for application. */

{

i nt p! Fr aneCnd (CientData, Tcl _Interp *, int, char **);
Tk_W ndow nai n;

mai n = Tk_Mai nW ndow(i nt erp) ;

*

Call the init procedures for included packages. Each call should
| ook Iike this:

if (Md_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

—

where "Mdd" is the nane of the nodul e.

¥ %k ok Xk X 3k X TS

~

if (Tcl_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}

if (Tk_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}

if (Itcl _Init(interp) == TCL_ERROR) {
return TCL_ERRCR

}

if (Pltk_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}

/*

* Call Tcl _CreateConmand for application-specific comands, if

* they weren't already created by the init procedures called above.
*/

Tcl _CreateCommand(interp, "nyplot", myplotCnd,
(AientData) main, (void (*)(CientData)) NULL);

/*

* Specify a user-specific start up file to invoke if the

* application is run interactively. Typically the start up

* fileis "~/.apprc” where "app" is the nanme of the application.
* |f this line is deleted then no user-specific start up file
* will be run under any conditions.

*/

tcl _RcFileNane = "~/.wi shrc";

return TCL_CK;

}

/[* ... nmyPlotCrd, etc ... */

103

Building an Extended WISH

Thecdlsto Tcl _Init() and Tk_Init() arein every WISH. To make an extended WISH, you
add calls to the initialization routines for any extension packages you want to use, in this [incr Tcl]
(Itcl _I'nit())andPLplot(Pltk_Init()).Finalyyouaddkeywordsto the interpreter, associating
them with functionsin your code using Tcl _Cr eat eCommand() as shown.

In particular, PLplot hasanumber of [incr Tcl] classesinits Tcl library. If you want to be able to use those
inyour WISH, you need to include the initiaization of [incr Tcl].

WISH Linking

Having constructed your Tcl _Appl ni t () function, you now merely need to link thisfilewith your own
private filesto provide the code for any functionsyou registered viaTcl _Cr eat eCommand() (and any
they depend on), against the Tcl, Tk and extension libraries you are using.

cc -c tkApplnit.c

cc -c myconmands. c

cc -o my_wi sh tkApplnit.o mycommands. o
-lplplotftk -Itecl -1tk -litcl -1X11 -Im

Add any needed - L options as needed.

Voila You have made awish.

WISH Programming

Now you are ready to put the genie to work. The basic plan here is to write shell scripts which use your
new application specific windowing shell as their interpreter, to implement X Windows user interfaces to
control and utilize the facilities made available in your extensions.

Effectively this just comes down to writing Tcl/Tk code, embellished as appropriate with calls to the
extension commands you registered. Additionally, since thiswish includes the PL plot extensions, you can
instantiate any of the PLplot family of [incr Tcl] classes, and invoke methods on those objects to effect
the drawing of graphs. Similarly, you may have your extension commands (which are coded in C) call the
PL plot C programmers API to draw into the widget. In thisway you can have the best of both worlds. Use
compiled C code when the computational demands require the speed of compiled code, or use Tcl when
your programming convenience is more important than raw speed.

104

Chapter 17. Embedding Plots In
Graphical User Interfaces

This chapter should describe how to embed plotsin graphical user interfaces. Chapter 16, Building an Ex-
tended WISH doesthat for Tk, but embedding plotsin GTK+ and Qt GUI'sNEEDS DOCUMENTATION.
Until that GTK+ and QT4 documentation is prepared, look at examples/c/README.cairo and examples/c
++/README.qt_example for some proof-of-concept examples.

105

Part IV. Reference

Table of Contents

18. BibliOGrapY et een 112

19. The Common APL fOr PLPIOLcoeeieiei e 113
pl _set cont| abel f or mat : Set format of numerical label for contours........................ 113
pl _set cont | abel par am Set parameters of contour labelling other than format of nu-
MENCAl TADEL ... 114
pl adv: Advance the (SUD-)PagEooeiiiiiiiiii e 114
pl ar c: Draw acircular or @liptiCal @rCuiieiiiiiii i 114
pl axes: Draw abox with axes, etc. with arbitrary originccooeiiiiiiiiiiiiiiieeenn, 115
pl bi n: Plot a histogram from binned data................uoveiiiiiiiiii e 117
Pl DOP: BEJIN @ NEW PAOE ...eeveeieeii ettt ettt ettt e e eeaas 117
pl box: Draw abox With @XES, BICcieuuiiiiieii e 118
pl box3: Draw abox with axes, efC, IN 3-0cc.uiiiiiiiiiii e 119
pl cal c_wor | d: Calculate world coordinates and corresponding window index from rela-
tIVE dEVICE COOMTINGLESvueiiiii ettt et e e e e s 121
pl cl ear: Clear CUrrent (SUD)PBOEuueeieriieeieii ettt 122
Pl cOl 0: Set COlOr, MAPOccoeriieiiiti et 122
Pl €Ol 1: Sat COlOr, MAPL ...ttt 123
pl col or bar : Plot color bar for image, shade or gradient plotS...........ccooveeiiiiieiiiinnenes 123
Pl CONt 2 CONLOUN PIO ..eetieiet ettt ettt e et e e e e e eere e eees 126
pl cpst r m Copy state parameters from the reference stream to the current stream 127
Pl end: ENd PIOtiiNG SESSION ...c.vuniiiiiiieeieit et 128
pl endl: End plotting Session for CUMrent SrEaMccouuuiiiiiiiieeiiir e 128
pl env0: Sameaspl env but if in multiplot mode does not advance the subpage, instead
ClBAIS 1. et e 128
pl env: Set up standard window and draw BOXc.ocoeiiiiiiiii 130
Pl 0P EJECE CUIMENE PAJE ... ittt e e 132
Pl errX: Draw X @TOr Darco.uuiiiiii e 132
Pl erry: Draw y @TOr Darcoouiiiii e 133
pl f anmadv: Advance to the next family file on the next new page............ocevvviiveeiiinneees 133
Pl fill:Draw filled POIYOONiiiiiieiiii e 133
pl fill 3: Draw filled polygon iN 3Dc.uiiiiiiiiiiiii e 134
pl f1 ush: Flushes the OUIPUL SLreamoouuiiiiiii e 134
Pl font: Sat CharaCter TONLuuiiiii e 134
pl fontl d: Load character FONtoooiiiiiiiiiii e 135
pl gchr: Get character default height and current (scaled) heightcovveiiiiiiiiinnnnnen. 135
pl gcol 0: Returns 8-bit RGB values for given color from color map0ccceuvuveeeenn. 135
pl gcol Oa: Returns 8-bit RGB values and double alpha value for given color from color
L0700 TP PP 136
pl gcol bg: Returns the background color (cmapO[0]) by 8-bit RGB vaue....................... 136
pl gcol bga: Returns the background color (cmap0[0]) by 8-bit RGB value and double al-
PREVAIUB. ..ttt et 136
pl gconpr essi on: Get the current device-compPression SEttingccuvuveveeeiieeeeiinneees 137
pl gdev: Get the current device (Keyword) NAMEoveiiiviiieiiiiiec e 137
pl gdi dev: Get parameters that define current device-space Windowccceeeeeevnnnnee. 137
Pl gdi ori : Get PlOt OMENTALIONccuviieiiiiie e 137
pl gdi pl t : Get parameters that define current plot-space Windowccccceeveveennnn. 138
pl gf am Get family file parameterscoooiiii i 138
pl gf ci : Get FCI (font characterization iNtEgEr)veveeiiieiiiii e 138
pl gf nant Get oUtpUL file NAMEcoouuii e 139
pl gf ont : Get family, style and weight of the current fontociiiiiiiiiiiee. 139
pl gl evel : Get the (current) runN TeVEl ... 139

107

Reference

Pl gpage: Get PAgE PArAMELELS ... c.vuiiii e e e e e e e e e e e e e e e e e aaa s 140
pl gra: Switch to graphiCs SCrEEN ... ciivn i 140
pl gradi ent : Draw linear gradient inside Polygonovevuiieiiiieiiii e 140
pl gri ddat a: Grid data from irregularly sampled data..............cccoveviiiieiiieiiinieen, 141
pl gspa: Get current SUDPAgE PArAMELErSccuueirneriieeiiie e e e e e e e e et e e eeaans 142
pl gstrm Get current Stream NUMDBEToiiiiiiii e 143
pl gver : Get the current library version nUMbBErccocoiiiiiiiiiii e, 143
pl gvpd: Get viewport limits in normalized device cooOrdinatescoeevvveviiiieiineennnenns 143
pl gvpw: Get viewport limits in world coordinatesccooeeviiieiiieiii e, 143
Pl gXaX: GEt X aXiS PArAMELEISuciieeiii e eeei e et ee et e e e e e e et e e st e e et e e e et e eeaneeeens 144
Pl gyaxX: GEtY aXiS PArAMELEISuciueeiiieeiiee e e e ee et e e e e e e e et e e et e e et e e e et e eaaneeeens 144
Pl gZaX: GEt Z aXiS PArAMELENSiit e e e e e e e e e e e e e e 144
pl hi st : Plot a histogram from unbinned datac.ccciiiiiiiiiiiiii e 145
pl hl srgb: Convert HLS COlOr tO RGBcoviiiiiiicii e e 145
pl i magefr: Plot a2D matrix using Color Maplccovuiiiiiieiii e ee e e 146
pl i mage: Plot a 2D matrix using color mapl with automatic colour adjustment 147
PLinit:Initiaize PLPIOL ...ccvniii e e 147
pl j oi n: Draw aline between tWO POINEScviiiieiii e 148
pl | ab: Simple routine to Write 1abelSooovi i 148
pl | egend: Plot legend using discretely annotated filled boxes, lines, and/or lines of sym-

o]0 PSPPSR 148
pl | i ght sour ce: Setsthe 3D position of the light SOUICecoveviiieiiiiiiiiiciees 151
Pl NI Draw @liNE oo e e e 152
Pl 1ine3: Draw alinin 3 SPACEuiiii i 152
Pl Sty: SHECt NG SLYI@ cuniii i 152
pl map: Plot continental outline in world coordinates.cccoeeviiiiiiiiieii e, 153
pl meri di ans: Plot latitude and longitude [iNes.ccovviiiiiii i, 153
pl mesh: Plot sUrface MEShueii e 154
pl meshc: Magnitude colored plot surface mesh with contour.c.ccceveviiiiiiineiine, 155
pl mkst r m Creates a new stream and makes it thedefaultccoeeiiiiiii e, 156
pl nt ex: Write text relative to viewport boundariesccoocvieiiiiiciin e 156
pl nt ex3: Write text relative to viewport boundariesin 3D plotS.c.cooevevieiiiiieiinneennnn. 157
pl 0t 3d: PIot 3-d SUMACe PlOLeiie i 158
pl ot 3dc: Magnitude colored plot surface with contour.c.cccoveiiiiiii i, 158
pl par seopt s: Parse command-ling argumeNntSccocouieiiiieiiiieieii e e, 159
pl pat: Set area fill PatErNovii i 160
pl pat h: Draw aline between two points, accounting for coordinate transforms. 160
pl poi n: Plot a glyph at the specified POINtSccoveviiiiiii e, 161
pl poi n3: Plot a glyph at the specified 3D POINtScocvviiiiiiiicci e, 161
pl pol y3: Draw apolygon iN 3 SPACEc.uuiiii i e e e e e e e e e e e e aens 162
pl prec: Set precision in NUMENC [abElSooiviiiiii e, 162
pl psty: Select areafill Patternviiiiii s 163
pl pt ex: Write text inside the VIEWPOIcouviiiiiii e 163
pl pt ex3: Write text inside the viewport of a3D plOt.ooviiiiiiiii e, 163
pl r andd: Random number generator returning areal random number in therange [0,1].... 164
pl r epl ot : Replays contents of plot buffer to current deviceffilecooooiviiiiiiiiniins 164
pl rgbhl s: Convert RGB color tO HLSoiiiiiii e 165
Pl SCHI: St CharaCter SIZE ... civvniiiii i e 165
pl scmap0: Set color map0 colors by 8-bit RGB ValUEScovvviviiiiieiiiieceecieeeis 165
pl scmapOa: Set color map0 colors by 8-bit RGB values and double alphavalue. 166
pl scmapOn: Set number of colorsin color Map0oveviiiiiiii e, 166
pl scmapl: Set color mapl colors using 8-bit RGB valuesccooevviiviiniiiieeiie, 166
pl scmapla: Set color mapl colors using 8-bit RGB values and double aphavalues. 167
pl scmapll : Set color mapl colors using a piece-wise linear relationshipcoceevueeeen. 167

108

Reference

pl scmapll a: Set color mapl colors using a piece-wise linear relationship 169
pl scmapln: Set number of colorsin color MaPlccoveviiiiiiii i, 169
pl scol 0: Set agiven color from color map0 by 8 bit RGB value.............ccoocevvvevevnennnnn. 169
pl scol Oa: Set agiven color from color map0 by 8 bit RGB value and double alpha value.

... 170
pl scol bg: Set the background color by 8-bit RGB value.............ccocceviiiiniiiiiicceeenn, 170
pl scol bga: Set the background color by 8-bit RGB value and double alphavalue. 171
pl scol or : Used to globally turn color output on/offccooeoiiiiiiiiii e 171
pl sconpr essi on: Set device-compression [eVEloveiiiiiiiiii e, 171
pl sdev: Set the device (KEyWOrd) NAMEccuviiiiiiiii e 172
pl sdi dev: Set parameters that define current device-space Windowcoeeevvneennnn. 172
pl sdi nap: Set up transformation from metafile coordinatescoccevevviiviiiineeineeennn. 172
pl sdi ori: Set plot OFENtAioNuiiiiiieiii e 173
pl sdi pl t : Set parameters that define current plot-space Windowccceeevvviveennnnnn. 173
pl sdi pl z: Set parameters incrementally (zoom mode) that define current plot-space win-

(0o PSP 173
pl seed: Set seed for internal random NuMber geNerator.ccoccvvveiiiieeiiie e 174
pl sesc: Set the escape character for teXt StNGSuvvvviiiiiieiie e, 174
pl set opt : Set any command-ling OPtioNcccoviiiiiiiiiiii e 175
pl sfam Set family file parametersoovviiiii i 175
pl sfci: Set FCI (font charaCterization iINtEEr)coevvuieiiii i e 175
pl sfnam Set output FIlE NAMEciiiii e 176
pl sfont : Set family, style and weight of the current fontccocoiiiiii i, 176
pl shades: Shade regionson the basis of value..............cooeeiiiiiiiiiin e 176
pl shade: Shade individual region onthe basis of valueccooveiiiiiiiiiinee e, 178
pl shadel: Shade individual region on the basis of value.............ccoocciiiiiiciinceecennn, 179
pl sl abel f unc: Assign afunction to use for generating custom axis labels..................... 181
pl smaj : Set length of Mor tickSccovviiiiii 181
pl smem Set the memory areato be plotted (RGB)cocovvieiiiiiiiiiiiieceece e, 182
pl smena: Set the memory area to be plotted (RGBA)c.oviviiiiiiiiiieeein e, 182
pl sm n: Set length of MINOF tICKScivviii e 182
O I o G IS = a0 {14 - 1 o o 183
Pl Spage: Set PAge PArAMELEIScvuu i eiii e e e e e e e e e e e e e e e e e et eeat e e ean e eaas 183
pl spal 0: Set the colors for color table O fromacmapO file...........ocooveiiiiiiiciines 183
pl spal 1: Set the colors for color table 1 fromacmaplfile.........c..ccooveiiiiiiiiiiinenns 184
pl spause: Set the pause (0n end-of-page) StAUSceevnieirnieiinieiiiieeie e e e 184
pl sStrm Set current OULPUE SLFEAIMcevuniii e e e e e e e e e eanees 184
pl ssub: Set the number of subpagesin X and yc.ccooviiiiiiiiiiiiii e, 184
Pl SSYNT St SYMDOI SIZE ..civiiiiii e e 185
Pl star: INtAliZalionco.iiiiiiii e 185
plstart: INaliZationooiiiii e 185
pl st ransf or m Set aglobal coordinate transform functionccooeeviiiiiiiieeiennnn, 186
pl string: Plot aglyph at the specified POINtSccovviiiiiiiiii e, 186
pl string3: Plot aglyph at the specified 3D POINS..........oveviieiiiiiiiieee e, 186
plstripa: Addapoint toastrip Chartoooviviiiiiiiii e 187
pl stripc: Create ad-pen Stip Chartuviiiiiiiii e 187
pl stri pd: Deletes and releases memory used by astrip chartccooooiiiiiiiiinennnnnn, 188
Pl STYI i SEIINE SIYIE e 188
pl sur f 3d: Plot shaded 3-d surface Plotuviiiiieiii e 189
pl fsurf 3d: Plot shaded 3-d surface plotcccovniiiiiiiiii e 190
pl svect : Set arrow style for VECIor PlOtScc.viiiiiiii e, 191
pl svpa: Specify viewport in absolute COOrdiNateSoevvuiiiiiiiiiiiieiie e e 191
Pl SXaX: St X AXiS PArAMELENS ..uuiiii e e e e e e e e 192
Pl SyaX: SEt Yy axiS PAraMELErSciii i ciii e e e e 192

109

Reference

pl sym Plot aglyph at the specified POINtScoovviiiiiiiiii e, 192
Pl SZaX: St Z aXiS PAIAMELEIS .. .evuiei i eei eaen 193
Pl t ext : SWItCh 10 tEXE SCrEEN ... ceve e 193
pl ti mefnt: Setformat for date/ time labelsccoooiiiiii i, 193
pl vasp: Specify viewport using aspect ratio onlycooviiiiiiiiiiiiiiin e, 194
O IRV Yot AV = o (o gl [) P 194
pl vpas: Specify viewport using coordinates and aspect ratioccoeevvvieeiiiiiiiieennnenns 195
pl vpor : Specify viewport USINGg COOrAINGEESueviviieiiieeii e e e e e e 195
pl vst a: Select standard VIEWPOITcovuniiiiiieii e 196
pl w3d: Set up window for 3-d plOttinguveiiiiiiiec e 196
Pl W dt h: SEt pEN WIALh ..oe e 197
pl wi nd: Specify world coordinates of viewport boundaries............c.cccoeeeiiiiiiiiieiinennnnn, 197
pl xor nDd: ENnter or 1€ave XOr MOTEuiiiieiiiei e e e e e e aens 197
20. The Specialized C APl fOr PLPIOL .. .cvuiiiiiiei e e e 198
Pl @abort: Error @DOrtccoovniiiiei e 198
pl Al l oc2dG i d: Allocate a block of memory for use as a 2-d grid of type PLFLT. 198
pl C ear Opt s: Clear internal option table info StrUCtUre.cccovveiiieiiii e, 198
OIS T A 1 o g = N 199
pl Free2dG i d: Free the memory associated with a 2-d grid allocated using
[1IN I o Yo o [o R 199
pl Get Cur sor : Wait for graphics input event and trandate to world coordinates. 199
plgfile: Getoutput file handleooeiiiiiiii i 199
pl Mer geOpt s: Merge use option table into internal info structure.cc.ccoevevvneennnnn. 200
pl M nMax2dGr i d: Find the minimum and maximum of a 2d grid allocated using
[T I I e Yoo [o R 200
pl Opt Usage: Print usage and Syntax MESSAGE.cccuueviinieiinieeinieiiiieeeiieeeineeenaeeaneens 200
pl Mer geOpt s: Reset internal option table info structure.ccooviveviieiin i, 201
pl sabort: Set abort handleroooviiiii 201
pl Set Usage: Set the strings used in usage and Syntax MESSAGES. ... cccvvevrneerinierinneennnnss 201
Pl sexit: Set eXit handler ..o 201
pl sfile:Setoutput filehandle ..o 202
pl t r O: Identity transformation for grid to world mappingcccccoeveviiieiii e, 202
pl t r 1: Linear interpolation for grid to world mapping using singly dimensioned coordi-
QT2 (IR = Y PP PP PPRPIPR 202
pl t r 2: Linear interpolation for grid to world mapping using doubly dimensioned coordi-
nate arrays (column dominant, as per normal C 2d arrays)ccccuvvevviieeiiieeeiiieeiineeeineeennns 203
PL Graphicsin: PLplot GraphiCs INPUL SITUCLUNEcoevuiii e e e e 203
PLOptionTable: PLplot command line options table structurec.ccooveviiiiiiieiieeeins 204
21. The Speciaized Fortran 95 APl for PLPIOLcovvniiiici e 205
pl cont : Contour plot fOr FOrtran 95ccoviiiiiiiie e 205
pl shade: Shaded plot for FOrtran 95cccoviiiiiiiiiii e 207
pl shades: Continuously shaded plot for Fortran 95ccccoeeiiiiiiiii i, 207
pl vect : Vector plot for FOrtran 95ccouuiiiiiiiiiie e 207
pl mesh: Plot surface mesh for FOrtran 95ccciviiii i, 207
pl ot 3d: Plot 3-d surface plot for Fortran 95cccoeeiiiiiii i, 207
pl par seopt s: parse arguments for FOrtran 95ccooovviiiiiiiiiiii i 207
pl sesc: Set the escape character for text stringsfor Fortran 95ccooveviviiiieein e, 208
22. The Speciaized Fortran 77 APl for PLPIOEcoviniiiic e, 209
pl conO: Contour plot, identity mapping for FOrtran 77ccoeoiiiiiiiieiiecii e, 209
pl conl: Contour plot, general 1-d mapping for Fortran 77ccoovevieeiiiieviineeiieeenn, 209
pl con2: Contour plot, general 2-d mapping for Fortran 77ccoevevieeiiiieviineeeeeenn, 210
pl cont : Contour plot, fixed linear mapping for Fortran 77ccoocveeeviveiiii e, 210
pl vecO: Vector plot, identity mapping for Fortran 77ccoccoiveiiiniiin i, 211
pl vecl: Vector plot, general 1-d mapping for FOrtran 77cccoeveviiieiii i 211

110

Reference

pl vec2: Vector plot, general 2-d mapping for FOrtran 77ccoeveviieiiin i ieiieeeis 211

pl vect : Vector plot, fixed linear mapping for Fortran 77cccooeviiiiii i, 212

pl mesh: Plot surface mesh for FOrtran 77cccooiiiiii i, 212

pl ot 3d: Plot 3-d surface plot for FOrtran 77couoveiiiiiiii e, 212

pl par seopt s: parse arguments for FOrtran 77coovevuiieiiiieiiii i 212

pl sesc: Set the escape character for text stringsfor Fortran 77ccooeeeviiiiiineeinn e, 213

23. APl compatibility definitioncooiiiiiii e 214

What IS TN the APL? oo e e eaanas 214

Regression test for backwards compatibilitycocooviiiiiiiii 218

24. Obsolete/Deprecated APl fOr PLPIOLvvieii e 219

[I B O = e U g = 0 = o < 219

[T o o BT o o) P 219

pl hl s: Set current color by HLS ... 219

pl HLS RGB: Convert HLS COlOr to RGBccvviiiiiiiicii e 219

Pl Page: BEGIN @ NEW PAJE . .ivvniii it e e e e e e e e e e e e e e 220

pl rgb: Setline color by red, green ..o, 220

pl rgbl: Setline color by 8-bit RGB VAIUEScccuviiiiiiiiiieiiiieee e 220

25. Internal C fuNCionS iN PLPIOLoouniiiicie e e e 221
pl P_checkdri veri ni t : Checksto seeif any of the specified drivers have been initial-

4= o SO PPPN 221

pl P_getinitdriverlist: Gettheinitialized-driver listccoooviiiiiiiiiinenes 221

26. Notes for each Operating System that We SUPPOIuovviiiiiiiciiecei e e e 222

LiNUX/UNIX NOEES ...ttt et e e e e et e e e e et e e e et e e e e eaa s 222

Linux/Unix Configure, Build, and Installationccccoiveiiiiiiiiiiin e, 222

Linux/Unix Building of C Programmes that Use the Installed PLplot Libraries............ 222

WINAOWS INOEESvtieeiii ettt e e ettt e e ettt e e e et r e e e ettnneeeeatnneeeene 222

Windows Configure and BUildcccooiiiiiiiii e 222

W O N 4= o o Lo I o = = 223

BIiNINGS LIDIariEsiiiiicii it e e e e e e e e 223

The PLPIOt Core LiBraryocouiiiiici e e 223

ENNanCemeNnt LiDrariesvoiieee e e e e et e e et e ene 223

The CSIRO Cubic Spline Approximation Librarycc.ccoeeeviiiiiiiiiiiieciineeee e, 223

The CSIRO Natural Neighbours Interpolation Librarycccooooiiiiiiiiiiniiineeenn, 224

The QSAS Time Format Conversion Libraryccccovviiiiiiiiiin e, 224

DeVICe-ArVEr LIDIariEst eeaeans 224

111

Chapter 18. Bibliography

These articles are descriptions of PLplot itself or el se scientific publications whose figures were generated
with PLplot.

References

Furnish G., “Das Graphikpaket PLplot (in German) (http://www.linux-magazin.de/ausgabe/1996/12/Plplot/
plplot.html)”, Linux Magazin, 1996 December

Furnish G., Horton W., Kishimoto Y ., LeBrun M., TajimaT., “ Global Gyrokinetic Simulation of Tokamak Transport”,
Physics of Plasmas, 6, 1, 1999

Irwin A.W., FukushimaT., “A Numerical Time Ephemerisof the Earth”, Astronomy and Astrophysics, 348, 642, 1999

LeBrun M.J,, TgimaT., Gray M., Furnish G., Horton W., “Toroidal Effects on Drift-Wave Turbulence”, Physics
of Fluids, B5, 752, 1993

112

Chapter 19. The Common API for
PLplot

The purpose of this chapter is to document the API for every PLplot function that should be available
across all PLplot language bindings. This common APl between the various languages constitutes the
most important part of the PLplot API that programmers need to know. Note that in C, these common API
routines have aspecial “c_" prefix name assigned to them in pl pl ot . h.

What followsisalist of all common API functions of the latest PL plot version with their arguments except
for obsolete/deprecated API functionswhich arelisted in Chapter 24, Obsol ete/Deprecated API for PLplot.
The following information is provided for each function:

1. The function name and a brief description.

2. Thefunction asit would be called from C.

3. A complete description of the function.

4. A description of each argument that the function takes.

5. The redacted argument form of the function, currently used by the programming languages Fortran95,
Python, Javaand Perl, aswell asany language specific variations that might occur on the general calling
scheme described in the following paragraph.

6. A list of PLplot examples that demonstrate how to use the function.

Additional PLplot API specialized for each language binding is documented in Chapter 20, The Soecialized
C API for PLplot and subsequent chapters.

The general calling scheme for the other languages supported by PLplot is as follows, using the function
pl | i ne asan example.

e C:plline(n,x,y)

« F77:plline(n, x,y)

* FO5:plline(x,y)

« C++:pls->line(n, x,y)

« Javapls.line(x,y)

« Perl/PDL: pl | i ne($x, $y)

» Python: pl I i ne(x,y)

e Tcl/Tk:$w cnd plline $n x y

Note that in some languages the argument n (which specifies the length of the arrays x and y) is not
necessary, thisis what we refer to above as the “ redacted argument form” of the function.

pl _set contl abel f or mat : Set format of numerical label for con-
tours

pl _setcontl abel format (Il exp, sigdig);

113

The Common API for PLplot

Set format of numerical label for contours.

[exp (PLI NT, input) If the contour numerical label is greater than 10”(Iexp) or less than
10" (-lexp), then the exponential format is used. Default value of
lexpis4.

si gdi g (PLI NT, input) Number of significant digits. Default valueis 2.

Redacted form: pl _set cont | abel f or mat (| exp, sigdig)

Thisfunction is used example 9.

pl _setcont| abel param Set parameters of contour labelling other

than fo

pl adv:

pl ar c:

rmat of numerical label
pl _setcontl abel param (of fset, size, spacing, active);

Set parameters of contour labelling other than those handled by pl _set cont | abel f or mat .

of f set (PLFLT, input) Offset of label from contour line (if set to 0.0, labels are printed on
the lines). Default value is 0.006.

si ze (PLFLT, input) Font height for contour labels (normalized). Default valueis 0.3.

spaci ng (PLFLT, input) Spacing parameter for contour labels. Default valueis 0.1.

active (PLI NT, input) Afc;ti(v;;tte labels. Set to 1 if you want contour labels on. Default is
off (0).

Redacted form: pl _set cont | abel paran{ of f set, size, spacing, active)

Thisfunction isused in example 9.

Advance the (sub-)page
pl adv (sub);

Advances to the next subpage if sub=0, performing a page advance if there are no remaining subpages
on the current page. If subpages aren't being used, pl adv(0) will aways advance the page. If sub>0,
PL plot switches to the specified subpage. Note that this allows you to overwrite a plot on the specified
subpage; if thisis not what you intended, use pl eop followed by pl bop to first advance the page. This
routineis called automatically (with sub=0) by pl env, but if pl env isnot used, pl adv must be called
after initializing PLplot but before defining the viewport.

sub (PLI NT, input) Specifies the subpage number (starting from 1 in the top left corner
and increasing along the rows) to which to advance. Set to zero to
advance to the next subpage.

Redacted form: pl adv(sub)
Thisfunction is used in examples 1,2,4,6-12,14-18,20,21,23-27,29,31.
Draw a circular or elliptical arc

plarc (x, y, a, b, anglel, angle2, rotate, fill);

114

The Common API for PLplot

Draw apossibly filled arc centered at x, y with semimajor axisa and semiminor axisb, startingat angl el
and ending at angl e2.

X (PLFLT, input) X coordinate of arc center.

y (PLFLT, input) Y coordinate of arc center.

a (PLFLT, input) Length of the semimajor axis of the arc.

b (PLFLT, input) Length of the semiminor axis of the arc.

angl el (PLFLT, input) Starting angle of the arc relative to the semimajor axis.
angl e2 (PLFLT, input) Ending angle of the arc relative to the semimajor axis.
rot at e (PLFLT, input) Angle of the semimajor axisrelative to the X-axis.
fill (PLBOCL, input) Draw afilled arc.

Redacted form:

* Generd:plarc(x, y, a, b, anglel, angle2, rotate, fill)

Thisfunction isused in examples 3 and 27.

pl axes: Draw a box with axes, etc. with arbitrary origin
pl axes (x0, yO0, xopt, xtick, nxsub, yopt, ytick, nysub);

Draws a box around the currently defined viewport with arbitrary world-coordinate origin specified by
x0 and y0 and labels it with world coordinate values appropriate to the window. Thus pl axes should
only be called after defining both viewport and window. The character strings xopt and yopt specify
how the box should be drawn as described below. If ticks and/or subticks are to be drawn for a particular
axis, thetick intervals and number of subintervals may be specified explicitly, or they may be defaulted
by setting the appropriate arguments to zero.

x0 (PLFLT, input) World X coordinate of origin.
yO0 (PLFLT, input) World Y coordinate of origin.
xopt (const char *,input) Pointer to character string specifying options for horizontal axis.

The string can include any combination of thefollowing letters (up-
per or lower case) in any order:

e a: Drawsaxis, X-axisishorizonta line (y=0), and Y -axisisver-
tical line (x=0).

b: Draws bottom (X) or left (Y) edge of frame.

c: Drawstop (X) or right (Y) edge of frame.

L]

d: Plot labels as date / time. Values are assumed to be seconds
since the epoch (as used by gmtime).

o f: Always usefixed point numeric labels.
* g: Drawsagrid at the mgjor tick interval.

e h: Drawsagrid at the minor tick interval.

115

The Common API for PLplot

xti ck (PLFLT, input)

nxsub (PLI NT, input)

yopt (const char *,input)

yti ck (PLFLT, input)

nysub (PLI NT, input)

Redacted form:

e Genera: pl axes(x0, YO,

e Perl/PDL: pl axes(x0, yO,

* i : Inverts tick marks, so they are drawn outwards, rather than
inwards.

e | : Labels axis logarithmically. This only affects the labels, not
the data, and so it is hecessary to compute the logarithms of data
points before passing them to any of the drawing routines.

o m Writes numeric labels at major tick intervalsin the unconven-
tional location (above box for X, right of box for Y).

e n: Writes numeric labels at major tick intervals in the conven-
tional location (below box for X, left of box for Y).

e 0: Use custom labelling function to generate axis label text. The
custom labelling function can be defined with the pl sl abel -
f unc command.

¢ s: Enables subticks between major ticks, only valid if t isalso
specified.

e t: Draws major ticks.

e Uu: Exactly like"b" except don't draw edge line.

« w. Exactly like"c" except don't draw edge line.

o Xx: Exactly like"t" (including the side effect of the numerical la-
bels for the major ticks) except exclude drawing the major and
minor tick marks.

World coordinate interval between major ticks on the x axis. If itis
set to zero, PLplot automatically generates a suitable tick interval.

Number of subintervals between major x axisticksfor minor ticks.
If it is set to zero, PLplot automatically generates a suitable minor
tick interval.

Pointer to character string specifying options for vertical axis. The
string can include any combination of the letters defined above for
xopt , and in addition may contain:

e v: Write numeric labels for vertical axis paralel to the base of
the graph, rather than paralel to the axis.

World coordinate interval between major tickson they axis. If itis
set to zero, PLplot automatically generates a suitable tick interval.

Number of subintervals between major y axisticksfor minor ticks.
If it is set to zero, PLplot automatically generates a suitable minor
tick interval.

xopt, xtick, nxsub, yopt, ytick, nysub)

xtick, nxsub, ytick, nysub, xopt, yopt)

116

The Common API for PLplot

pl bi n:

pl bop:

Thisfunction is not used in any examples.

Plot a histogram from binned data
plbin (nbin, x, y, opt);

Plotsahistogram consisting of nbi n bins. Thevalueassociated withthei ‘thbinisplacedinx[i] ,andthe
number of pointsinthebinisplacediny[i] . For proper operation, thevaluesinx[i] mustformastrictly
increasing sequence. By default, X[i] istheleft-hand edge of thei 'th bin. If opt =PL_BI N_CENTRED
is used, the bin boundaries are placed midway between the values in the x array. Also see pl hi st for
drawing histograms from unbinned data.

nbi n (PLI NT, input) Number of bins (i.e., number of valuesin x andy arrays.)

X (PLFLT *, input) Pointer to array containing val ues associated with bins. These must
form a strictly increasing sequence.

y (PLFLT *,input) Pointer to array containing number of pointsinbin. ThisisaPLFLT
(instead of PLI NT) array so asto allow histograms of probabilities,
€etc.

opt (PLI NT, input) Is a combination of severa flags:

e opt=PL_BI N DEFAULT: The x represent the lower bin
boundaries, the outer bins are expanded to fill up the entire x-
axis and bins of zero height are smply drawn.

e opt =PL_BI N_CENTRED| . . . : The bin boundaries are to be
midway between the x values. If the values in x are equaly
spaced, the values are the center values of the bins.

e opt =PL_BI N_NOEXPAND| . .. : The outer bins are drawn
with equal size asthe onesinside.

e opt =PL_BI N_NCEMPTY] . . . : Binswith zero height are not
drawn (thereis a gap for such bins).

Redacted form:

» Generd: pl bi n(x, y, opt)

o Perl/PDL: pl bi n(nbin, x, y, opt)
* Python: pl bi n(nbin, x, y, opt)

This function is not used in any examples.
Begin a new page

pl bop ();

Beginsanew page. For afiledriver, the output fileis opened if necessary. Advancing the pageviapl eop
and pl bop isuseful when apage break isdesired at a particular point when plotting to subpages. Another
use for pl eop and pl bop iswhen plotting pages to different files, since you can manually set the file
name by calling pl sf namafter the call to pl eop. (In fact some drivers may only support a single page
per file, making thisanecessity.) Oneway to handle this case automatically isto page advanceviapl adv,
but enable familying (see pl sf am) with a small limit on the file size so that a new family member file
will be created on each page break.

117

The Common API for PLplot

pl box:

Redacted form: pl bop()

This function is used in examples 2,20.

Draw a box with axes, etc

pl box (xopt, xtick, nxsub, yopt, ytick, nysub);

Draws abox around the currently defined viewport, and labelsit with world coordinate val ues appropriate
to thewindow. Thuspl box should only be called after defining both viewport and window. The character
stringsxopt andyopt specify how the box should be drawn as described below. If ticks and/or subticks
are to be drawn for a particular axis, the tick intervals and number of subintervals may be specified ex-
plicitly, or they may be defaulted by setting the appropriate arguments to zero.

xopt (const char *,input)

Pointer to character string specifying options for horizontal axis.
The string can include any combination of thefollowing letters (up-
per or lower case) in any order:

a: Drawsaxis, X-axisishorizonta line (y=0), and Y -axisisver-
tical line (x=0).

b: Draws bottom (X) or left (Y) edge of frame.
c: Drawstop (X) or right (Y) edge of frame.

d: Plot labels as date / time. Values are assumed to be seconds
since the epoch (as used by gmtime).

f : Always use fixed point numeric labels.
g: Drawsagrid at the major tick interval.
h: Draws agrid at the minor tick interval.

i : Inverts tick marks, so they are drawn outwards, rather than
inwards.

| : Labels axis logarithmically. This only affects the labels, not
the data, and so it is hecessary to compute the logarithms of data
points before passing them to any of the drawing routines.

m Writes numeric labels at major tick intervalsin the unconven-
tional location (above box for X, right of box for Y).

n: Writes numeric labels at mgjor tick intervals in the conven-
tional location (below box for X, left of box for Y).

0: Use custom labelling function to generate axis label text. The
custom labelling function can be defined with the pl sl abel -
f unc command.

s: Enables subticks between magjor ticks, only valid if t isalso
specified.

t : Draws major ticks.

u: Exactly like"b" except don't draw edge line.

118

The Common API for PLplot

« w. Exactly like"c" except don't draw edge line.

* Xx: Exactly like"t" (including the side effect of the numerical la-
bels for the major ticks) except exclude drawing the major and
minor tick marks.

xti ck (PLFLT, input) World coordinate interval between major tickson the x axis. If itis
set to zero, PLplot automatically generates a suitable tick interval.

nxsub (PLI NT, input) Number of subintervals between major x axisticksfor minor ticks.
If it is set to zero, PLplot automatically generates a suitable minor
tick interval.

yopt (const char *,input) Pointer to character string specifying options for vertical axis. The

string can include any combination of the letters defined above for
xopt , and in addition may contain:

e v: Write numeric labels for vertical axis paralel to the base of
the graph, rather than paralel to the axis.

ytick (PLFLT, input) World coordinate interval between magjor tickson they axis. If itis
set to zero, PLplot automatically generates a suitable tick interval.

nysub (PLI NT, input) Number of subintervals between major y axisticks for minor ticks.
If it is set to zero, PLplot automatically generates a suitable minor
tick interval.

Redacted form:

* Generd: pl box(xopt, xtick, nxsub, yopt, ytick, nysub)
e Perl/PDL: pl box(xtick, nxsub, ytick, nysub, xopt, yopt)

Thisfunction isused in examples 1,2,4,6,6-12,14-18,21,23-26,29.

pl box3: Draw a box with axes, etc, in 3-d

pl box3 (xopt, xlabel, xtick, nxsub, yopt, ylabel, ytick, nysub, zopt,
zl abel, ztick, nzsub);

Draws axes, numeric and text labelsfor athree-dimensional surface plot. For amore complete description
of three-dimensional plotting see the section called “ Three Dimensional Surface Plots’.

xopt (const char *,input) Pointer to character string specifying options for the x axis. The
string can include any combination of the following letters (upper
or lower case) in any order:

* b: Drawsaxisat base, at height z=zmni n wherezm n isdefined
by call to pl w3d. This character must be specified in order to
use any of the other options.

e f: Always use fixed point numeric labels.

i : Invertstick marks, so they are drawn downwards, rather than
upwards.

119

The Common API for PLplot

x| abel (const char *,input)

xti ck (PLFLT, input)

nxsub (PLI NT, input)

yopt (const char *,input)

yl abel (const char *,input)

ytick (PLFLT, input)

nysub (PLI NT, input)

zopt (const char *,input)

e | : Labels axis logarithmically. This only affects the labels, not
the data, and so it is necessary to compute the logarithms of data
points before passing them to any of the drawing routines.

* n: Writes numeric labels at major tick intervals.

* 0: Use custom labelling function to generate axis label text. The
custom labelling function can be defined with the pl sl abel -
f unc command.

L]

s: Enables subticks between major ticks, only valid if t isalso
specified.

e t: Draws mgjor ticks.

u: If thisis specified, the text label for the axis is written under
the axis.

Pointer to character string specifying text label for the x axis. It is
only drawn if u isin the xopt string.

World coordinate interval between major tickson the x axis. If itis
set to zero, PLplot automatically generates a suitable tick interval.

Number of subintervals between major x axisticksfor minor ticks.
If it is set to zero, PLplot automatically generates a suitable minor
tick interval.

Pointer to character string specifying options for the y axis. The
string is interpreted in the same way as xopt .

Pointer to character string specifying text label for they axis. It is
only drawn if u isintheyopt string.

World coordinate interval between magjor tickson they axis. If itis
set to zero, PLplot automatically generates a suitable tick interval.

Number of subintervals between major y axisticksfor minor ticks.
If it is set to zero, PLplot automatically generates a suitable minor
tick interval.

Pointer to character string specifying options for the z axis. The
string can include any combination of the following letters (upper
or lower case) in any order:

« b: Draws z axisto the left of the surface plot.
« c: Draws z axisto the right of the surface plot.

e d: Draws grid lines paralld to the x-y plane behind the figure.
These lines are not drawn until after pl ot 3d or pl nesh are
called because of the need for hidden line removal.

e f: Always use fixed point numeric labels.

i : Invertstick marks, so they are drawn away from the center.

120

The Common API for PLplot

e | : Labels axis logarithmically. This only affects the labels, not
the data, and so it is necessary to compute the logarithms of data
points before passing them to any of the drawing routines.

* m Writesnumeric labels at major tick intervals on the right-hand
vertical axis.

e n: Writes numeric labels at major tick intervals on the left-hand
vertical axis.

¢ 0: Use custom labelling function to generate axis label text. The
custom labelling function can be defined with the pl sl abel -
f unc command.

 s: Enables subticks between major ticks, only valid if t isalso
specified.

e t: Draws mgjor ticks.

« u: If thisisspecified, thetext label iswritten beside the left-hand
axis.

e v: If thisis specified, the text label is written beside the right-
hand axis.

zl abel (const char *,input) Pointer to character string specifying text label for the z axis. It is

zti ck (PLFLT, input)

nzsub (PLI NT, input)

Redacted form:

» Generd: pl box3(xopt,
zopt, zlabel, ztick, nzsub)

only drawnif u or v areinthe zopt string.

World coordinate interval between major ticks on the z axis. If itis
set to zero, PLplot automatically generates a suitable tick interval.

Number of subintervals between major z axisticks for minor ticks.

If it is set to zero, PLplot automatically generates a suitable minor
tick interval.

x|l abel , xtick, nxsub, yopt, ylabel, ytick, nysub,

o Perl/PDL: pl box3(xtick, nxsub, ytick, nysub, ztick, nzsub, xopt, xlabel,
yopt, ylabel, zopt,

z|l abel)

Thisfunction isused in examples 8,11,18,21.

pl cal c_wor | d: Calculate world coordinates and corresponding
window index from relative device coordinates

pl calc_world (rx,

ry,

WX, Wy, W ndow);

Calculate world coordinates, wx and wy, and corresponding wi ndow index from relative device coordi-

nates, rx andry.

r x (PLFLT, input)

Input relative device coordinate (ranging from 0. to 1.) for the x
coordinate.

121

The Common API for PLplot

ry (PLFLT, input) Input relative device coordinate (ranging from 0. to 1.) for they
coordinate.
wx (PLFLT *, output) Pointer to the returned world coordinate for x corresponding to the

relative device coordinatesr x andry.

wy (PLFLT *, output) Pointer to the returned world coordinate for y corresponding to the
relative device coordinatesr x andry.

wi ndow (PLI NT *, output) Pointer to the returned last defined window index that corresponds
to the input relative device coordinates (and the returned world co-
ordinates). To give some background on the window index, for
each page the initial window index is set to zero, and each time
pl wi nd is called within the page, world and device coordinates
are stored for the window and the window index is incremented.
Thus, for asimple page layout with non-overlapping viewports and
onewindow per viewport, wi ndow correspondsto the viewport in-
dex (in the order which the viewport/windows were created) of the
only viewport/window corresponding tor x and r y. However, for
more complicated layouts with potentially overlapping viewports
and possibly more than one window (set of world coordinates) per
viewport, wi hdowand the corresponding output world coordinates
correspondsto the last window created that fulfillsthe criterion that
the relative device coordinates are inside it. Finally, in all cases
where the input rel ative device coordinates are not inside any view-
port/window, thenwi ndowis set to -1.

Redacted form:
o Genegrd: pl cal c_world(rx, ry, wx, wy, w ndow)
» Perl/PDL: Not available?

Thisfunction is used in example 31.

pl cl ear: Clear current (sub)page

plclear ();

Clears the current page, effectively erasing everything that have been drawn. This command only works
with interactive drivers; if the driver does not support this, the page is filled with the background color
in use. If the current page is divided into subpages, only the current subpage is erased. The nth subpage
can be selected with pl adv(n).

Redacted form:
* Generdl: pl cl ear ()
» Perl/PDL: Not available?

Thisfunction is not used in any examples.

pl col O: Set color, mapO

pl col 0 (color);

122

The Common API for PLplot

Sets the color for color map0 (see the section called “ Color Map0”).

col or (PLI NT, input) Integer representing the color. The defaults at present are (these
may change):
0 black (default background)
1 red (default foreground)
2 yellow
3 green
4 aquamarine
5 pink
6 wheat
7 grey
8 brown
9 blue
10 BlueViolet
11 cyan
12 turquoise
13 magenta
14 salmon
15 white

Use pl scmap0 to change the entire map0 color palette and
pl scol 0 to change an individua color in the mapO color palette.

Redacted form: pl col O(col or)

This function is used in examples 1-9,11-16,18-27,29.

pl col 1: Set color, map1l

plcoll (col1);
Sets the color for color mapl (see the section called “ Color Mapl”).

col 1 (PLFLT, input) Thisvalue must bein the range from 0. to 1. and is mapped to color
using the continuous mapl color palette which by default ranges
from blue to the background color to red. The mapl palette can
aso be straightforwardly changed by the user with pl scnapl or
pl scmapll .

Redacted form: pl col 1(col 1)

Thisfunction is used in examples 12 and 21.

pl col or bar : Plot color bar for image, shade or gradient plots

pl col orbar (p_col orbar_wi dth, p_colorbar_height, opt, position, X,
y, X_length, y length, bg color, bb_color, bb_style, |ow cap_color,
hi gh_cap_col or, cont_color, cont_w dth, n_labels, |abel _opts, |abels,
naxes, axis_opts, ticks, sub_ticks, n_values, values);

Routinefor creating acontinuous color bar for image, shade, or gradient plots. (Seepl | egend for similar
functionality for creating legends with discrete elements). The arguments of plcolorbar provide control
over the location and size of the color bar aswell asthe location and characteristics of the elements (most
of which are optional) within that color bar. The resulting color bar is clipped at the boundaries of the

123

The Common API for PLplot

current subpage. (N.B. the adopted coordinate system used for some of the parameters is defined in the
documentation of the posi t i on parameter.)

p_col orbar_wi dth (PLFLT
* | output)

p_col orbar _hei ght (PLFLT
* | output)

opt (PLI NT, input)

posi ti on (PLI NT, input)

Pointer to alocation which contains (after the call) the labelled and
decorated color bar width in adopted coordinates.

Pointer to alocation which contains (after the call) the labelled and
decorated color bar height in adopted coordinates.

opt contains bits controlling the overall color bar. The orientation
(direction of the maximum value) of the color bar is specified with
PL_ORI ENT_RI GHT, PL_ORI ENT_TOP, PL_ORI ENT_LEFT,
or PL_ORI ENT_BOTTOM If none of those bits are speci-
fied, the default orientation is toward the top, i.e, a verti-
cal color bar. If the PL_CO_LORBAR_BACKGROUND bit is set,
plot a (semi-transparent) background for the color bar. If the
PL_CCOLORBAR BOUNDI NG _BOX bit is set, plot a bounding
box for the color bar. The type of color bar must be specified
with one of PL_COLORBAR | MAGE, PL_COLORBAR_SHADE,
or PL_COLORBAR_GRADI ENT. If more than one of those bitsis
set only the first one in the above list is honored. The position of
the (optional) label/title can be specified with PL_LABEL _RI GHT,
PL_ LABEL TOP, PL_LABEL LEFT, or PL_LABEL BOTTOM
If no label position hit is set then no label will be drawn. If more
than one of this list of bits is specified, only the first one on
the list is honored. End-caps for the color bar can added with
PL_COLORBAR_CAP_LOWand PL_COLORBAR_CAP_HI GH. If
aparticular color bar cap option is not specified then no cap will be
drawn for that end. Asaspecial casefor PL_COLORBAR_SHADE,
the option PL_COLORBAR_SHADE_LABEL can be specified. If
this option is provided then any tick marks and tick labels will be
placed at the breaks between shaded segments. TODO: This should
be expanded to support custom placement of tick marks and tick
labels at custom value locations for any color bar type.

posi ti on contains bits which control the overall position of
the color bar and the definition of the adopted coordinates used
for positions just like what is done for the position argument for
pl | egend. However, note that the defaults for the position bits
(see below) are different than the pl | egend case. The combi-
nation of the PL_PQSI TI ON_LEFT, PL_PGSI TI ON_RI GHT,
PL_PGCSI TI ON_TCP, PL_PGSI TI ON_BOTTOM
PL_PGSI TI ON_I NSI DE, and PL_PGSI TI ON_QUTSI DE hits
specifies one of the 16 possible standard positions (the 4 corners
and centers of the 4 sides for both the inside and outside cas-
es) of the color bar relative to the adopted coordinate system.
The corner positions are specified by the appropriate combination
of two of the PL_PGSI TI ON_LEFT, PL_PCSI TI ON_RI GHT,
PL_PGSI TI ON_TOP, and PL_POSI TI ON_BOTTOM bits while
the sides are specified by a single vaue of one
of those bits. The adopted coordinates are normal-
ized viewport coordinates if the PL_PGCSI TI ON_VI EWPORT
bit is set or normalized subpage coordinates if the
PL_POSI TI ON_SUBPAGE hit is set. Default position hits:
If none of PL_PCSI TI ON_LEFT, PL_PGSI TI ON_RI GHT,

124

The Common API for PLplot

x (PLFLT, input)

y (PLFLT, input)

x_l engt h (PLFLT, input)

y_l engt h (PLFLT, input)

bg_col or (PLI NT, input)

bb_col or (PLI NT, input)

bb_styl e (PLI NT, input)

| ow_cap_col or (PLFLT, input)

hi gh_cap_col or (PLFLT,in-

put)
cont _col or (PLI NT, input)

cont _wi dt h (PLFLT, input)

n_l abel s (PLI NT, input)

| abel opts (const PLINT
* input)

PL_PCSITION.TOP, or PL_POSITION BOTTOM are
set, then wuse PL_POSITION RIGHT. |If neither of
PL_PCSI TION_I NSIDE or PL_POSI TI ON_QUTSI DE is
set, use PL_POSITION OUTSIDE. If neither of
PL_PGSI TI ON_VI EWPORT or PL_POSI TI ON_SUBPAGE is
set, use PL_PQSI TI ON_VI EWPORT.

X offset of the color bar position in adopted coordinates from the
specified standard position of the color bar. For positivex, thedirec-
tion of motion away from the standard position is inward/outward
from the standard corner positions or standard left or right positions
if the PL_PQSI Tl ON_I NSI DE/PL_PQOSI TI ON_QUTSI DE hit
issetinposi ti on. For the standard top or bottom positions, the
direction of motion istoward positive X.

Y offset of the color bar position in adopted coordinates from
the specified standard position of the color bar. For positive
y, the direction of motion away from the standard position
is inward/outward from the standard corner positions or stan-
dard top or bottom positions if the PL_PQSI TI ON_| NSI DE/
PL_POSI TI ON_QUTSI DE bitissetinposi ti on. For the stan-
dard left or right positions, the direction of motion is toward posi-
tive.

Length of the body of the color bar in the X direction in adopted
coordinates.

Length of the body of the color bar in the Y direction in adopted
coordinates.

The cmap0 color of the background for the color bar
(PL_COLORBAR_BACKGROUND).

The cmap0 color of the bounding-box line for the color bar
(PL_COLORBAR_BOUNDI NG_BOX).

Thepl | sty style number for the bounding-box line for the color
bar (PL_COLORBAR_BACKGROUND).

The cmapl color of the low-end color bar cap, if it is drawn
(PL_COLORBAR_CAP_LOW.

The cmapl color of the high-end color bar cap, if it is drawn
(PL_COLORBAR_CAP_HI GH).

The cmap0 contour color for PL_COLORBAR_SHADE plots. This
ispassed directly to pl shades, soitwill beinterpreted according
tothe design of pl shades.

Contour width for PL_COLORBAR_SHADE plots. This is passed
directly to pl shades, so it will be interpreted according to the
design of pl shades.

Number of labels to place around the color bar.

Optionsfor each of n_I| abel s labels.

125

The Common API for PLplot

| abel s (const char *const n_labels text labels for the color bar. No la

* input) bel is drawn if no labd position is speci-
fied with one of the PL_CO.ORBAR LABEL_RI GHT,
PL_COLORBAR _LABEL_TOP, PL_CCOLORBAR_LABEL_LEFT,
or PL_COLORBAR _LABEL_BOTTOM bhits in the corresponding
label_optsfield.

n_axes (PLI NT, input) Number of axis definitions provided. This value must be greater
than 0. It istypically 1 (numerical axis labels are provided for one
of the long edges of the color bar), but it can be larger if multiple
numerical axislabelsfor thelong edges of the color bar are desired.

axi s_opts (const char An array of n_axes axis options (interpreted as for pl box) for the
*const *,input) color bar's axis definitions.
ticks (PLFLT *,input) An array of n_axes values of the spacing of the major tick marks

(interpreted as for pl box) for the color bar's axis definitions.

sub_ticks (PLI NT *,input) An array of n_axes values of the number of subticks (interpreted as
for pl box) for the color bar's axis definitions.

n_val ues (PLI NT, input) An array containing the number of elementsin each of then_axes
rows of the two-dimensional val ues array.

val ues (PLFLT *const *,in- A two-dimensiona array containing the numeric values for the

put) data range represented by the color bar. For a row index of
i _axis (where 0 < i _axis < n_axes), the number of e-
ements in the row is specified by n_val uesl[i _axi s]. For
PL_COLORBAR | MAGE and PL_COLORBAR_GRADI ENT the
number of elementsis 2, and the corresponding row elements of the
val ues array are the minimum and maximum value represented
by the colorbar. For PL_ COLORBAR _SHADE, the number and val-
ues of the elements of arow of theval ues array isinterpreted the
sameasthenl evel andcl evel argumentsof pl shades.

Redacted form: pl col or bar (p_col orbar_wi dth, p_col orbar_height, opt, po-
sition, x, vy, x_length, vy length, bg color, bb_color, bb_style,
| ow_cap_col or, high_cap_color, cont_color, cont_w dth, |abel _opts, |a-
bel s, axis_opts, ticks, sub_ticks, val ues)

Thisfunction isused in examples 16 and 33.

pl cont : Contour plot
pl cont (z, nx, ny, kx, Ix, ky, ly, clevel, nlevel, pltr, pltr_data);

Drawsacontour plot of thedatainz[nx] [ny] , usingthenl evel contour levelsspecifiedby cl evel .
Only the region of the array from kx to | x and from ky to | y is plotted out. A transformation routine
pointed to by pl t r withapointer pl t r _dat a for additional datarequired by the transformation routine
is used to map indices within the array to the world coordinates. See the following discussion of the
arguments and the section called “ Contour and Shade Plots’ for more information.

z (PLFLT **,input) Pointer to a vectored two-dimensional array containing data to be
contoured.
nx, ny (PLI NT, input) Physical dimensions of array z.

126

The Common API for PLplot

kx, | x (PLI NT, input) Range of x indicesto consider.

ky, Iy (PLI NT,input) Range of y indices to consider.

cl evel (PLFLT *,input) Pointer to array specifying levels at which to draw contours.

nl evel (PLI NT, input) Number of contour levelsto draw.

pltr (void (*) (PLFLT, Pointer to function that defines transformation between indicesin
PLFLT, PLFLT *, PLFLT *, array z and the world coordinates (C only). Transformation func-
PLPoi nter) ,input) tions are provided in the PLplot library: pl t r O for identity map-

ping, and pl tr 1 and pl t r 2 for arbitrary mappings respectively
defined by one- and two-dimensional arrays. In addition, user-sup-
plied routines for the transformation can be used as well. Exam-
plesof all of these approaches are given in the section called “ Con-
tour Plots from C”. The transformation function should have the
formgivenby any of pl t r O, pl tr 1, or pl t r 2. Note that unlike
pl shades and similar PLplot functions which have apl tr ar-
gument, plcont requires that a transformation function be provided
inthe Cinterface. Leaving pl t r NULL will result in an error.

pl tr _data (PLPoi nt er,input) Extra parameter to help pass information to pltrO, pltr1l,
pl t r 2, or whatever routine that is externally supplied.

Redacted form: [PLEASE UPDATE! ONLY PERL INFO ISLIKELY CORRECT!]

e FO95:plcont(z, kx, Ix, ky, ly, clevel, tr?)orplcont(z, kx, Ix, ky, ly,
clevel, xgrid, ygrid)

« Jaapls.cont(z, kx, Ix, ky, ly, clevel, xgrid, ygrid)
e Perl/PDL: pl cont (z, kx, Ix, ky, ly, clevel, pltr, pltr_data)
» Python: pl cont2(z, kx, Ix, ky, ly, clevel)

Thisfunction isused in examples 9,14,16,22.

pl cpstrm Copy state parameters from the reference stream to the
current stream

pl cpstrm (iplsr, flags);

Copies state parameters from the reference stream to the current stream. Tell driver interfaceto map device
coordinatesunlessf | ags ==

This function is used for making save files of selected plots (e.g. from the TK driver). After initializing,
you can get a copy of the current plot to the specified device by switching to this stream and issuing a
pl cpst rmandapl r epl ot , withcalsto pl bop and pl eop asappropriate. The plot buffer must have
previously been enabled (done automatically by some display drivers, such as X).

i pl sr (PLI NT, input) Number of reference stream.

fl ags (PLBOQOL, input) If f | ags is set to true the device coordinates are not copied from
the reference to current stream.

127

The Common API for PLplot

pl end:

Redacted form: pl cpstrn(i pl sr, flags)

This function isused in example 1,20.

End plotting session

plend ();

Ends a plotting session, tidies up all the output files, switches interactive devices back into text mode and
frees up any memory that was allocated. Must be called before end of program.

By default, PLplot's interactive devices (Xwin, TK, etc.) go into await state after a call to plend or other
functions which trigger the end of aplot page. To avoid this, use the pl spause function.

Redacted form: pl end()

Thisfunction isused in all of the examples.

pl endl: End plotting session for current stream

pl endl ();
Ends a plotting session for the current output stream only. See pl sst r mfor more info.
Redacted form: pl end1()

This function is used in examples 1,20.

pl env0: Same as pl env but if in multiplot mode does not advance
the subpage, instead clears it.

pl env0 (xmn, xmax, ynmn, ymax, just, axis);

Sets up plotter environment for simple graphs by calling pl adv and setting up viewport and window to
sensible default values. pl env0 leaves enough room around most graphs for axislabels and atitle. When
these defaults are not suitable, use the individual routines pl vpas, pl vpor, or pl vasp for setting up
the viewport, pl wi nd for defining the window, and pl box for drawing the box.

xm n (PLFLT, input) Value of x at left-hand edge of window (in world coordinates).
xmax (PLFLT, input) Value of x at right-hand edge of window (in world coordinates).
ym n (PLFLT, input) Value of y at bottom edge of window (in world coordinates).
ymax (PLFLT, input) Value of y at top edge of window (in world coordinates).

j ust (PLI NT, input) Controls how the axes will be scaled:

e - 1:thescaleswill not be set, the user must set up the scale before
calling pl env0 using pl svpa, pl vasp or other.

¢ 0: the x and y axes are scaled independently to use as much of
the screen as possible.

¢ 1:thescales of the x and y axes are made equal.

128

The Common API for PLplot

axi s (PLI NT, input)

2: the axis of the x and y axes are made equal, and the plot box
will be square.

Controls drawing of the box around the plot:

- 2: draw no box, no tick marks, no numeric tick labels, no axes.
- 1: draw box only.

0: draw box, ticks, and numeric tick labels.

1: also draw coordinate axes at x=0 and y=0.

2: alsodraw agrid at major tick positionsin both coordinates.
3: also draw agrid at minor tick positions in both coordinates.

10: same as 0 except logarithmic x tick marks. (The x datahave
to be converted to logarithms separately.)

11: sameas 1 except logarithmic x tick marks. (The x datahave
to be converted to logarithms separately.)

12: same as 2 except logarithmic x tick marks. (The x datahave
to be converted to logarithms separately.)

13: same as 3 except logarithmic x tick marks. (Thex datahave
to be converted to logarithms separately.)

20: same as 0 except logarithmic y tick marks. (They datahave
to be converted to logarithms separately.)

21: sameas 1 except logarithmicy tick marks. (They datahave
to be converted to logarithms separately.)

22: sameas 2 except logarithmic y tick marks. (They datahave
to be converted to logarithms separately.)

23: same as 3 except logarithmic y tick marks. (They datahave
to be converted to logarithms separately.)

30: same as 0 except logarithmic x andy tick marks. (Thex and
y data have to be converted to logarithms separately.)

31: sameas 1 except logarithmic x andy tick marks. (Thex and
y data have to be converted to logarithms separately.)

32: sameas 2 except logarithmic x andy tick marks. (Thex and
y data have to be converted to logarithms separately.)

33: sameas 3 except logarithmic x andy tick marks. (Thex and
y data have to be converted to logarithms separately.)

40: same as 0 except date/ time x |abels.

41: same as 1 except date / time x |abels.

129

The Common API for PLplot

pl env:

» 42: sameas 2 except date/ time x labels.

* 43: same as 3 except date / time x labels.

* 50: same as 0 except date/ timey labels.

e 51: sameas1 except date/ timey labels.

e 52: sameas 2 except date/ timey labels.

e 53: sameas 3 except date/ timey labels.

e 60: sameas 0 except date/ time x and y labels.
e 61: sameas1 except date/timex andy labels.
e 62: sameas 2 except date/ time x and y labels.
¢ 63: sameas 3 except date/ time x and y labels.
e 70: same as 0 except custom x and y labels.

e 71: sameas 1 except custom x and y labels.

e 72:sameas 2 except custom x and y labels.

e 73: sameas 3 except custom x and y labels.

Redacted form: pl envO(xmi n, xmax, ymn, ynmax, just, axis)

Thisfunction is used in example 21.

Set up standard window and draw box

pl env (xmn, Xxmax,

ymn, ymex, just, axis);

Sets up plotter environment for simple graphs by calling pl adv and setting up viewport and window to
sensible default values. pl env leaves enough room around most graphs for axis labels and atitle. When
these defaults are not suitable, use the individual routines pl vpas, pl vpor, or pl vasp for setting up
the viewport, pl wi nd for defining the window, and pl box for drawing the box.

xm n (PLFLT, input)
xmax (PLFLT, input)
ym n (PLFLT, input)
ymax (PLFLT, input)

j ust (PLI NT, input)

Value of x at left-hand edge of window (in world coordinates).
Value of x at right-hand edge of window (in world coordinates).
Value of y at bottom edge of window (in world coordinates).
Value of y at top edge of window (in world coordinates).
Controls how the axes will be scaled:

e - 1:thescaleswill not be set, the user must set up the scale before
caling pl env using pl svpa, pl vasp or other.

« 0: the x and y axes are scaled independently to use as much of
the screen as possible.

130

The Common API for PLplot

axi s (PLI NT, input)

1: the scales of the x and y axes are made equal.

2: the axis of the x and y axes are made equal, and the plot box
will be square.

Controls drawing of the box around the plot:

- 2: draw no box, no tick marks, no numeric tick labels, no axes.
- 1: draw box only.

0: draw box, ticks, and numeric tick labels.

1: also draw coordinate axes at x=0 and y=0.

2: alsodraw agrid at major tick positionsin both coordinates.
3: alsodraw agrid at minor tick positions in both coordinates.

10: same as 0 except logarithmic x tick marks. (The x datahave
to be converted to logarithms separately.)

11: sameas 1 except logarithmic x tick marks. (Thex datahave
to be converted to logarithms separately.)

12: same as 2 except logarithmic x tick marks. (Thex datahave
to be converted to logarithms separately.)

13: same as 3 except logarithmic x tick marks. (Thex datahave
to be converted to logarithms separately.)

20: same as 0 except logarithmic y tick marks. (They datahave
to be converted to logarithms separately.)

21: sameas 1 except logarithmicy tick marks. (They datahave
to be converted to logarithms separately.)

22: sameas 2 except logarithmic y tick marks. (They datahave
to be converted to logarithms separately.)

23: same as 3 except logarithmic y tick marks. (They datahave
to be converted to logarithms separately.)

30: same as 0 except logarithmic x andy tick marks. (Thex and
y data have to be converted to logarithms separately.)

31: sameas 1 except logarithmic x andy tick marks. (Thex and
y data have to be converted to logarithms separately.)

32: sameas 2 except logarithmic x andy tick marks. (Thex and
y data have to be converted to logarithms separately.)

33: sameas 3 except logarithmic x andy tick marks. (Thex and
y data have to be converted to logarithms separately.)

40: same as 0 except date / time x |abels.

131

The Common API for PLplot

e 41: sameas 1 except date/ time x labels.

e 42:sameas 2 except date/ time x labels.

* 43: same as 3 except date / time x labels.

* 50: same as 0 except date/ timey labels.

e 51: sameas 1 except date/ timey labels.

e 52: sameas 2 except date/ timey labels.

* 53: sameas 3 except date/ timey labels.

* 60: same as 0 except date/ timex and y labels.
e 61: sameas 1 except date/timex andy labels.
e 62: sameas 2 except date/ time x and y labels.
e 63: sameas 3 except date/ time x and y labels.
e 70: same as 0 except custom x and y labels.

e 71:sameas 1 except custom x and y labels.

e 72:sameas 2 except custom x and y labels.

e 73: sameas 3 except custom x and y labels.

Redacted form: pl env(xm n, xmax, ymn, ymax, just, axis)

Thisfunction isused in example 1,3,9,13,14,19-22,29.
pl eop: Eject current page

pleop ();

Clears the graphics screen of an interactive device, or gjects a page on a plotter. See pl bop for more
information.

Redacted form: pl eop()

Thisfunction isused in example 2,14.
pl errx: Draw x error bar

plerrx (n, xmn, xmax, y);

Draws a set of n horizontal error bars, the i 'th error bar extending from xmi n[i] toxmax[i] ay
coordinatey[i] . Theterminals of the error bar are of length equal to the minor tick length (settable using

pl sm n).
n (PLI NT, input) Number of error barsto draw.
xm n (PLFLT *,input) Pointer to array with x coordinates of left-hand endpoint of error

bars.

132

The Common API for PLplot

xmax (PLFLT *, input) Pointer to array with x coordinates of right-hand endpoint of error
bars.

y (PLFLT *,input) Pointer to array with y coordinates of error bar.

Redacted form:

o Genegrd: pl errx(xmn, ymax, YY)
o Perl/PDL: pl errx(n, xmn, xmax, Y)

Thisfunction is used in example 29.
pl erry: Draw y error bar

plerry (n, x, ymn, ynax);

Draws a set of n vertical error bars, thei 'th error bar extending fromym n[i] toymax[i] at x coor-
dinate x[i] . The terminals of the error bar are of length equal to the minor tick length (settable using

pl smi n).

n (PLI NT, input) Number of error barsto draw.

X (PLFLT *, input) Pointer to array with x coordinates of error bars.

ym n (PLFLT *,input) Pointer to array with y coordinates of lower endpoint of error bars.
ymax (PLFLT *,input) Pointer to array with y coordinate of upper endpoint of error bar.
Redacted form:

* Generd:plerry(x, ymn, ymx)
o Pel/PDL:plerry(n, x, ymn, ymax)

Thisfunction is used in example 29.

pl f amadv: Advance to the next family file on the next new page
pl famadv ();
Advance to the next family file on the next new page.
Redacted form: pl f amadv()

This function is not used in any examples.
pl fill: Draw filled polygon

plfill (n, x, y);

Fills the polygon defined by the n points (x[i], y[i]) using the pattern defined by pl psty or
pl pat . The default fill styleisasolid fill. The routine will automatically close the polygon between the
last and first vertices. If multiple closed polygonsare passedinx andy thenpl fi | | will fill in between
them.

133

The Common API for PLplot

n (PLI NT, input) Number of verticesin polygon.
X (PLFLT *, input) Pointer to array with x coordinates of vertices.
y (PLFLT *,input) Pointer to array with y coordinates of vertices.

Redacted form: pl fi l | (x,y)

Thisfunction isused in examples 12,13,15,16,21,24,25.

pl fill 3: Draw filled polygon in 3D
plfill3 (n, x, vy, 2);

Fillsthe 3D polygon defined by then pointsinthex, y, and z arrays using the pattern defined by pl pst y
or pl pat . Theroutine will automatically close the polygon between the last and first vertices. If multiple
closed polygons are passed in x, y, and z then pl fi | I 3 will fill in between them.

n (PLI NT, input) Number of verticesin polygon.

X (PLFLT *, input) Pointer to array with x coordinates of vertices.
y (PLFLT *,input) Pointer to array with y coordinates of vertices.
z (PLFLT *,input) Pointer to array with z coordinates of vertices.
Redacted form:

o Genera:pl fill3(x, vy, 2)
e Perl/PDL:pl fill3(n, X, vy, 2)
Thisfunction is used in example 15.

pl f I ush: Flushes the output stream
pl flush ();
Flushes the output stream. Use sparingly, if at all.

Redacted form: pl f | ush()

Thisfunction isused in examples 1,14.

pl f ont : Set character font

pl font (font);

Sets the default character font for subsequent character drawing. Also affects symbols produced by
pl poi n. Thisroutine has no effect unless the extended character set isloaded (seepl f ont | d).

font (PLI NT, input) Specifiesthe font:
e 1: Normal font (simplest and fastest)

¢ 2: Roman font

134

The Common API for PLplot

e 3:Italicfont
e 4: Script font
Redacted form: pl f ont (f ont)

Thisfunction isused in examples 1,2,4,7,13,24,26.

pl font| d: Load character font
pl fontld (set);
Sets the character set to use for subsequent character drawing. May be called beforeinitializing PLplot.
set (PLI NT, input) Specifies the character set to load:
» 0: Standard character set
 1: Extended character set
Redacted form: pl f ont | d(set)

Thisfunction isused in examples 1,7.

pl gchr: Get character default height and current (scaled) height
pl gchr (p_def, p_ht);
Get character default height and current (scaled) height.
p_def (PLFLT *, output) Pointer to default character height (mm).
p_ht (PLFLT *, output) Pointer to current (scaled) character height (mm).
Redacted form: pl gchr (p_def, p_ht)

Thisfunction is used in example 23.
pl gcol O0: Returns 8-bit RGB values for given color from color map0

plgcol0 (icolO, r, g, b);

Returns 8-bit RGB values (0-255) for given color from color map0 (see the section called “ Color Map0”).
Vaues are negative if an invalid color id is given.

i col O (PLI NT, input) Index of desired cmap0 color.
r (PLI NT *, output) Pointer to 8-hit red value.

g (PLI NT *, output) Pointer to 8-bit green value.
b (PLI NT *, output) Pointer to 8-bit blue value.

Redacted form: pl gcol O(i col O, r, g, b)

Thisfunction isused in example 2.

135

The Common API for PLplot

pl gcol Oa: Returns 8-bit RGB values and double alpha value for giv-
en color from color mapO.

pl gcol Oa (icolO, r, g, b, a);

Returns 8-bit RGB values (0-255) and double alphavalue (0.0 - 1.0) for given color from color map0 (see
the section called “Color Map0”). Vaues are negativeif an invalid color id is given.

i col O (PLI NT, input) Index of desired cmapO color.
r (PLI NT *, output) Pointer to 8-hit red value.

g (PLI NT *, output) Pointer to 8-bit green value.

b (PLI NT *, output) Pointer to 8-bit blue value.

a (PLFLT *, output) Pointer to PLFLT aphavalue.

Thisfunction is used in example 30.

pl gcol bg: Returns the background color (cmapO[0]) by 8-bit RGB
value

pl gcol bg (r, g, b);

Returns the background color (cmap0[0]) by 8-bit RGB value.

r (PLI NT *, output) Pointer to an unsigned 8-hit integer (0-255) representing the degree
of red in the color.

g (PLI NT *, output) Pointer to an unsigned 8-bit integer (0-255) representing the degree
of greenin the color.

b (PLI NT *, output) Pointer to an unsigned 8-bit integer (0-255) representing the degree
of bluein the color.

Redacted form: pl gcol bg(r, g, b)
This function is used in example 31.

pl gcol bga: Returns the background color (cmapO[0]) by 8-bit RGB
value and double alpha value.

pl gcol bga (r, g, b, a);
Returns the background color (cmap0[0]) by 8-bit RGB value and double alpha value.

r (PLI NT *, output) Pointer to an unsigned 8-bit integer (0-255) representing the degree
of red in the color.

g (PLI NT *, output) Pointer to an unsigned 8-bit integer (0-255) representing the degree
of green in the color.

b (PLI NT *, output) Pointer to an unsigned 8-hit integer (0-255) representing the degree
of bluein the color.

136

The Common API for PLplot

a (PLFLT *, output) Pointer to PLFLT alphavalue.
This function is used in example 31.

pl gconpr essi on: Get the current device-compression setting
pl gconpressi on (conpressi on);

Get the current device-compression setting. This parameter is only used for driversthat provide compres-

sion.
conpr essi on (PLI NT *, out- Pointer to a variable to be filled with the current device-compres-
put) sion setting.

Redacted form: pl gconpr essi on(conpr essi on)

This function is used in example 31.

pl gdev: Get the current device (keyword) name
pl gdev (p_dev);
Get the current device (keyword) name. Note: you must have all ocated spacefor this (80 charactersissafe).
p_dev (char *, output) Pointer to device (keyword) name string.
Redacted form: pl gdev(p_dev)

Thisfunction isused in example 14.
pl gdi dev: Get parameters that define current device-space window

pl gdi dev (p_nmar, p_aspect, p_jX, p_jy);

Get relative margin width, aspect ratio, and relative justification that define current device-space window.
If pl sdi dev hasnot been called the default values pointed toby p_mar ,p_aspect ,p_j x,andp_jy
will al be 0.

p_mar (PLFLT *, output) Pointer to relative margin width.
p_aspect (PLFLT *, output) Pointer to aspect ratio.

p_j x (PLFLT *, output) Pointer to relative justification in x.
p_jy (PLFLT *, output) Pointer to relative justificationiny.
Redacted form: pl gdi dev(p_mar, p_aspect, p_jx, p_jVy)

This function is used in example 31.
pl gdi ori : Get plot orientation

pl gdiori (p_rot);

Get plot orientation parameter which is multiplied by 90° to obtain the angle of rotation. Note, arbitrary
rotation parameters such as 0.2 (corresponding to 18°) are possible, but the usual values for the rotation

137

The Common API for PLplot

parameter are 0., 1., 2., and 3. corresponding to 0° (landscape mode), 90° (portrait mode), 180° (seascape
mode), and 270° (upside-down mode). If pl sdi or i has not been called the default value pointed to by
p_rot will beO.

p_rot (PLFLT *, output) Pointer to orientation parameter.
Redacted form: pl gdi ori (p_rot)

Thisfunction is not used in any examples.
pl gdi pl t : Get parameters that define current plot-space window

plgdiplt (p_xmn, p_ymn, p_xmax, p_ymx);

Get relative minimaand maximathat define current plot-space window. If pl sdi pl t hasnot been called
the default values pointedtoby p_xm n, p_ym n, p_xnax, and p_ymax will be0., 0, 1., and 1.

p_xm n (PLFLT *, output) Pointer to relative minimum in x.
p_ym n (PLFLT *, output) Pointer to relative minimuminyy.
p_xmax (PLFLT *, output) Pointer to relative maximum in x.
p_ymax (PLFLT *, output) Pointer to relative maximuminyy.

Redacted form: pl gdi pl t (p_xm n, p_ymn, p_Xmax, p_ynmax)

Thisfunction is used in example 31.

pl gf am Get family file parameters
pl gfam (fam num bmax);

Gets information about current family file, if familying is enabled. See the section called “Family File
Output” for more information.

fam(PLI NT *, output) Pointer to variable with the Boolean family flag value. If nonzero,
familying is enabled.

num(PLI NT *, output) Pointer to variable with the current family file number.
brmax (PLI NT *, output) Pointer to variable with the maximum file size (in bytes) for afam-
ily file.

Redacted form: pl gf am(fam num bnax)

Thisfunction is used in examples 14,31.

pl gf ci : Get FCI (font characterization integer)

plgfci (fci);

Gets information about the current font using the FCI approach. See the section called “FCI” for more
information.

fci (PLUNI CODE *, output) Pointer to PLUNICODE (unsigned 32-hit integer) variable which

is updated with current FCI value.

138

The Common API for PLplot

Redacted form: pl gf ci (fci)

This function is used in example 23.

pl gf nam Get output file name

pl gf nam (f nam ;

Gets the current output file name, if applicable.

f nam(char *, output)

Redacted form: pl gf nan{ f nam

This function is used in example 31.

Pointer to file name string (a preallocated string of 80 characters
or more).

pl gf ont : Get family, style and weight of the current font

plgfont (p_famly, p_style, p_weight);

Gets information about current font. See the section called “FCI” for more information on font selection.

p_fam |y (PLI NT *, output)

p_styl e (PLI NT *,output)

p_wei ght (PLI NT *, output)

Pointer to variable with the current font family. The available
values are given by the PL_FCI_* constants in plplot.h. Current
options are PL_FCI_SANS, PL_FCI_SERIF, PL_FCI_MONO,
PL_FCI_SCRIPT and PL_FCI_SYMBOL. If p_family is NULL
then the font family is not returned.

Pointer to variable with the current font style. The avail-
able values are given by the PL_FCI_* constants in plplot.h.
Current options are PL_FCI_UPRIGHT, PL_FCI _ITALIC and
PL_FCI_OBLIQUE. If p_styleis NULL then the font style is not
returned.

Pointer to variable with the current font weight. The available val-
ues are given by the PL_FCI_* constants in plplot.h. Current op-
tions are PL_FCI_MEDIUM and PL_FCI_BOLD. If p_weight is
NULL then the font weight is not returned.

Redacted form: pl gf ont (p_fanmily, p_style, p_weight)

This function is used in example 23.

pl gl evel : Get the (current) run level

pl gl evel (p_level);

Get the (current) run level. Valid settings are:

* 0O, uninitialized
» 1, initialized

e 2, viewport defined

139

The Common API for PLplot

* 3, world coordinates defined
p_l evel (PLI NT *, output) Pointer to the run level.
Redacted form: pl gl evel (p_| evel)

This function is used in example 31.

pl gpage: Get page parameters

pl gra:

pl gpage (xp, yp, xleng, yleng, xoff, yoff);

Gets the current page configuration. The length and offset values are expressed in units that are specific
to the current driver. For instance: screen driverswill usually interpret them as number of pixels, whereas
printer drivers will usually use mm.

xp (PLFLT *, output) Pointer to number of pixels/inch (DP1), x.
yp (PLFLT *, output) Pointer to number of pixelg/inch (DPI) iny.
x|l eng (PLI NT *, output) Pointer to x page length value.

yl eng (PLI NT *, output) Pointer to y page length value.

xof f (PLI NT *, output) Pointer to x page offset.

yof f (PLI NT *, output) Pointer to y page offset.

Redacted form: pl gpage(xp, yp, xleng, yleng, xoff, yoff)

This function isused in examples 14 and 31.
Switch to graphics screen

plgra ();

Sets an interactive device to graphics mode, used in conjunction with pl t ext to allow graphics and text
to be interspersed. On a device which supports separate text and graphics windows, this command causes
control to be switched to the graphics window. If already in graphics mode, this command isignored. Itis
also ignored on devices which only support a single window or use a different method for shifting focus.
Seeasopl t ext.

Redacted form: pl gr a()

Thisfunction isused in example 1.

pl gr adi ent : Draw linear gradient inside polygon

plgradient (n, x, y, angle);

Draw alinear gradient using colour map 1 inside the polygon defined by then points (x[i], y[i]).
Interpretation of the polygonisthesameasfor pl fi | | . The polygon coordinates and the gradient angle
areall expressed inworld coordinates. The anglefrom thex axisfor both therotated coordinate system and
the gradient vector is specified by angl e. The magnitude of the gradient vector is the difference between
the maximum and minimum values of x for the verticesin the rotated coordinate system. The origin of the
gradient vector can beinterpreted as being anywhere on the line corresponding to the minimum x valuefor

140

The Common API for PLplot

the verticesin therotated coordinate system. The distance along the gradient vector islinearly transformed
to the independent variable of colour map 1 which ranges from 0. at the tail of the gradient vector to 1.
at the head of the gradient vector. What is drawn is the RGBA colour corresponding to the independent
variable of colour map 1. For more information about colour map 1 (see the section called “ Color Mapl”).

n (PLI NT, input) Number of verticesin polygon.

X (PLFLT *, input) Pointer to array with x coordinates of vertices.
y (PLFLT *,input) Pointer to array with y coordinates of vertices.
angl e (PLFLT, input) Angle (degrees) of gradient vector from x axis.

Redacted form: pl gr adi ent (x, y, angl e)

This function is used in examples 25,30.

pl gri ddat a: Grid data from irregularly sampled data
pl ggriddata (x, y, z, npts, xg, nptsx, yg, nptsy, zg, type, data);

Real world data is frequently irregularly sampled, but al PLplot 3D plots require data placed in a uni-
form grid. Thisfunction takesirregularly sasmpled datafrom threeinput arraysx[npt s],y[npt s] , and
z[npt s] , reads the desired grid location from input arrays xg[npt sx] andyg[npt sy] , and returns
the gridded datainto output array zg[npt sx] [npt sy] . Theagorithm used to grid the datais specified
with the argument t ype which can have one parameter specified in argument dat a.

X (PLFLT *, input) Theinput x array.

y (PLFLT *,input) Theinputy array.

z (PLFLT *,input) Theinput z array. Each triplex[i],y[i],z[i] representsone
data sample coordinate.

npt s (PLI NT, input) The number of datasamplesinthex,y and z arrays.

xg (PLFLT *,input) The input array that specifies the grid spacing in the x direction.

Usually xg has npt sx equally spaced values from the minimum
to the maximum values of the x input array.

npt sx (PLI NT, input) The number of pointsin the xg array.

yg (PLFLT *,input) The input array that specifies the grid spacing in the y direction.
Similar to the xg parameter.

npt sy (PLI NT, input) The number of pointsintheyg array.

zg (PLFLT **, output) The output array, where dataliesin theregular grid specified by xg

and yg. thezg array must exist or be allocated by the user prior
to the call, and must have dimension zg[npt sx] [npt sy] .

t ype (PLI NT, input) The type of gridding algorithm to use, which can be;
¢ GRI D_CSA: Bivariate Cubic Spline approximation

e GRI D_DTLI : Delaunay Triangulation Linear Interpolation

141

The Common API for PLplot

e GRI D_NNI : Natural Neighbors Interpolation

GRI D_NNI DW Nearest Neighbors Inverse Distance Weighted

GRI D_NNLI : Nearest Neighbors Linear Interpolation

GRI D_NNAI DW Nearest Neighbors Around Inverse Distance
Weighted

For details of the algorithms read the source filepl gri dd. c.

dat a (PLFLT, input) Somegridding algorithmsrequire extradata, which can be specified
through this argument. Currently, for algorithm:

« GRI D_NNI DW dat a specifies the number of neighborsto use,
thelower the value, the noisier (morelocal) the approximationis.

* GRI D_NNLI , dat a specifieswhat athintriangleis, intherange
[1. .. 2.]. High values enable the usage of very thin triangles for
interpolation, possibly resulting in error in the approximation.

¢ GRI D_NNI', only weights greater than dat a will be accepted.
If O, all weightswill be accepted.

Redacted form:

* Generd:pl griddata(x, y, z, X0, Yg, zg, type, data)
* Perl/PDL: Not available?

e Python: zg=pl griddata(x, y, z, xg, yg, type, data)

Thisfunction is used in example 21.

pl gspa: Get current subpage parameters
pl gspa (xmn, xmax, ymn, ymax);

Getsthe size of the current subpage in millimeters measured from the bottom left hand corner of the output
device page or screen. Can be used in conjunction with pl svpa for setting the size of a viewport in
absolute coordinates (millimeters).

xm n (PLFLT *, output) Pointer to variable with position of left hand edge of subpage in
millimeters.

xmax (PLFLT *, output) Pointer to variable with position of right hand edge of subpage in
millimeters.

ym n (PLFLT *, output) Pointer to variable with position of bottom edge of subpage in mil-
limeters.

ymax (PLFLT *, output) Pointer to variable with position of top edge of subpagein millime-
ters.

Redacted form: pl gspa(xni n, xmax, ymn, ynmax)

Thisfunction is used in example 23.

142

The Common API for PLplot

pl gst r m Get current stream number
plgstrm(strm;
Gets the number of the current output stream. Seealsopl sstrm
st rm(PLI NT *, output) Pointer to current stream value.
Redacted form: pl gstrn{strm
This function is used in example 1,20.
pl gver : Get the current library version number
pl gver (p_ver);
Get the current library version number. Note: you must have allocated space for this (80 charactersis safe).
p_ver (char *, output) Pointer to the current library version number.
Redacted form: pl gver (p_ver)

Thisfunction isused in example 1.

pl gvpd: Get viewport limits in normalized device coordinates
pl gvpd (p_xmn, p_xmax, p_ymn, p_ymax);

Get viewport limitsin normalized device coordinates.

p_xm n (PLFLT *, output) Lower viewport limit of the normalized device coordinate in x.
p_xmax (PLFLT *, output) Upper viewport limit of the normalized device coordinate in x.
p_ym n (PLFLT *, output) Lower viewport limit of the normalized device coordinateinyy.
p_ymax (PLFLT *, output) Upper viewport limit of the normalized device coordinatein y.
Redacted form:

e Generd: pl gvpd(p_xmn, p_xmax, p_ymn, p_ynmax)
* Perl/PDL: Not available?
Thisfunction is used in example 31.
pl gvpw. Get viewport limits in world coordinates
pl gvpw (p_xmn, p_xmax, p_ymn, p_ymax);

Get viewport limitsin world coordinates.

p_xm n (PLFLT *, output) Lower viewport limit of the world coordinate in x.
p_xmax (PLFLT *, output) Upper viewport limit of the world coordinatein x.
p_ym n (PLFLT *, output) Lower viewport limit of the world coordinateiny.

143

The Common API for PLplot

p_ymax (PLFLT *, output) Upper viewport limit of the world coordinateinyy.
Redacted form:

* Generd: pl gvpw p_xni n, p_xmax, p_ymn, p_ymax)

 Perl/PDL: Not available?

Thisfunction is used in example 31.

pl gxax: Get x axis parameters
pl gxax (digmax, digits);

Returns current values of thedi grmmax and di gi t s flagsfor thex axis. di gi t s isupdated after the plot
isdrawn, so this routine should only be called after the call to pl box (or pl box3) iscomplete. Seethe
section called “ Annotating the Viewport” for more information.

di gmax (PLI NT *, output) Pointer to variable with the maximum number of digits for the x
axis. If nonzero, the printed label has been switched to a floating
point representation when the number of digits exceedsdi gnax.

di gi ts (PLI NT *, output) Pointer to variable with the actual number of digitsfor the numeric
labels (x axis) from the last plot.

Redacted form: pl gxax(di gnmax, digits)
Thisfunction is used in example 31.

pl gyax: Get y axis parameters
pl gyax (digmax, digits);

Identical to pl gxax, except that arguments are flags for y axis. See the description of pl gxax for more

detail.

di gmax (PLI NT *, output) Pointer to variable with the maximum number of digits for the y
axis. If nonzero, the printed label has been switched to a floating
point representation when the number of digits exceedsdi gnax.

di gi ts (PLI NT *, output) Pointer to variable with the actual number of digitsfor the numeric

labels (y axis) from the last plot.
Redacted form: pl gyax(di gmax, digits)

This function is used in example 31.

pl gzax: Get z axis parameters
pl gzax (digmax, digits);

Identical to pl gxax, except that arguments are flags for z axis. See the description of pl gxax for more
detail.

di gmax (PLI NT *, output) Pointer to variable with the maximum number of digits for the z
axis. If nonzero, the printed label has been switched to a floating
point representation when the number of digits exceedsdi gnax.

144

The Common API for PLplot

di gi ts (PLI NT *, output) Pointer to variable with the actual number of digitsfor the numeric
labels (z axis) from the last plot.

Redacted form: pl gzax(di gmax, digits)

This function is used in example 31.

pl hi st: Plot a histogram from unbinned data
pl hist (n, data, datmin, datmax, nbin, opt);

Plots a histogram from n data points stored in the array dat a. This routine bins the data into nbi n
bins equally spaced between dat m n and dat nmax, and calls pl bi n to draw the resulting histogram.
Parameter opt allows, among other things, the histogram either to be plotted in an existing window or
causes pl hi st tocall pl env with suitable limits before plotting the histogram.

n (PLI NT, input) Number of data points.

dat a (PLFLT *, input) Pointer to array with values of the n data points.

dat mi n (PLFLT, input) L eft-hand edge of lowest-valued bin.

dat max (PLFLT, input) Right-hand edge of highest-valued bin.

nbi n (PLI NT, input) Number of (egqual-sized) bins into which to divide the interval

Xm n toxmax.
opt (PLI NT, input) Is a combination of severa flags:

e opt=PL_HI ST_DEFAULT: The axes are automatically
rescaled to fit the histogram data, the outer bins are expanded to
fill up the entire x-axis, data outside the given extremes are as-
signed to the outer bins and bins of zero height are simply drawn.

e opt=PL_HI ST_NOSCALI NG . . . : Theexisting axes are not
rescaled to fit the histogram data, without this flag, pl env is
called to set the world coordinates.

e opt=PL_HI ST_| GNORE_QUTLI ERS] . . . : Dataoutside the
given extremes are not taken into account. This option should
probably be combinedwithopt =PL_HI ST_NOCEXPAND . . .,
so asto properly present the data.

e opt =PL_HI ST_NOEXPAND] . . . : The outer bins are drawn
with equal size asthe onesinside.

e opt =PL_HI ST_NCEMPTY] . . . : Binswith zero height are not
drawn (thereis agap for such bins).

Redacted form: pl hi st (data, datm n, datmax, nbin, opt)

Thisfunction isused in example 5.

pl hl srgb: Convert HLS color to RGB

pl hisrgb (h, I, s, p_r, p_g, p_b);

145

The Common API for PLplot

Convert HLS color coordinates to RGB.

h (PLFLT, input)

| (PLFLT, input)

s (PLFLT, input)

p_r (PLFLT *, output)
p_g (PLFLT *, output)
p_b (PLFLT *, output)
Redacted form:

» Generd:pl hl srgb(h, |, s,

Hue, in degrees on the colour cone (0.0-360.0)

Lightness, expressed as a fraction of the axis of the colour cone
(0.0-1.0)

Saturation, expressed as a fraction of the radius of the colour cone
(0.0-1.0)

Pointer to red intensity (0.0-1.0) of the colour
Pointer to green intensity (0.0-1.0) of the colour

Pointer to blue intensity (0.0-1.0) of the colour

p_r, p_g, p_b)

* Perl/PDL: Not available? Implemented as plhls?

Thisfunction isused in example 2.

pl i magefr: Plot a 2D matrix using color map1l

plimagefr (idata, nx, ny,

Xmn, xmax, ymn, ynmax, zmn, zmex, valuemn,

val uemax, pltr, pltr_data);

Plot a 2D matrix using color mapl.

i dat a (PLFLT**, input)

nx, ny (PLI NT, input)

Xmn, xXmax, ymn, ynmax
(PLFLT, input)

zm n, zmax (PLFLT, input)

val uem n, val uemax
(PLFLT, input)

pltr (void (*) (PLFLT,
PLFLT, PLFLT *, PLFLT *,
PLPoi nter) ,input)

A 2D array of values (intensities) to plot. Should have dimensions
idata nx][ny].

Dimensions of idata

Stretch image data to these Plot coordinates. idata[O][0] corre-
sponds to (xmin, ymin) and idata[nx - 1][ny - 1] corresponds to
(xmax, ymax).

Only data between zmin and zmax (inclusive) will be plotted.

The minimum and maximum data values to use for value to color
mappings. A datum equal to or less than valuemin will be plotted
with color 0.0, while adatum equal to or greater than valuemax will
be plotted with color 1.0. Data between valuemin and valuemax
map linearly to colors between 0.0 and 1.0.

Pointer to function that defines a transformation between the da-
tainthearray i dat a and world coordinates. An input coordinate
of (0, 0) corresponds to the "top-left* corner of i dat a while
(nx, ny) corresponds to the "bottom-right" corner of i dat a.
Some transformation functions are provided in the PLplot library:
pl t r O for identity mapping, andpl t r 1 and pl t r 2 for arbitrary
mappings respectively defined by one- and two-dimensional arrays.
In addition, user-supplied routines for the transformation can be
used as well. Examples of al of these approaches are given in the

146

The Common API for PLplot

section called “ Contour Plotsfrom C”. Thetransformation function
should havetheform givenby anyof pl trO,pltr1,orpltr2.

pl tr_dat a (PLPoi nt er, input) Extra parameter to help pass information to pltrO, pltr1,
pl t r 2, or whatever routine is externally supplied.

Redacted form:

e Generd: plinmagefr(idata, xmn, xmax, ymn, ynax, zmn, znmax, val uemn,
val uemax, pltr, pltr_data)

Thisfunction is used in example 20.

pl i mage: Plot a 2D matrix using color mapl with automatic colour
adjustment

plimage (idata, nx, ny, xmn, xmax, ymn, ymex, zmn, znmax, Dxmn,
Dxnmax, Dymin, Dynmex);

Plot a2D matrix using color palette 1. The color scale is automatically adjusted to use the maximum and
minimum values in idata as valuemin and valuemax in acall to pl i magefr.

i dat a (PLFLT**, input) A 2D array of values (intensities) to plot. Should have dimensions
idata[nx][ny].

nx, ny (PLI NT, input) Dimensions of idata

Xmn, xmax, ymn, ynmax Plot coordinates to stretch the image data to. idata[O][0] corre-

(PLFLT, input) sponds to (xmin, ymin) and idata[nx - 1][ny - 1] corresponds to

(xmax, ymax).
zmn, znmax (PLFLT, input) Only data between zmin and zmax (inclusive) will be plotted.

Dxm n, Dxmax, Dymin, Dy- Plotonly thewindow of points whose plot coordinates fall inside
max (PLFLT, input) the window of (Dxmin, Dymin) to (Dxmax, Dymax).

Redacted form:

» Generad: plinmage(idata, xmn, xmax, ymn, ymax, zmn, znmax, Dxm n, Dxmax,

Dym n, Dynax)

Thisfunction is used in example 20.
pl i nit: Initialize PLplot

plinit ();

Initializing the plotting package. The program prompts for the device keyword or number of the desired
output device. Hitting a RETURN in response to the prompt is the same as selecting the first device.
plinit will issue no prompt if either the device was specified previously (via command line flag, the
pl set opt function, or thepl sdev function), or if only one device is enabled when PLplot isinstalled.
If subpages have been specified, the output device is divided into nx by ny subpages, each of which may
be used independently. If pl i ni t iscalled again during a program, the previously opened file will be
closed. The subroutine pl adv isused to advance from one subpage to the next.

Redacted form: pl i ni t ()

147

The Common API for PLplot

Thisfunction isused in all of the examples.
pl j oi n: Draw a line between two points
pljoin (x1, yl, x2, y2);

Joinsthe point (x1, y1) to(x2, y2).

x1 (PLFLT, input) x coordinate of first point.
y1 (PLFLT, input) y coordinate of first point.
X2 (PLFLT, input) x coordinate of second point.
y2 (PLFLT, input) y coordinate of second point.

Redacted form: pl j oi n(x1, y1, x2,y2)

This function is used in examples 3,14.

pl | ab: Simple routine to write labels

pllab (xl abel, ylabel, tlabel);

Routine for writing ssimple labels. Use pl nt ex for more complex labels.

x| abel (const char *,input) Label for horizontal axis.

yl abel (const char *,input) Label for vertical axis.

tl abel (const char *,input) Titleof graph.

Redacted form: pl | ab(x| abel , yl abel, tl abel)

Thisfunction isused in examples 1,5,9,12,14-16,20-22,29.
pl | egend: Plot legend using discretely annotated filled boxes,
lines, and/or lines of symbols

pl | egend (p_l egend_wi dt h, p_I egend_hei ght, opt, position, X,

Y, pl ot _wi dt h, bg _col or, bb_col or, bb_style, nrow, ncol -
um, nl egend, opt _array, text _of fset, text _scal e, t ext _spaci ng,
test justification, text _col ors, t ext, box_col ors, box_patterns,
box_scales, box _line_ widths, line_colors, line_styles, line_w dths,

synbol _col ors, synbol _scal es, synbol nunbers, synbols);

Routine for creating a discrete plot legend with a plotted filled box, line, and/or line of symbols for each
annotated legend entry. (See pl col or bar for similar functionality for creating continuous color bars.)
The arguments of pllegend provide control over the location and size of the legend as well as the location
and characteristics of the elements (most of which are optional) within that legend. The resulting legend
is clipped at the boundaries of the current subpage. (N.B. the adopted coordinate system used for some of
the parameters is defined in the documentation of the posi t i on parameter.)

p_l egend_wi dt h (PLFLT *, Pointer to a location which contains (after the call) the legend
output) width in adopted coordinates. This quantity is calculated from
pl ot _wi dth,text offset,ncol um (possibly modifiedin-

148

The Common API for PLplot

p_| egend_hei ght (PLFLT *,
output)

opt (PLI NT, input)

posi ti on (PLI NT, input)

X (PLFLT, input)

sidetheroutine depending onnl egend and nr ow), and the length
(calculated internally) of the longest text string.

Pointer to a location which contains (after the call) the legend
height in adopted coordinates. This quantity is calculated from
text scal e, t ext _spaci ng, and nr ow (possibly modified
inside the routine depending on nl egend and nr ow).

opt contains bits controlling the overall legend. If the
PL_LEGEND TEXT_ LEFT bhit is set, put the text area on the
left of the legend and the plotted area on the right. Other-
wise, put the text area on the right of the legend and the plot-
ted area on the left. If the PL_LEGEND BACKGROUND hit is
set, plot a (semi-transparent) background for the legend. If the
PL_LEGEND BOUNDI NG BOX hit is set, plot a bounding box for
the legend. If the PL_LEGEND ROW MAJOR hit is set and (both
of the possibly internally transformed) nr ow> 1 and ncol um >
1, then plot theresulting array of legend entriesin row-major order.
Otherwise, plot the legend entries in column-major order.

posi ti on contains bits which control the overall position of the
legend and the definition of the adopted coordinates used for po-
sitions just like what is done for the position argument for pl -
col or bar . However, note that the defaults for the position bits
(see below) are different than the pl col or bar case. The com-
bination of the PL_PGSI TI ON_LEFT, PL_PCSI TI ON_RI GHT,
PL_POCSI TI ON_TOP, PL_PCsI TI ON_BOTTOM
PL_PGsSI TI ON_I NSI DE, and PL_PGSI TI ON_QUTSI DE hits
specifies one of the 16 possible standard positions (the 4 cor-
ners and centers of the 4 sides for both the inside and outside
cases) of the legend relative to the adopted coordinate system.
The corner positions are specified by the appropriate combination
of two of the PL_PGCSI TI ON_LEFT, PL_PCSI TI ON_RI GHT,
PL_PGsSI TI ON_TOP, and PL_POSI TI ON_BOTTOM bits while
the sides are gpecified by a single vaue of one
of those bits. The adopted coordinates are normal-
ized viewport coordinates if the PL_POSI TI ON_VI EWPORT
bit is set or normalized subpage coordinates if the
PL_POSI TI ON_SUBPACGE hit is set. Default position bits:
If none of PL_PGSI TI ON LEFT, PL_PGSI TI ON_RI GHT,
PL_PGCSI TI ON_TOP, or PL_PGCSI TI ON_BOTTOM are set,
then use the combination of PL_PGCSI TI ON_RI GHT and
PL_POCSI TI ON_TOR. If neither of PL_POSI TI ON_|I NSI DE or
PL_POCsI TI ON_QUTSI DEisset,usePL_PGCsSI TI ON_| NSI DE.
If neither of PL_POSI TI ON_VI EWPORT or
PL_PCsI TI ON_SUBPAGE is Set, use
PL_PCsI TI ON_VI EWPORT.

X offset of the legend position in adopted coordinates from the
specified standard position of the legend. For positive x, the direc-
tion of motion away from the standard position is inward/outward
from the standard corner positions or standard |eft or right positions
if the PL_PQOSI TI ON_I NSI DE/PL_PQCSI TI ON_QUTSI DE hit
issetinposi ti on. For the standard top or bottom positions, the
direction of motion istoward positive X.

149

The Common API for PLplot

y (PLFLT, input)

pl ot _wi dt h (PLFLT, input)

bg_col or (PLI NT, input)

bb_col or (PLI NT, input)

bb_styl e (PLI NT, input)

nr ow (PLI NT, input)

ncol unm (PLI NT, input)

nl egend (PLI NT, input)

opt _array (const PLINT *,
input)

t ext _of f set (PLFLT, input)

t ext _scal e (PLFLT, input)

t ext _spaci ng (PLFLT, input)

Y offset of the legend position in adopted coordinates from
the specified standard position of the legend. For positive v,
the direction of motion away from the standard position is
inward/outward from the standard corner positions or stan-
dard top or bottom positions if the PL_PQSI TI ON_| NSI DE/
PL_POSI TI ON_QUTSI DE bitissetinposi ti on. For the stan-
dard left or right positions, the direction of motion is toward posi-
tive.

Horizontal width in adopted coordinates of the plot area (where the
colored boxes, lines, and/or lines of symbols are drawn) of the leg-
end.

The cmap0 color of the background for the
(PL_LEGEND_BACKGROUND).

legend

The cmap0 color of the bounding-box line for the legend
(PL_LEGEND BOUNDI NG_BOX).

The pllsty style number for the bounding-box line for the legend
(PL_LEGEND_ BACKGROUND).

The cmap0 index of the background color for the legend
(PL_LEGEND BACKGROUND).

The cmap0 index of the background color for the legend
(PL_LEGEND BACKGROUND).

Number of legend entries. N.B. Thetotal vertical height of the leg-
end in adopted coordinatesis calculated internally fromnl egend,
t ext _scal e (seebelow), andt ext _spaci ng (see below).

Array of nlegend values of options to control each indi-
vidual plotted area corresponding to a legend entry. If the
PL_LEGEND NONE hit is set, then nothing is plotted in the plot-
ted area. If the PL_LEGEND_COLOR BOX, PL_LEGEND LI NE,
and/or PL_LEGEND_SYMBOL hits are set, the area corresponding
to alegend entry is plotted with a colored box; aline; and/or aline
of symbols.

Offset of the text area from the plot area in units of character
width. N.B. Thetotal horizontal width of the legend in adopted co-
ordinates is calculated internally from pl ot _wi dt h (see above),
t ext _of f set, and length (calculated internally) of the longest
text string.

Character height scale for text annotations. N.B. The total ver-
tical height of the legend in adopted coordinates is calculat-
ed internaly from nl egend (see above), t ext scal e, and
t ext _spaci ng (see below).

Vertical spacing in units of the character height from one legend
entry to the next. N.B. The total vertical height of the legend in
adopted coordinates is calculated internally from nl egend (see
above), t ext _scal e (seeabove), andt ext _spaci ng.

150

The Common API for PLplot

text _justification
(PLFLT, input)

text _col ors (const PLINT
* input)

t ext (const char *const
* input)

box_col ors (const PLI NT
*input)

box_patterns (const PLINT

* | input)

box_scal es (const PLFLT
* | input)

box_|ine_w dt hs (const
PLFLT *,input)

I ine_col ors (const PLINT
* input)

line_styles (const PLINT
* input)

i ne_wi dt hs (const PLFLT
*, input)

symbol _col ors (const
PLI NT *, input)

synbol scal es (const
PLFLT *,input)

synbol nunbers (const
PLI NT *, input)

synbol s (const char *con-
st *,input)

Redacted form: pl | egend(p_I egend_wi dt h,
bb_col or,

y, plot_w dth, bg_color,

Justification parameter used for text justification. The most com-
mon values of text_justification are 0., 0.5, or 1. corresponding to
atext that is left justified, centred, or right justified within the text
area, but other values are allowed as well.

Array of nlegend cmap0 text colors.
Array of nlegend text string annotations.
Array of nlegend cmap0 colors for the discrete colored boxes

(PL_LEGEND_COLOR_BOX).

Array of nlegend patterns (plpsty indices) for the discrete colored
boxes (PL_LEGEND_COLOR_BOX).

Array of nlegend scal es (unitsof fraction of character height) for the
height of the discrete colored boxes (PL_LEGEND COLOR_BOX).

Array of nlegend line widths for the patterns specified by
box_patterns (PL_LEGEND_COLOR_BOX).

Array of nlegend cmap0 line colors (PL_LEGEND LI NE).

Array of nlegend line styles (plsty indices) (PL_LEGEND LI NE).
Array of nlegend line widths (PL_LEGEND_LI NE).

Array of nlegend cmap0 symbol colors (PL_LEGEND SYMBCL).

Array of nlegend scale values for
(PL_LEGEND_SYMBQL).

the symbol height

Array of nlegend numbers of symbolsto be drawn across the width
of the plotted area (PL_LEGEND _SYMBQL).

Array of nlegend
(PL_LEGEND SYMBOQL).

symbols (plpoin indices)

p_| egend_hei ght, opt, position, Xx,
bb_style, nrow, ncolumn, opt_array,

text _offset, text_scale, text_spacing, test justification, text_colors,

t ext, box col ors,
line_colors, line_styles,
synmbol _nunbers, synbol s)

box_patterns,

box_scal es,
synbol _col ors,

box_|ine_wi dt hs,

i ne_wi dths, synmbol _scal es,

This function isused in examples 4, 26, and 33.

pllightsource (x, vy, z);

pl | i ght sour ce: Sets the 3D position of the light source

151

The Common API for PLplot

Sets the 3D position of the light source for use with pl sur f 3d.

X (PLFLT, input) X-coordinate of the light source.
y (PLFLT, input) Y -coordinate of the light source.
Zz (PLFLT, input) Z-coordinate of the light source.

Redacted form: pl | i ght source(x, vy, 2z)
Thisfunction isused in example 8.
pl 1 i ne: Draw aline

plline (n, x, Vy);

Draws line defined by n pointsinx andy.

n (PLI NT, input) Number of points defining line.
X (PLFLT *, input) Pointer to array with x coordinates of points.
y (PLFLT *,input) Pointer to array with y coordinates of points.

Redacted form: pl | i ne(x, vy)

Thisfunction is used in examples 1,3,4,9,12-14,16,18,20,22,25-27,29.
pl | i ne3: Draw aline in 3 space

plline3 (n, x, vy, 2);

Drawslinein 3 space defined by n pointsinx, y, and z. You must first set up the viewport, the 2d viewing
window (in world coordinates), and the 3d normalized coordinate box. See x18c. ¢ for moreinfo.

n (PLI NT, input) Number of points defining line.

X (PLFLT *,input) Pointer to array with x coordinates of points.
y (PLFLT *,input) Pointer to array with y coordinates of points.
z (PLFLT *,input) Pointer to array with z coordinates of points.

Redacted form: pl 1 i ne3(x, vy, 2z)

This function isused in example 18.
pl I sty: Select line style
pllsty (n);
This sets the line style according to one of eight predefined patterns (also see pl st yl).

n (PLI NT, input) Integer value between 1 and 8. Line style 1 is a continuous line,
line style 2 isalinewith short dashes and gaps, line style 3isaline
with long dashes and gaps, line style 4 has long dashes and short
gaps and so on.

152

The Common API for PLplot

Redacted form: pl | st y(n)

Thisfunction is used in examples 9,12,22,25.

pl map: Plot continental outline in world coordinates.
pl map (mapform type, mnlong, naxlong, mnlat, nmaxlat);

Plots continental outlines in world coordinates. examples/c/x19¢c demonstrates how to use this function
to create different projections.

mapf orm(void (*) (PLINT, A usersuppliedfunctionto transform the coordinate longitudes and

PLFLT *, PLFLT *),input) latitudes to a plot coordinate system. By using this transform, we
can change from alongitude, latitude coordinate to a polar stereo-
graphic project, for example. Initially, x[0]..[n-1] arethe longitudes
and y[0]..y[n-1] are the corresponding latitudes. After the cal to
mapform(), X[] and y[] should bereplaced by the corresponding plot
coordinates. If no transform is desired, mapform can be replaced
by NULL.

type (char *,input) type is a character string. The value of this parameter determines
the type of background. The possible values are:

e "gl obe" -- continental outlines

e "usa" -- USA and state boundaries

e "cgl obe" -- continental outlines and countries

e "usagl obe" -- USA, state boundaries and continental outlines

m nl ong (PLFLT, input) The value of the longitude on the | eft side of the plot. The value of
minlong must be less than the value of maxlong, and the quantity
maxlong-minlong must be less than or equal to 360.

max| ong (PLFLT, input) The value of the longitude on the right side of the plot.

m nl at (PLFLT, input) The minimum latitude to be plotted on the background. One can
aways use -90.0 as the boundary outside the plot window will be
automatically eliminated. However, the program will be faster if
one can reduce the size of the background plotted.

max| at (PLFLT, input) The maximum latitudes to be plotted on the background. One can
aways use 90.0 as the boundary outside the plot window will be
automatically eliminated.

Redacted form:
* Generd: pl mp(mapform type, minlong, maxlong, mnlat, maxlat)
» F95, Java, Perl/PDL, Python: Not implemented?
This function is used in example 19.
pl meri di ans: Plot latitude and longitude lines.

pl neridi ans (mapform dlong, dlat, mnlong, nmaxlong, mnlat, maxlat);

153

The Common API for PLplot

Displays latitude and longitude on the current plot. Thelines are plotted in the current color and line style.

mapf orm(void (*) (PLINT, A usersuppliedfunctionto transform the coordinate longitudes and
PLFLT *, PLFLT *),input) latitudes to a plot coordinate system. By using this transform, we
can change from alongitude, latitude coordinate to a polar stereo-
graphic project, for example. Initially, x[0]..[n-1] arethe longitudes
and y[0]..y[n-1] are the corresponding latitudes. After the cal to
mapform(), x[] and y[] should bereplaced by the corresponding plot
coordinates. If no transform is desired, mapform can be replaced

by NULL.
dl ong (PLFLT, input) Theinterval in degreesat which thelongitudelinesareto be plotted.
dl at (PLFLT, input) Theinterval in degrees at which the latitude lines are to be plotted.
m nl ong (PLFLT, input) The value of the longitude on the | eft side of the plot. The value of

minlong must be less than the value of maxlong, and the quantity
maxlong-minlong must be less than or equal to 360.

max| ong (PLFLT, input) The value of the longitude on the right side of the plot.

m nl at (PLFLT, input) The minimum latitude to be plotted on the background. One can
aways use -90.0 as the boundary outside the plot window will be
automatically eliminated. However, the program will be faster if
one can reduce the size of the background plotted.

max| at (PLFLT, input) The maximum latitudes to be plotted on the background. One can
aways use 90.0 as the boundary outside the plot window will be
automatically eliminated.

Redacted form:

e Generd: pl meridi ans(mapform dlong, dlat, mnlong, naxlong, mnlat,
max| at)

» F95, Java, Perl/PDL, Python: Not implemented?

This function is used in example 19.

pl mesh: Plot surface mesh
pl mesh (x, y, z, nx, ny, opt);

Plots a surface mesh within the environment set up by pl w3d. The surface is defined by the two-dimen-
sional array z[nx] [ny] ,thepointz[i][]j] beingthevalueof thefunctionat (x[i], y[]j]).Note
that the pointsin arrays x and y do not need to be equally spaced, but must be stored in ascending order.
The parameter opt controls the way in which the surface is displayed. For further details see the section
called “ Three Dimensional Surface Plots’.

X (PLFLT *, input) Pointer to set of x coordinate values at which the function is eval-
uated.

y (PLFLT *,input) Pointer to set of y coordinate values at which the function is eval-
uated.

z (PLFLT **,input) Pointer to a vectored two-dimensional array with set of function
values.

154

The Common API for PLplot

nx (PLI NT, input) Number of x values at which function is evaluated.
ny (PLI NT, input) Number of y values at which function is evaluated.
opt (PLI NT, input) Determines the way in which the surface is represented:

* opt =DRAW LI NEX: Lines are drawn showing z as a function
of x for eachvalueof y[j].

e opt =DRAW LI NEY: Lines are drawn showing z as a function
of y for each value of x[i] .

e opt =DRAW LI NEXY: Network of lines is drawn connecting
points at which function is defined.

Redacted form: pl mesh(x, y, z, opt)

Thisfunction is used in example 11.

pl meshc: Magnitude colored plot surface mesh with contour.
pl meshc (x, y, z, nx, ny, opt, clevel, nlevel);
Identical to pl mesh but with extra functionalities: the surface mesh can be colored accordingly to the

current z value being plotted, acontour plot can be drawn at the base XY plane, and a curtain can be drawn
between the plotted function border and the base XY plane.

X (PLFLT *, input) Pointer to set of x coordinate values at which the function is eval-
uated.

y (PLFLT *,input) Pointer to set of y coordinate values at which the function is eval-
uated.

z (PLFLT **,input) Pointer to a vectored two-dimensional array with set of function
values.

nx (PLI NT, input) Number of x values at which function is evaluated.

ny (PLI NT, input) Number of y values at which function is evaluated.

opt (PLI NT, input) Determines the way in which the surfaceis represented. To specify
more than one option just add the options, e.g. DRAW_LINEXY
+ MAG_COLOR

e opt =DRAW LI NEX: Lines are drawn showing z as a function
of x for eachvalueof y[j] .

e opt =DRAW LI NEY: Lines are drawn showing z as a function
of y for eachvalueof x[i].

e opt =DRAW LI NEXY: Network of lines is drawn connecting
points at which function is defined.

e opt =MAG_COLOR: Each line in the mesh is colored according
to the z value being plotted. The color is used from the current
color map 1.

155

The Common API for PLplot

» opt =BASE_CONT: A contour plotisdrawn at thebase XY plane
using parametersnl evel andcl evel .

« opt =DRAW SI DES: drawsacurtain betweenthebase XY plane
and the borders of the plotted function.

cl evel (PLFLT *,input) Pointer to the array that defines the contour level spacing.
nl evel (PLI NT,input) Number of elementsinthecl evel array.
Redacted form: pl meshc(x, y, z, opt, clevel)

Thisfunction is used in example 11.

pl nkst rm Creates a new stream and makes it the default

pl nkstrm (p_strm;

Creates anew stream and makesit the default. Differsfrom using pl sst r m in that afree stream number
is found, and returned. Unfortunately, | have to start at stream 1 and work upward, since stream O is
preallocated. One of the big flawsin the PLplot APl isthat no initial, library-opening call is required. So
stream O must be preallocated, and thereisno simple way of determining whether it isalready in use or not.

p_strm(PLI NT *, output) Pointer to stream number of the created stream.
Redacted form: pl nkstrm(p_strm

Thisfunction is used in examples 1,20.

pl mt ex: Write text relative to viewport boundaries
pl ntex (side, disp, pos, just, text);

Writestext at a specified position relative to the viewport boundaries. Text may bewritteninside or outside
the viewport, but is clipped at the subpage boundaries. The reference point of a string lies along a line
passing through the string at half the height of a capital letter. The position of the reference point along
thislineis determined by j ust , and the position of the reference point relative to the viewport is set by
di sp and pos.

si de (const char *,input) Specifiesthe side of the viewport along which the text isto be writ-
ten. The string must be one of:

« b: Bottom of viewport, text written parallel to edge.

« bv: Bottom of viewport, text written at right angles to edge.
« | : Left of viewport, text written parallel to edge.

« | v: Left of viewport, text written at right angles to edge.

* r: Right of viewport, text written parallel to edge.

r v: Right of viewport, text written at right angles to edge.
e t: Top of viewport, text written parallel to edge.

e tv: Top of viewport, text written at right anglesto edge.

156

The Common API for PLplot

di sp (PLFLT, input) Position of the reference point of string, measured outwards from
the specified viewport edge in units of the current character height.
Use negative di sp to write within the viewport.

pos (PLFLT, input) Position of the reference point of string along the specified edge,
expressed as a fraction of the length of the edge.

j ust (PLFLT, input) Specifies the position of the string relative to its reference point. If
j ust =0. , the reference point is at the left and if j ust =1. , it is
at the right of the string. Other values of j ust give intermediate
justifications.

t ext (const char *,input) The string to be written out.
Redacted form:

* Generd: pl nt ex(side, disp, pos, just, text)

» Perl/PDL: pl nt ex(di sp, pos, just, side, text)

This function is used in examples 3,4,6-8,11,12,14,18,23,26.

pl nt ex3: Write text relative to viewport boundaries in 3D plots.
pl nt ex3 (side, disp, pos, just, text);

Writestext at aspecified position relative to the viewport boundaries. Text may bewritteninside or outside
the viewport, but is clipped at the subpage boundaries. The reference point of a string lies along a line
passing through the string at half the height of a capital letter. The position of the reference point along
thislineis determined by j ust , and the position of the reference point relative to the viewport is set by

di sp and pos.
si de (const char *,input) Specifiesthe side of the viewport along which the text isto be writ-
ten. The string should contain one or more of the following charac-
ters:[xyz] [ps] [v] . Only onelabel isdrawn at atime, i.e. xyp
will only label the X axis, not both the X and Y axes.
e X: Label the X axis.
e y: Label theY axis.
e z:Label the Z axis.
e p: Label the”primary” axis. For Z thisisthe leftmost Z axis. For
X itisthe axisthat starts at y-min. For Y it isthe axis that starts
at x-min.
e s: Label the“secondary” axis.
« v: Draw thetext perpendicular to the axis.
di sp (PLFLT, input) Position of the reference point of string, measured outwards from
the specified viewport edge in units of the current character height.
Use negative di sp to write within the viewport.
pos (PLFLT, input) Position of the reference point of string along the specified edge,

expressed as a fraction of the length of the edge.

157

The Common API for PLplot

j ust (PLFLT, input) Specifies the position of the string relative to its reference point. If
j ust =0. , the reference point is at the left and if j ust =1. , itis
at the right of the string. Other values of j ust give intermediate
justifications.

text (const char *,input) The string to be written out.
Redacted form: pl nt ex3(si de, di sp, pos, just, text)

This function is used in example 28.

pl ot 3d: Plot 3-d surface plot
plot3d (x, y, z, nx, ny, opt, side);

Plots athree dimensional surface plot within the environment set up by pl w3d. The surface is defined by
the two-dimensional array z[nx] [ny] , thepoint z[i] [j] being the value of the functionat (x[i],
y[j 1) . Note that the points in arrays x and y do not need to be equally spaced, but must be stored
in ascending order. The parameter opt controls the way in which the surface is displayed. For further
details see the section called “ Three Dimensional Surface Plots’. The only difference between pl nesh
and pl ot 3d isthat pl mesh draws the bottom side of the surface, whilepl ot 3d only drawsthe surface
as viewed from the top.

X (PLFLT *,input) Pointer to set of x coordinate values at which the function is eval-
uated.

y (PLFLT *,input) Pointer to set of y coordinate values at which the function is eval-
uated.

z (PLFLT **,input) Pointer to a vectored two-dimensional array with set of function
values.

nx (PLI NT, input) Number of x values at which function is evaluated.

ny (PLI NT, input) Number of y values at which function is evaluated.

opt (PLI NT, input) Determines the way in which the surface is represented:

e opt =DRAW LI NEX: Lines are drawn showing z as a function
of x for eachvalueof y[j].

e opt =DRAW LI NEY: Lines are drawn showing z as a function
of y for eachvalueof x[i].

e opt =DRAW LI NEXY: Network of lines is drawn connecting
points at which function is defined.

si de (PLBOQOL, input) Flagtoindicatewhether or not “sides" should bedraw onthefigure.
If si de istrue sides are drawn, otherwise no sides are drawn.

Redacted form: pl ot 3d(x, y, z, opt, side)
Thisfunction isused in examples 11,21.
pl ot 3dc: Magnitude colored plot surface with contour.

pl ot 3dc (x, y, z, nx, ny, opt, clevel, nlevel);

158

The Common API for PLplot

Identical to pl ot 3d but with extra functionalities: the surface mesh can be colored accordingly to the
current z value being plotted, acontour plot can be drawn at the base XY plane, and a curtain can be drawn
between the plotted function border and the base XY plane. The argumentsareidentical to pl neshc. The
only difference between pl neshc and pl ot 3dc isthat pl meshc drawsthe bottom side of the surface,
while pl ot 3dc only draws the surface as viewed from the top.

Redacted form:
* Generd: pl ot 3dc(x, y, z, opt, clevel)
 Perl/PDL: Not available?

Thisfunction is used in example 21.

pl par seopt s: Parse command-line arguments
i nt plparseopts (p_argc, argv, node);

Parse command-line arguments.

p_argc (i nt *,input) pointer to number of arguments.

ar gv (char **, input) Pointer to character array containing * p_ar gc command-line ar-
guments.

node (PLI NT, input) Parsing mode with the following possibilities:

e« PL_PARSE FULL (1) -- Full parsing of command line and all
error messages enabled, including program exit when an error
occurs. Anything on the command line that isn't recognized asa
valid option or option argument is flagged as an error.

e PL_PARSE_QUIET (2) -- Turnsoff all output except in the case
of errors.

e PL_PARSE_NODELETE (4) -- Turns off deletion of processed
arguments.

e PL_PARSE_SHOWALL (8) -- Show invisible options

* PL_PARSE_NOPROGRAM (32) -- Specified if argv[0] isNOT
a pointer to the program name.

* PL_PARSE_NODASH (64) -- Set if leading dash is NOT re-
quired.

e PL_PARSE_SKIP (128) -- Set to quietly skip over any unrecog-
nized arguments.

pl par seopt s removes al recognized flags (decreasing argc accordingly), so that invalid input may be
readily detected. It can also be used to process user command line flags. The user can merge an option table
of type PLOptionTableinto theinternal option tableinfo structure using pl Mer geOpt s. Or, the user can
specify that ONLY the external table(s) be parsed by calling pl C ear Opt s before pl Mer geOpt s.

The default action taken by pl par seopt s isasfollows:

Returns with an error if an unrecognized option or badly formed option-value pair are encountered.

159

The Common API for PLplot

pl pat :

Returnsimmediately (return code 0) when the first non-option command line argument is found.
Returns with the return code of the option handler, if one was called.

Deletes command line arguments from argv list as they are found, and decrements argc accordingly.
Does not show "invisible" options in usage or help messages.

Assumes the program name is contained in argv[0].

These behaviors may be controlled through the mode argument.
Redacted form:

» Generd: pl par seopt s(argv, node)

* Perl/PDL: Not available?

Thisfunction isused in all of the examples.

Set area fill pattern
pl pat (nlin, inc, del);

Setsthe areafill pattern. The pattern consists of 1 or 2 sets of parallel lines with specified inclinations and
spacings. The arguments to this routine are the number of sets to use (1 or 2) followed by two pointers
to integer arrays (of 1 or 2 elements) specifying the inclinations in tenths of a degree and the spacing in
micrometers. (also see pl psty)

nl i n (PLI NT, input) Number of sets of lines making up the pattern, either 1 or 2.

i nc (PLI NT *,input) Pointer to array with nl i n elements. Specifiesthe lineinclination
in tenths of a degree. (Should be between -900 and 900).

del (PLI NT *,input) Pointer to array with nl i n elements. Specifies the spacing in mi-
crometers between the lines making up the pattern.

Redacted form:
» Generd: pl pat (i nc, del)
o Perl/PDL: pl pat (nlin, inc, del)

Thisfunction is used in example 15.

pl pat h: Draw a line between two points, accounting for coordinate
transforms.

pl path (n, x1, yl1, x2, y2);

Joins the point (x1, y1) to(x2, y2).If agloba coordinate transform is defined then the line is
broken in to n segments to approximate the path. If no transform is defined then this simply acts like a
cal topl j oi n.

n (PLI NT, input) number of pointsto use to approximate the path.
x1 (PLFLT, input) x coordinate of first point.

y1 (PLFLT, input) y coordinate of first point.

X2 (PLFLT, input) x coordinate of second point.

160

The Common API for PLplot

y2 (PLFLT, input) y coordinate of second point.
Redacted form: pl pat h(n, x1, y1, x2, y2)

Thisfunction is not used in any examples.
pl poi n: Plot a glyph at the specified points
pl poin (n, x, y, code);

Plot aglyph at the specified points. (Thisfunctionislargely superseded by pl st r i ng which givesaccess
tomany[!] moreglyphs.) code=- 1 meanstry to just draw apoint. Right now it'sjust amove and adraw at
the same place. Not ideal, since asufficiently intelligent output device may optimizeit away, or there may
be faster ways of doing it. Thisis OK for now, though, and offers a 4X speedup over drawing a Hershey
font "point" (which is actually diamond shaped and therefore takes 4 strokes to draw). If 0 < code < 32,
then a useful (but small subset) of Hershey symbols is plotted. If 32 <= code <= 127 the corresponding
printable ASCII character is plotted.

n (PLI NT, input) Number of pointsinthex andy arrays.

X (PLFLT *,input) Pointer to an array with X coordinates of points.

y (PLFLT *,input) Pointer to an array with Y coordinates of points.

code (PLI NT, input) Hershey symbol code (in "ascii-indexed" form with -1 <= code <=

127) corresponding to a glyph to be plotted at each of the n points.
Redacted form: pl poi n(x, y, code)

This function isused in examples 1,6,14,29.

pl poi n3: Plot a glyph at the specified 3D points
pl poin3 (n, x, y, z, code);

Plot aglyph at the specified 3D points. (Thisfunction islargely superseded by pl st ri ng3 which gives
access to many[!] more glyphs.) Set up the call to this function similar to what is done for pl | i ne3.
code=- 1 means try to just draw a point. Right now it's just a move and a draw at the same place. Not
ideal, since a sufficiently intelligent output device may optimize it away, or there may be faster ways of
doingit. Thisis OK for now, though, and offersa4X speedup over drawing aHershey font "point" (which
is actually diamond shaped and therefore takes 4 strokes to draw). If 0 < code < 32, then a useful (but
small subset) of Hershey symbols is plotted. If 32 <= code <= 127 the corresponding printable ASCII
character is plotted.

n (PLI NT, input) Number of pointsinthex andy arrays.

X (PLFLT *, input) Pointer to an array with X coordinates of points.

y (PLFLT *,input) Pointer to an array with Y coordinates of points.

z (PLFLT *, input) Pointer to an array with Z coordinates of points.

code (PLI NT, input) Hershey symbol code (in "ascii-indexed" form with -1 <= code <=

127) corresponding to a glyph to be plotted at each of the n points.
Redacted form: pl poi n3(x, y, z, code)

Thisfunction is not used in any example.

161

The Common API for PLplot

pl pol y3: Draw a polygon in 3 space
pl poly3 (n, x, y, z, draw, ifcc);

Draws a polygonin 3 space defined by n pointsinx, y, and z. Setup likepl | i ne3, but differsfrom that
function in that pl pol y3 attemptsto determineif the polygon is viewable depending on the order of the
points within the arrays and the value of i f cc. If the back of polygon is facing the viewer, then it isn't
drawn. If thisisn't what you want, then use pl | i ne3 instead.

The points are assumed to be in a plane, and the directionality of the plane is determined from the first
three points. Additional points do not haveto lie on the plane defined by thefirst three, but if they do not,
then the determination of visibility obviously can't be 100% accurate... So if you're 3 space polygons are
too far from planar, consider breaking them into smaller polygons. “3 points define aplane” :-).

Bugs: If one of thefirst two segmentsis of zero length, or if they are co-linear, the calculation of visibility
hasa50/50 chance of being correct. Avoid such situations:-). Seex18c. ¢ for an example of thisproblem.
(Search for “20.1").

n (PLI NT, input) Number of points defining line.

X (PLFLT *, input) Pointer to array with x coordinates of points.

y (PLFLT *,input) Pointer to array with y coordinates of points.

z (PLFLT *,input) Pointer to array with z coordinates of points.

dr aw (PLBOCL *, input) Pointer to array which controls drawing the segments of the poly-

gon. Ifdraw i] istrue, thenthepolygon segment fromindex|[i]
to[i +1] isdrawn, otherwise, not.

i fcc (PLBOOL, input) If i f cc istrue the directionality of the polygon is determined by
assuming the points are laid out in a counter-clockwise order. Oth-
erwise, the directionality of the polygon is determined by assuming
the points are laid out in a clockwise order.

Redacted form: pl pol y3(x, y, z, code)

Thisfunction is used in example 18.

pl pr ec: Set precision in numeric labels
pl prec (set, prec);
Sets the number of places after the decimal point in numeric labels.

set (PLI NT, input) If set isequal to 0 then PLplot automatically determines the num-
ber of places to use after the decimal point in numeric labels (like
those used to label axes). If set is 1 then pr ec sets the number
of places.

pr ec (PLI NT, input) The number of charactersto draw after thedecimal point in numeric
labels.

Redacted form: pl prec(set, prec)

Thisfunction is used in example 29.

162

The Common API for PLplot

pl psty: Select area fill pattern

pl psty (n);

Select one of eight predefined areafill patterns to use (also see pl pat). Setting the fill style to O gives
asolidfill.

n (PLI NT, input) The desired pattern. Pattern 1 consists of horizontal lines, pattern

2 consists of vertical lines, pattern 3 consists of lines at 45 degrees
angle (upward), and so on.

Redacted form: pl psty(n)

Thisfunction isused in examples 12,13,15,16,25.

pl pt ex: Write text inside the viewport
pl ptex (x, y, dx, dy, just, text);

Writes text at a specified position and inclination within the viewport. Text is clipped at the viewport
boundaries. The reference point of a string lies along a line passing through the string at half the height
of acapital letter. The position of the reference point along thisline is determined by j ust , the reference
point isplaced at world coordinates (x, y) within the viewport. The inclination of the string is specified
in terms of differences of world coordinates making it easy to write text parallel to alinein agraph.

X (PLFLT, input) x coordinate of reference point of string.
y (PLFLT, input) y coordinate of reference point of string.
dx (PLFLT, input) Together with dy, this specifies the inclination of the string. The

basdline of the string is paralel to a line joining (x, Yy) to
(x+dx, y+dy).

dy (PLFLT, input) Together with dx, this specifies the inclination of the string.

j ust (PLFLT, input) Specifies the position of the string relative to its reference point. If
j ust =0. , the reference point is at the left and if j ust =1. , it is
at the right of the string. Other values of j ust give intermediate
justifications.

t ext (const char *,input) The string to be written out.
Redacted form: pl pt ex(x, y, dx, dy, just, text)

This function isused in example 2-4,10,12-14,20,23,24,26.

pl pt ex3: Write text inside the viewport of a 3D plot.
pl ptex3 (x, y, z, dx, dy, dz, sx, sy, sz, just, text);

Writes text at a specified position and inclination and with a specified shear within the viewport. Text is
clipped at the viewport boundaries. The reference point of a string lies along a line passing through the
string at half the height of a capital letter. The position of the reference point along thisline is determined
by j ust , and the reference point is placed at world coordinates (x, Yy, z) within the viewport. The
inclination and shear of the string is specified in terms of differences of world coordinates making it easy
to write text paralel to alinein a graph.

163

The Common API for PLplot

X (PLFLT, input) x coordinate of reference point of string.
y (PLFLT, input) y coordinate of reference point of string.
z (PLFLT, input) z coordinate of reference point of string.
dx (PLFLT, input) Together withdy and dz, this specifies the inclination of the

string. The baseline of the string is parallel to aline joining (x,
y, z) to (x+dx, y+dy, z+dz).

dy (PLFLT, input) Together with dx and dz, this specifies the inclination of the
string.

dz (PLFLT, input) Together with dx and dy, this specifies the inclination of the
string.

sX (PLFLT, input) Together withsy and sz, this specifiesthe shear of the string.

The string is sheared so that the characters are vertically parallel to
alinejoining (x, Yy, z) to (x+sx, y+sy, z+sz).Ifsx
= sy = sz = 0.) thenthetextisnot sheared.

sy (PLFLT, input) Together withsx and sz, this specifies shear of the string.
sz (PLFLT, input) Together withsx and sy, this specifies shear of the string.
j ust (PLFLT, input) Specifies the position of the string relative to its reference point. If

j ust =0. , the reference point is at the left and if j ust =1. , it is
at the right of the string. Other values of j ust give intermediate
justifications.

t ext (const char *,input) The string to be written out.

Redacted form: pl pt ex3(x, vy, z, dx, dy, dz, sx, sy, sz, just, text)

This function is used in example 28.
pl randd: Random number generator returning a real random num-
ber in the range [0,1].

pl randd ();

Random number generator returning areal random number intherange[0,1]. The generator isbased onthe
Mersenne Twister. Most languages / compilers provide their own random number generator, and so this
isprovided purely for convenience and to give a consistent random number generator across al languages
supported by PLplot. Thisis particularly useful for comparing results from the test suite of examples.

Redacted form: pl r andd()

This function isused in examples 17,21.

pl r epl ot : Replays contents of plot buffer to current device/file

plreplot ();
Replays contents of plot buffer to current deviceffile.

Redacted form: pl r epl ot ()

164

The Common API for PLplot

Thisfunction is used in example 1,20.

pl r gbhl s: Convert RGB color to HLS

plrgbhls (r, g, b, p_h, p_I, p_s);

Convert RGB color coordinatesto HLS

r (PLFLT, input) Red intensity (0.0-1.0) of the colour

g (PLFLT, input) Green intensity (0.0-1.0) of the colour

b (PLFLT, input) Blueintensity (0.0-1.0) of the colour

p_h (PLFLT *, output) Pointer to hue, in degrees on the colour cone (0.0-360.0)

p_| (PLFLT *, output) Pointer to lightness, expressed as afraction of the axis of the colour

cone (0.0-1.0)

p_s (PLFLT *, output) Pointer to saturation, expressed as a fraction of the radius of the
colour cone (0.0-1.0)

Redacted form:
e Generd:plrgbhls(r, g, b, p_h, pI|, p_s)
 Perl/PDL: Not available? Implemented as plrgb/plrgbhl?

Thisfunction isused in example 2.

pl schr: Set character size

pl schr (def, scale);

This sets up the size of all subsequent characters drawn. The actual height of a character is the product of
the default character size and a scaling factor.

def (PLFLT, input) The default height of a character in millimeters, should be set to
zero if the default height is to remain unchanged.

scal e (PLFLT, input) Scale factor to be applied to default to get actual character height.
Redacted form: pl schr (def, scal e)

This function isused in example 2,13,23,24.

pl scmapO0: Set color mapO colors by 8-bit RGB values
pl scmap0 (r, g, b, ncol 0);

Set color map0 colors using 8-bit RGB values (see the section called “Color Map0”). This sets the entire
color map — only as many colors as specified will be allocated.

r (PLI NT *,input) Pointer to array with set of unsigned 8-bit integers (0-255) repre-
senting the degree of red in the color.

g (PLI NT *,input) Pointer to array with set of unsigned 8-bit integers (0-255) repre-
senting the degree of green in the color.

165

The Common API for PLplot

b (PLI NT *,input) Pointer to array with set of unsigned 8-bit integers (0-255) repre-
senting the degree of blue in the color.

ncol O (PLI NT, input) Number of itemsinther, g, and b arrays.

Redacted form: pl scmapO(r, g, b, ncol 0)

This function is used in examples 2,24.
pl scmapOa: Set color mapO0 colors by 8-bit RGB values and double
alpha value.

pl scmapOa (r, g, b, a, ncol0);

Set color map0 colors using 8-bit RGB values (see the section called “Color Map0”) and floating point
alphavalue. This sets the entire color map — only as many colors as specified will be allocated.

r (PLI NT *,input) Pointer to array with set of unsigned 8-bit integers (0-255) repre-
senting the degree of red in the color.

g (PLI NT *,input) Pointer to array with set of unsigned 8-bit integers (0-255) repre-
senting the degree of green in the color.

b (PLI NT *,input) Pointer to array with set of unsigned 8-bit integers (0-255) repre-
senting the degree of blue in the color.

a (PLFLT *,input) Pointer to array with set of PLFLT values (0.0 - 1.0) representing
the transparency of the color.

ncol O (PLI NT, input) Number of itemsinther, g, b, and a arrays.

This function is used in examples 30.

pl scnmapOn: Set number of colors in color mapO

pl scmapOn (ncol 0);

Set number of colorsin color map0 (see the section called “ Color MapQ”). Allocate (or reallocate) color
map0, and fill with default values for those colors not previously allocated. The first 16 default colors are
giveninthepl col 0 documentation. For larger indices the default color isred.

The drivers are not guaranteed to support more than 16 colors.

ncol 0 (PLI NT, input) Number of colors that will be allocated in the map0 palette. If this
number is zero or less, then the value from the previous call to
pl scmapOn isused and if thereis no previous call, then a default
valueisused.

Redacted form: pl scmapOn(ncol 0)
Thisfunction is used in examples 15,16,24.
pl scmapl: Set color mapl colors using 8-bit RGB values

pl scmapl (r, g, b, ncol1);

166

The Common API for PLplot

Set color mapl colors using 8-bit RGB values (see the section called “Color Mapl”). This also sets the
number of colors.

r (PLI NT *,input) Pointer to array with set of unsigned 8-bit integers (0-255) repre-
senting the degree of red in the color.

g (PLI NT *,input) Pointer to array with set of unsigned 8-bit integers (0-255) repre-
senting the degree of green in the color.

b (PLI NT *,input) Pointer to array with set of unsigned 8-bit integers (0-255) repre-
senting the degree of blue in the color.

ncol 1 (PLI NT, input) Number of itemsinther, g, and b arrays.
Redacted form: pl scmap1(r, g, b, ncol 1)
Thisfunction is used in example 31.

pl scnmapla: Set color mapl colors using 8-bit RGB values and dou-
ble alpha values.

pl scmapla (r, g, b, a, ncoll);

Set color mapl colors using 8-bit RGB values (see the section called “ Color Mapl”) and double alpha
values. This also sets the number of colors.

r (PLI NT *,input) Pointer to array with set of unsigned 8-bit integers (0-255) repre-
senting the degree of red in the color.

g (PLI NT *,input) Pointer to array with set of unsigned 8-bit integers (0-255) repre-
senting the degree of green in the color.

b (PLI NT *,input) Pointer to array with set of unsigned 8-bit integers (0-255) repre-
senting the degree of bluein the color.

a (PLFLT *,input) Pointer to array with set of double values (0.0-1.0) representing the
aphavaue of the color.

ncol 1 (PLI NT, input) Number of itemsinther, g, b, and a arrays.

Thisfunction is used in example 31.
pl scmapll : Set color map1l colors using a piece-wise linear rela-
tionship

pl scmapll (itype, npts, pos, coordl, coord2, coord3, alt_hue_path);

Set color mapl colors using a piece-wise linear rel ationship between position in the color map (from0to 1)
and position in HLS or RGB color space (see the section called “Color Mapl”). May be called at any time.

The idea here is to specify a number of control points that define the mapping between palette 1 input
positions (intensities) and HL S (or RGB). Between these points, linear interpolation is used which givesa
smooth variation of color with input position. Any number of control points may be specified, located at
arbitrary positions, although typically 2 - 4 are enough. Another way of stating thisisthat we aretraversing
agiven number of linesthrough HL'S (or RGB) space aswe move through color mapl entries. The control

167

The Common API for PLplot

points at the minimum and maximum position (0 and 1) must always be specified. By adding more control
pointsyou can get more variation. One good techniquefor plotting functionsthat vary about some expected
average isto use an additional 2 control pointsin the center (position ~= 0.5) that are the same lightness
as the background (typically white for paper output, black for crt), and same hue as the boundary control
points. This allows the highs and lows to be very easily distinguished.

Each control point must specify the position in color mapl as well as three coordinates in HLS or RGB
space. Thefirst point must correspond to position = 0, and the last to position = 1.

The default behaviour is for the hue to be linearly interpolated between the control points. Since the hue
lies in the range [0, 360] this corresponds to interpolation around the "front" of the color wheel (red<-
>green<->blue<->red). If al t _hue_pat h[i] istrue, then an alternative interpolation is used between
control pointsi andi +1. If hue[i +1] -hue[i] > 0 then interpolation is between hue[i] and
hue[i +1] - 360, otherwise between hue[i] and hue[i +1] + 360. You can consider this as
interpolation around the "back" or "reverse" of the color whedl. Specifying al t _hue_pat h=NULL is
equivalenttosettingal t _hue_pat h[] = fal se for every control point.

Table 19.1. Examples of interpolation

Hue alt_hue path color scheme
[120 240Q] false green-cyan-blue
[240 120] false blue-cyan-green
[120 24Q] true green-yellow-red-magenta-blue
[240 120Q] true blue-magenta-red-yellow-green

Table 19.2. Bounds on coordinates

RGB R [0, 1] magnitude
RGB G [0, 1] magnitude
RGB B [0, 1] magnitude
HLS hue [0, 360] degrees
HLS lightness [0, 1] magnitude
HLS saturation [0, 1] magnitude

i type (PLBOQOL, input) true: RGB, false: HLS.

npt s (PLI NT, input) number of control points

pos (PLFLT *,input) position for each control point (between 0.0 and 1.0, in ascending

order)

coordl (PLFLT *,input) first coordinate (H or R) for each control point

coord2 (PLFLT *,input) second coordinate (L or G) for each control point

coord3 (PLFLT *,input) third coordinate (S or B) for each control point

alt _hue_pat h (PLBOOL: *, dternative interpolation method flag for each control point.
input) (al t _hue_pat h[i] refersto the interpolation interval between
thei andi + 1 control points).

Redacted form: pl scmapll (i type, pos, coordl, coord2, coord3, alt_hue_path)

168

The Common API for PLplot

Thisfunction isused in examples 8,11,12,15,20,21.

pl scmapll a: Set color map1l colors using a piece-wise linear rela-
tionship

pl scmaplla (itype, npts, pos, coordl, coord2, <coord3, coord4,
alt _hue_path);

Thisisaversion of pl scrmapll that supportsaphatransparency. It sets color mapl colorsusing a piece-
wise linear relationship between position in the color map (from 0to 1) and position in HLS or RGB color
space (see the section called “ Color Map1”) with alphavalue (0.0 - 1.0). It may be called at any time.

i type (PLBOOL, input) true: RGB, false: HLS.

npt s (PLI NT, input) number of control points

pos (PLFLT *,input) position for each control point (between 0.0 and 1.0, in ascending
order)

coordl (PLFLT *,input) first coordinate (H or R) for each control point

coord2 (PLFLT *,input) second coordinate (L or G) for each control point

coord3 (PLFLT *,input) third coordinate (S or B) for each control point

coord4 (PLFLT *,input) fourth coordinate, the alpha value for each control point

alt _hue_pat h (PLBOOL: *, dternative interpolation method flag for each control point.
input) (al t _hue_pat h[i] refersto theinterpolation interval between
thei andi + 1 control paints).

This function is used in example 30.

pl scmapln: Set number of colors in color mapl

pl scmapln (ncol 1);

Set number of colors in color mapl, (re-)allocate color mapl, and set default values if this is the first
allocation (see the section called “Color Mapl”).

ncol 1 (PLI NT, input) Number of colors that will be allocated in the mapl palette. If this
number is zero or less, then the value from the previous call to
pl scmapln isused and if thereisno previous call, then a default
valueis used.

Redacted form: pl scmapln(ncol 1)

Thisfunction is used in examples 8,11,20,21.

pl scol 0: Set a given color from color mapO by 8 bit RGB value
pl scol0 (icolO, r, g, b);

Set a given color by 8-bit RGB value for color map0 (see the section called “Color Map0”). Overwrites
the previous color value for the given index and, thus, does not result in any additional allocation of space
for colors.

169

The Common API for PLplot

i col O (PLI NT, input) Color index. Must be less than the maximum number of colors
(which isset by default, by pl scnmapO0n, or even by pl scrmapO0).

r (PLI NT, input) Unsigned 8-bit integer (0-255) representing the degree of red in the
color.

g (PLI NT, input) Unsigned 8-bit integer (0-255) representing the degree of greenin
the color.

b (PLI NT, input) Unsigned 8-bit integer (0-255) representing the degree of bluein
the color.

Redacted form: pl scol O(icol 0, r, g, b)

Thisfunction is not used in any examples.

pl scol Oa: Set a given color from color map0 by 8 bit RGB value
and double alpha value.

pl scol0a (icol0, r, g, b, a);

Set agiven color by 8-bit RGB value and double alphavalue for color map0 (see the section called “ Color
Map0”). Overwritesthe previous color valuefor the given index and, thus, does not result in any additional
allocation of space for colors.

i col O (PLI NT, input) Color index. Must be less than the maximum number of colors
(whichisset by default, by pl scnapOn, or even by pl scrmapO0).

r (PLI NT, input) Unsigned 8-hit integer (0-255) representing the degree of red in the
color.

g (PLI NT, input) Unsigned 8-bit integer (0-255) representing the degree of greenin
the color.

b (PLI NT, input) Unsigned 8-bit integer (0-255) representing the degree of blue in
the color.

a (PLFLT, input) double value (0.0-1.0) representing the alpha value of the color.

Thisfunction is used in example 30.

pl scol bg: Set the background color by 8-bit RGB value
pl scol bg (r, g, b);

Set the background color (color 0in color map 0) by 8-bit RGB value (seethe section called “ Color MapQ”).

r (PLI NT, input) Unsigned 8-bit integer (0-255) representing the degree of red in the
color.

g (PLI NT, input) Unsigned 8-bit integer (0-255) representing the degree of greenin
the color.

b (PLI NT, input) Unsigned 8-hit integer (0-255) representing the degree of bluein
the color.

170

The Common API for PLplot

Redacted form: pl scol bg(r, g,

b)

Thisfunction is used in examples 15,31.

pl scol bga: Set the background color by 8-bit RGB value and dou-

ble alpha value.

pl scol bga (r, g, b, a);

Set the background color (color Oin color map 0) by 8-bit RGB value (seethe section called “ Color Map0”)

and double alphavalue.

r (PLI NT, input)

g (PLI NT, input)

b (PLI NT, input)

a (PLFLT, input)

This function is used in example 31.

Unsigned 8-bit integer (0-255) representing the degree of red in the
color.

Unsigned 8-bit integer (0-255) representing the degree of greenin
the color.

Unsigned 8-bit integer (0-255) representing the degree of bluein
the color.

double value (0.0-1.0) representing the alpha value of the color.

pl scol or: Used to globally turn color output on/off

pl scol or (color);

Used to globally turn color output on/off for those drivers/devices that support it.

col or (PLI NT, input)

Redacted form: pl scol or (col or)

Thisfunction is used in example 31.

Color flag (Boolean). If zero, color isturned off. If non-zero, color
isturned on.

pl sconpr essi on: Set device-compression level

pl sconpressi on (conpressi on);

Set device-compression level. Only used for drivers that provide compression. This function, if used,

should be invoked beforeacall to pl i

conpr essi on (PLI NT, input)

nit.

The desired compression level. This is a device-dependent value.
Currently only the jpeg and png devices use these values. For jpeg
valueisthejpeg quality which should normally beintherange 0-95.
Higher values denote higher quality and hence larger image sizes.
For png values are in the range -1 to 99. Values of 0-9 are taken
asthe compression level for zlib. A value of -1 denotes the default
Zlib compression level. Vauesin therange 10-99 are divided by 10
and then used as the zlib compression level. Higher compression
levels correspond to greater compression and small file sizes at the
expense of more computation.

171

The Common API for PLplot

Redacted form: pl sconpr essi on(conpr essi on)

This function is used in example 31.

pl sdev: Set the device (keyword) name

pl sdev (devnane);
Set the device (keyword) name.

devnane (const char *,in- Pointer to device (keyword) name string.
put)

Redacted form: pl sdev(devnane)

This function is used in examples 1,14,20.

pl sdi dev: Set parameters that define current device-space window
pl sdi dev (mar, aspect, jX, jVy);

Set relative margin width, aspect ratio, and relative justification that define current device-space window.
If you want to just use the previous value for any of these, just pass in the magic value PL_NOTSET.
It is unlikely that one should ever need to change the aspect ratio but it's in there for completeness. |If
pl sdi dev isnot calledthedefault valuesof mar ,j x,andj y areall 0. aspect isset toadevice-specific

value.

mar (PLFLT, input) Relative margin width.

aspect (PLFLT, input) Aspect ratio.

j X (PLFLT, input) Relative justification in x. Value must liein the range -0.5 to 0.5.
j Yy (PLFLT, input) Relative justification iny. Value must liein the range -0.5 to 0.5.

Redacted form: pl sdi dev(mar, aspect, jXx, jy)

Thisfunction is used in example 31.
pl sdi map: Set up transformation from metafile coordinates

pl sdi map (di mxm n, di nkmax, dinmymn, di nymax, di mxpmm di nypnm;

Set up transformation from metafile coordinates. The size of the plot isscaled so asto preserve aspect ratio.
Thisisn't intended to be a general -purpose facility just yet (not sure why the user would need it, for one).

di mxmi n (PLI NT, input) NEEDS DOCUMENTATION
di mxmax (PLI NT, input) NEEDS DOCUMENTATION
di mymi n (PLI NT, input) NEEDS DOCUMENTATION
di mymax (PLI NT, input) NEEDS DOCUMENTATION
di mxpmm(PLFLT, input) NEEDS DOCUMENTATION

172

The Common API for PLplot

di mypmm(PLFLT, input) NEEDS DOCUMENTATION

Redacted form: pl sdi map(di mxmi n, di nxmax, dinymin, di nymax, di nkpnm di myp-
)

Thisfunction is not used in any examples.

pl sdi ori : Set plot orientation
pl sdiori (rot);

Set plot orientation parameter which is multiplied by 90° to obtain the angle of rotation. Note, arbitrary
rotation parameters such as 0.2 (corresponding to 18°) are possible, but the usual values for the rotation
parameter are 0., 1., 2., and 3. corresponding to 0° (landscape mode), 90° (portrait mode), 180° (seascape
mode), and 270° (upside-down mode). If pl sdi ori isnot called the default value of r ot isO.

N.B. aspect ratio is unaffected by callsto pl sdi ori . So you will probably want to change the aspect
ratio to a value suitable for the plot orientation using a call to pl sdi dev or the command-line options
-aor-freeaspect. For more documentation of those options see the section called “Command Line
Arguments’. Such command-line options can be set internally using pl set opt or set directly using the
command line and parsed using acall to pl par seopt s.

rot (PLFLT, input) Plot orientation parameter.
Redacted form: pl sdi ori (rot)

Thisfunction is not used in any examples.
pl sdi pl t: Set parameters that define current plot-space window

plsdiplt (xmn, ymn, xnmax, ymax);

Set relative minima and maxima that define the current plot-space window. If pl sdi pl t isnot called
the default values of xm n, ymi n, xmax, and ymax are0,, 0., 1., and 1.

xm n (PLFLT, input) Relative minimum in x.
ym n (PLFLT, input) Relative minimuminyy.
xmax (PLFLT, input) Relative maximum in x.
ymax (PLFLT, input) Relative maximuminy.

Redacted form: pl sdi pl t (xmi n, ym n, xmax, ymax)

Thisfunction is used in example 31.

pl sdi pl z: Set parameters incrementally (zoom mode) that define
current plot-space window

pl sdiplz (xmin, ymn, xmax, ymex);

Set relative minima and maxima incrementally (zoom mode) that define the current plot-space window.
This function has the same effect as pl sdi pl t if that function has not been previously called. Oth-
erwise, this function implements zoom mode using the transformation mi n_used = old min +

173

The Common API for PLplot

old length*min andmax_used = old min + old | ength*max for each axis. For ex-
ample, ifmn = 0.05andnmax = 0. 95 for each axis, repeated calls to pl sdi pl z will zoom in
by 10 per cent for each call.

xm n (PLFLT, input) Relative (incremental) minimum in x.
ym n (PLFLT, input) Relative (incremental) minimuminy.
xmax (PLFLT, input) Relative (incremental) maximum in x.
ymax (PLFLT, input) Relative (incremental) maximuminyy.

Redacted form: pl sdi pl z(xmi n, ym n, xmax, ymax)

This function is used in example 31.

pl seed: Set seed for internal random number generator.
pl seed (seed);
Set the seed for the internal random number generator. See pl r andd for further details.
seed (unsi gned i nt, input) Seed for random number generator.
Redacted form: pl seed(seed)

Thisfunction is used in example 21.

pl sesc: Set the escape character for text strings

pl sesc (esc);

Set the escape character for text strings. From C (in contrast to Fortran 77, seepl sescf ort ran77) you
passesc asacharacter. Only selected characters are allowed to prevent the user from shooting himself in
thefoot (For example, a“\” isn't allowed sinceit conflictswith C's use of backslash as a character escape).
Here are the allowed escape characters and their corresponding decimal ASCII values:

o “I” ASCII 33

o “#", ASCII 35

« “$", ASCII 36

e “04”, ASCII 37

» “&”,ASCII 38

o “*" ASCII 42

 “@",ASCIl 64

o “N U ASCII 94

o “~" ASCII 126

esc (char, input) Escape character.

174

The Common API for PLplot

Redacted form:
» Generd: pl sesc(esc)
» Perl/PDL: Not available?

Thisfunction is used in example 29.

pl set opt : Set any command-line option
int plsetopt (opt, optarg);

Set any command-line option internally from a program before it invokes pl i ni t . opt isthe name of
the command-line option and opt ar g is the corresponding command-line option argument.

opt (const char *,input) Pointer to string containing the command-line option.

opt arg (const char *,input) Pointer to string containing the argument of the command-line op-
tion.

This function returns 0 on success.
Redacted form: pl set opt (opt, optarg)

Thisfunction is used in example 14.

pl sf am Set family file parameters
pl sfam (fam num bmax);
Sets variables dealing with output file familying. Does nothing if familying not supported by the driver.

Thisroutine, if used, must be called before initializing PL plot. See the section called “ Family File Output”
for more information.

fam(PLI NT, input) Family flag (Boolean). If nonzero, familying is enabled.
num(PLI NT, input) Current family file number.
brax (PLI NT, input) Maximum file size (in bytes) for afamily file.

Redacted form: pl sf am(fam num bmax)

Thisfunction is used in examples 14,31.

pl sf ci : Set FCI (font characterization integer)
plsfci (fci);

Sets font characteristics to be used at the start of the next string using the FCI approach. See the section
called “FCI” for more information.

fci (PLUNI CODE, input) PLUNICODE (unsigned 32-hit integer) value of FCI.
Redacted form:

e Generd: pl sfci(fci)

175

The Common API for PLplot

» Perl/PDL: Not available?

This function is used in example 23.

pl sf nam Set output file name

pl sf nam (f nam ;

Sets the current output file name, if applicable. If the file name has not been specified and is required by
the driver, the user will be prompted for it. If using the X-windows output driver, this sets the display
name. Thisroutine, if used, must be called before initializing PL plot.

f nam(const char *,input) Pointer to file name string.
Redacted form: pl sf nan(f nam)

Thisfunction is used in examples 1,20.

pl sf ont : Set family, style and weight of the current font
pl sfont (famly, style, weight);
Sets the current font. See the section called “FCI” for more information on font selection.

fam |y (PLI NT, input) Font family to select for the current font. The available val-
ues are given by the PL_FCI_* constants in plplot.h. Current
options are PL_FCI_SANS, PL_FCI_SERIF, PL_FCI_MONO,
PL_FCI_SCRIPT and PL_FCI_SYMBOL. A negative value signi-
fies that the font family should not be altered.

st yl e (PLI NT, input) Font style to select for the current font. The available values are
given by the PL_FCI_* constants in plplot.h. Current options are
PL_FCI_UPRIGHT, PL_FCI_ITALICand PL_FCI_OBLIQUE. A
negative value signifies that the font style should not be altered.

wei ght (PLI NT, input) Font weight to select for the current font. The available values are
given by the PL_FCI_* constants in plplot.h. Current options are
PL_FCI_MEDIUM and PL_FCI_BOLD. A negative value signi-
fies that the font weight should not be altered.

Redacted form: pl sfont (fam ly, style, weight)

Thisfunction is used in example 23.

pl shades: Shade regions on the basis of value

pl shades (a, nx, ny, defined, xmn, xnmax, ymn, ynmax, clevel, nlevel,
fill _width, cont_color, cont_width, fill, rectangular, pltr, pltr_data);

Shade regions on the basis of value. Thisisthe high-level routine for making continuous color shaded plots
with cmapl whilepl shade (or pl shadel) areused for individual shaded regions using either cmap0 or
cmapl. exanpl es/ ¢/ x16¢. ¢ shows anumber of examples for using this function. See the following
discussion of the arguments and the section called “ Contour and Shade Plots” for more information.

a (PLFLT ** input) Contains** pointer to array to be plotted. The array must have been
declared as PLFLT g[nx][ny].

176

The Common API for PLplot

nx (PLI NT, input)
ny (PLI NT, input)

defined (PLI NT (*)
(PLFLT, PLFLT),input)

xm n (PLFLT, input)

xmax (PLFLT, input)

ym n (PLFLT, input)

ymax (PLFLT, input)

cl evel (PLFLT *,input)

nl evel (PLI NT,input)

fill _width (PLFLT, input)

cont _col or (PLI NT, input)

cont _wi dt h (PLFLT, input)

fill (void (*) (PLINT,

PLFLT *, PLFLT *),input)

rect angul ar (PLBOOL, input)

pltr (void (*) (PLFLT,

PLFLT, PLFLT *, PLFLT *,

PLPoi nter) ,input)

First dimension of array "a".
Second dimension of array "a".

User function specifying regions excluded from the shading plot.
This function accepts x and y coordinates as input arguments and
must return O if the point is in the excluded region or 1 otherwise.
Thisargument can be NULL if all the values are valid.

Defines the "grid" coordinates. The data g0][0] has a position of
(xmin,ymin), a[nx-1][0] has a position at (xmax,ymin) and so on.

Defines the "grid" coordinates. The data 0][0] has a position of
(xmin,ymin), a[nx-1][0] has a position at (xmax,ymin) and so on.

Defines the "grid" coordinates. The data 0][0] has a position of
(xmin,ymin), alnx-1][0] has a position at (xmax,ymin) and so on.

Defines the "grid" coordinates. The data /0][0] has a position of
(xmin,ymin), alnx-1][0] has a position at (xmax,ymin) and so on.

Pointer to array containing the data levels corresponding to the
edges of each shaded region that will be plotted by this function.
To work properly the levels should be monotonic.

Number of shades plus 1 (i.e., the number of shade edge valuesin
cl evel).

Defines line width used by the fill pattern.

Defines pen color used for contours defining edges of shaded re-
gions. The pen color isonly temporary set for the contour drawing.
Set thisvalue to zero or less if no shade edge contours are wanted.

Defines line width used for contours defining edges of shaded re-
gions. Thisvalue may not be honored by al drivers. The pen width
isonly temporary set for the contour drawing. Set thisvalueto zero
or lessif no shade edge contours are wanted.

Routine used to fill the region. Use pl fi | | . Future version of
PL plot may have other fill routines.

Setr ect angul ar totrueif rectangles map to rectangles after co-
ordinate transformation with pl t r | . Otherwise, setr ect angu-

| ar tofalse. If r ect angul ar isset to true, plshade triesto save
time by filling large rectangles. This optimization failsif the coor-
dinate transformation distorts the shape of rectangles. For example
aplotin polar coordinates hasto haver ect angul ar settofalse.

Pointer to function that defines transformation between indices in
array z and the world coordinates (C only). Transformation func-
tions are provided in the PLplot library: pl t r O for identity map-
ping, and pl tr 1 and pl t r 2 for arbitrary mappings respectively
defined by one- and two-dimensional arrays. In addition, user-sup-
plied routines for the transformation can be used as well. Examples
of all of these approaches are given in the section called “ Contour

177

The Common API for PLplot

Plots from C”. The transformation function should have the form
givenbyanyofpltrO,pltr1,orpltr2.

pl tr_dat a (PLPoi nt er,input) Extra parameter to help pass information to pltrO, pltr1l,
pl t r 2, or whatever routine that is externally supplied.

Redacted form:

* Generd:pl shades(a, defined, xm n, xmax, ymn, ymax, clevel, fill_wi dth,
cont _color, cont_width, fill, rectangular, pltr, pltr_data)

e Perl/PDL: pl shades(a, xmin, xnmax, ymn, ymx, clevel, fill_wdth,
cont_color, cont_width, fill, rectangular, defined, pltr, pltr_data)

Thisfunction is used in examples 16,21.

pl shade: Shade individual region on the basis of value

pl shade (a, nx, ny, defined, xmn, xmax, ymn, ymax, shade_mn,
shade_nax, sh_cmap, sh_color, sh_wi dth, mn_color, mn_wdth, max_col or,
max_wi dth, fill, rectangular, pltr, pltr_data);

Shade individual region on the basis of value. Use pl shades if you want to shade a number of regions
using continuous colors. pl shade isidentical to pl shadel except for the type of the first parameter.
See pl shadel for further discussion.

a (PLFLT **,input)
nx (PLI NT, input)
ny (PLI NT, input)

defined (PLI NT (*)
(PLFLT, PLFLT), input)

xm n (PLFLT, input)

xmax (PLFLT, input)

ym n (PLFLT, input)

ymax (PLFLT, input)
shade_m n (PLFLT, input)
shade_nmax (PLFLT, input)
sh_cmap (PLI NT, input)
sh_col or (PLFLT, input)
sh_wi dt h (PLFLT, input)
m n_col or (PLI NT, input)
m n_wi dt h (PLFLT, input)

max_col or (PLI NT, input)

178

The Common API for PLplot

max_wi dt h (PLFLT, input)

fill (void (*) (PLINT,
PLFLT *, PLFLT *),input)

rect angul ar (PLBOOL, input)
pltr (void (*) (PLFLT,
PLFLT, PLFLT *, PLFLT *,
PLPoi nter) ,input)

pl t r _dat a (PLPoi nt er, input)

Redacted form:

» Generd: pl shade(a, defined, xmn, xmax, ymn, ynmax, shade_mn,
shade_nax, sh_cnap, sh_col or, sh_wi dth, m n_col or, m n_wi dt h,
max_color, max_width, fill, rectangular, pltr, pltr_data)

» Perl/PDL: Not available?

This function is used in example 15.

pl shadel: Shade individual region on the basis of value

pl shadel (a, nx, ny, defined, xmn, xmax, ymn, ynmax, shade_nin,

shade_nax, sh_cmap, sh_color, sh_ width, min_color, mn_wdth, max_col or,

max_wi dth, fill,

rect angul ar,

pltr, pltr_data);

Shadeindividual region onthebasisof value. Usepl shades if youwant to shade anumber of contiguous
regions using continuous colors. In particular the edge contours are treated properly in pl shades. If you
attempt to do contiguousregionswith pl shadel (or pl shade) the contours at the edge of the shade are
partially obliterated by subsequent plots of contiguous shaded regions. pl shadel differsfrompl shade
by thetype of thefirst argument. Look at theargument list below, pl cont and the section called “ Contour
and Shade Plots’ for more information about the transformation from grid to world coordinates. Shading
NEEDSDOCUMENTATION, but asastopgap look at how pl shade isusedinexanpl es/ ¢/ x15c. c

a (PLFLT *,input)

nx (PLI NT, input)
ny (PLI NT, input)

defined (PLI NT (*)
(PLFLT, PLFLT),input)

xm n (PLFLT, input)

xmax (PLFLT, input)

ym n (PLFLT, input)

Contains array to be plotted. The array must have been declared as
PLFLT anx][ny].

First dimension of array "a".
Second dimension of array "a".

User function specifying regions excluded from the shading plot.
This function accepts x and y coordinates as input arguments and
must return O if the point is in the excluded region or 1 otherwise.
Thisargument can be NULL if all the values are valid.

Defines the "grid" coordinates. The data /0][0] has a position of
(xmin,ymin), alnx-1][0] has a position at (xmax,ymin) and so on.

Defines the "grid" coordinates. The data g 0][0] has a position of
(xmin,ymin), a[nx-1][0] has a position at (xmax,ymin) and so on.

Defines the "grid" coordinates. The data g/0][0] has a position of
(xmin,ymin), alnx-1][0] has a position at (xmax,ymin) and so on.

179

The Common API for PLplot

ymax (PLFLT, input)

shade_m n (PLFLT, input)

shade_nmax (PLFLT, input)

sh_cmap (PLI NT, input)

sh_col or (PLFLT, input)

sh_wi dt h (PLFLT, input)

m n_col or (PLI NT, input)

m n_wi dt h (PLFLT, input)

max_col or (PLI NT, input)

max_wi dt h (PLFLT, input)

fill (void (*) (PLINT,
PLFLT *, PLFLT *),input)

rect angul ar (PLBOOL, input)

pltr (void (*) (PLFLT,
PLFLT, PLFLT *, PLFLT *,
PLPoi nter) ,input)

Defines the "grid" coordinates. The data g/0][0] has a position of
(xmin,ymin), alnx-1][0] has a position at (xmax,ymin) and so on.

Defines the lower end of the interval to be shaded. If shade max <
shade min, pl shadel does nothing.

Defines the upper end of the interval to be shaded. If shade max <
shade_min, pl shadel does nothing.

Definescolor map. If sh_cmap=0, thensh_col or isinterpreted
asacolor map 0 (integer) index. If sh_cmap=1,thensh_col or
is interpreted as a color map 1 floating-point index which ranges
fromO. to 1.

Definescolor map index if cmap0 or color map input val ue (ranging
from 0.to 1.) if cmapl.

Defines width used by the fill pattern.

Defines pen color, width used by the boundary of shaded region.
The min values are used for the shade_min boundary, and the max
values are used on the shade_max boundary. Set color and width to
zero for no plotted boundaries.

Defines pen color, width used by the boundary of shaded region.
The min values are used for the shade_min boundary, and the max
values are used on the shade_max boundary. Set color and width to
zero for no plotted boundaries.

Defines pen color, width used by the boundary of shaded region.
The min values are used for the shade_min boundary, and the max
values are used on the shade_max boundary. Set color and width to
zero for no plotted boundaries.

Defines pen color, width used by the boundary of shaded region.
The min values are used for the shade_min boundary, and the max
values are used on the shade_max boundary. Set color and width to
zero for no plotted boundaries.

Routine used to fill the region. Use pl fi | | . Future version of
plplot may have other fill routines.

Setr ect angul ar totrueif rectangles map to rectangles after co-
ordinate transformation with pl t r | . Otherwise, setr ect angu-

| ar tofalse. If r ect angul ar isset to true, plshade triesto save
time by filling large rectangles. This optimization failsif the coor-
dinate transformation distorts the shape of rectangles. For example
aplotin polar coordinates hasto haver ect angul ar settofalse.

Pointer to function that defines transformation between indices in
array z and the world coordinates (C only). Transformation func-
tions are provided in the PLplot library: pl t r O for identity map-
ping, and pl t r 1 and pl t r 2 for arbitrary mappings respectively
defined by one- and two-dimensional arrays. In addition, user-sup-
plied routines for the transformation can be used as well. Examples
of all of these approaches are given in the section called “ Contour

180

The Common API for PLplot

Plots from C”. The transformation function should have the form
givenbyanyofpltrO,pltr1,orpltr2.

pl tr_dat a (PLPoi nt er, input) Extra parameter to help pass information to pltrO, pltr1,
pl t r 2, or whatever routine that is externally supplied.

Redacted form:

* Generd: pl shadel(a, defined, xmn, xmax, ymn, ymax, shade_mn,
shade_nmax, sh_cnmap, sh_col or, sh_wi dt h, m n_col or, m n_w dth,
max_color, max_width, fill, rectangular, pltr, pltr_data)

o Perl/PDL: pl shadel(a, xmin, xmax, ymin, ynmax, shade_mn, shade_max,
sh_cmap, sh_col or, sh_wi dt h, m n_col or, m n_wi dt h, max_col or,
max_wi dth, fill, rectangular, defined, pltr, pltr_data)

This function isused in example 15.

pl sl abel f unc: Assign a function to use for generating custom axis
labels

pl sl abel func (1 abel func, |abel _data);

This function alows a user to provide their own function to provide axis label text. The user function is
given the numeric value for a point on an axis and returns a string label to correspond with that value.
Custom axis labels can be enabled by passing appropriate arguments to pl env, pl box, pl box3 and
similar functions.

| abel func (void (*) This is the custom label function. In order to reset to the default
(PLINT, PLFLT, char *, labelling, set thisto NULL. The labelling function parameters are,
PLI NT, void *),input) in order:

axi s Thisindicateswhich axisalabel isbeing request-

ed for. The value will be one of PL_X AXI S,
PL_Y AXISorPL_Z AXI S.

val ue Thisisthe value along the axiswhich isbeing la-
belled.

| abel _text Thestring representation of the label val ue.

I ength The maximum length in characters allowed for
| abel _text.
| abel _dat a (void *,input) This parameter may be used to passdatatothel abel _f unc func-
tion.

This function is used in example 19.

pl smaj : Set length of major ticks
pl smaj (def, scale);

This sets up the length of the mgjor ticks. The actua length is the product of the default length and a
scaling factor as for character height.

181

The Common API for PLplot

def (PLFLT, input) The default length of a mgjor tick in millimeters, should be set to
zero if the default length is to remain unchanged.

scal e (PLFLT, input) Scale factor to be applied to default to get actual tick length.
Redacted form: pl smaj (def, scal e)

This function is used in example 29.

pl smem Set the memory areato be plotted (RGB)
pl smem (maxx, maxy, plotnen);

Set the memory area to be plotted (with the “mem” or “memcairo” driver) as the dev member of the
stream structure. Also set the number of pixels in the memory passed in pl ot mem which is a block of
memory maxy by maxx by 3 byteslong, say: 480 x 640 x 3 (Y, X, RGB)

This memory will have to be freed by the user!

maxx (PLI NT, input) Size of memory areain the X coordinate.
maxy (PLI NT, input) Size of memory areain the Y coordinate.
pl ot mem(voi d *,input) Pointer to the beginning of the user-supplied memory area.

Redacted form: pl smenm(maxx, maxy, pl ot nen

This function is not used in any examples.

pl snmema: Set the memory area to be plotted (RGBA)
pl smema (maxx, maxy, plotmem;

Set the memory areato be plotted (with the“memcairo” driver) asthedev member of the stream structure.
Also set the number of pixelsin the memory passed in pl ot nem which isablock of memory maxy by
maxx by 4 byteslong, say: 480 x 640 x 4 (Y, X, RGBA)

This memory will have to be freed by the user!

maxx (PLI NT, input) Size of memory areain the X coordinate.
maxy (PLI NT, input) Size of memory areain the Y coordinate.
pl ot mem(voi d *,input) Pointer to the beginning of the user-supplied memory area.

Redacted form: pl snerma(maxx, naxy, plotnem

This function is not used in any examples.

pl sm n: Set length of minor ticks
pl smn (def, scale);

This sets up the length of the minor ticks and the length of the terminals on error bars. The actua length
isthe product of the default length and a scaling factor as for character height.

def (PLFLT, input) The default length of a minor tick in millimeters, should be set to
zero if the default length is to remain unchanged.

182

The Common API for PLplot

scal e (PLFLT, input) Scale factor to be applied to default to get actual tick length.
Redacted form: pl sm n(def, scal e)

This function is used in example 29.

pl sori : Set orientation
pl sori (ori);

Set integer plot orientation parameter. This function isidentical to pl sdi ori except for the type of the
argument, and should be used in the same way. See the section called “ pl sdi or i : Set plot orientation
" for details.

ori (PLI NT, input) Orientation value (0 for landscape, 1 for portrait, etc.) Thevaueis
multiplied by 90 degrees to get the angle.

Redacted form: pl sori (ori)

Thisfunction isused in example 3.
pI spage.: Set page parameters
pl spage (xp, yp, xleng, yleng, xoff, yoff);

Sets the page configuration (optional). If an individual parameter is zero then that parameter value is not
updated. Not all parameters are recognized by al drivers and the interpretation is device-dependent. The
X-window driver uses the length and offset parameters to determine the window size and location. The
length and offset values are expressed in units that are specific to the current driver. For instance: screen
driverswill usually interpret them as number of pixels, whereas printer drivers will usually use mm. This
routine, if used, must be called before initializing PLplot.

xp (PLFLT, input) Number of pixels/inch (DPI), x.
yp (PLFLT, input) Number of pixels/inch (DPl), y.
xI eng (PLI NT , input) Page length, x.
yl eng (PLI NT, input) Page length, y.
xof f (PLI NT, input) Page offset, x.
yof f (PLI NT, input) Page offset, v.

Redacted form: pl spage(xp, yp, xleng, yleng, xoff, yoff)

Thisfunction isused in examples 14 and 31.

pl spal 0: Set the colors for color table 0 from a cmapO file
pl spal 0 (fil enane);
Set the colors for color table O from a cmap0 file

fil enane (const char *,in- The name of the cmapO file, or a empty to string to specify the
put) default cmapO file.

183

The Common API for PLplot

Redacted form: pl spal O(fi | enane)

Thisfunction isin example 16.

pl spal 1: Set the colors for color table 1 from a cmapl file
pl spal1 (fil enane);
Set the colors for color table 1 from acmapl file

fil enane (const char *,in- The name of the cmapl file, or a empty to string to specify the
put) default cmapl file.

Redacted form: pl spal 1(fi | enane)

Thisfunction isin example 16.

pl spause: Set the pause (on end-of-page) status
pl spause (pause);
Set the pause (on end-of-page) status.

pause (PLBOOL, input) If pause is true there will be a pause on end-of-page for those
drivers which support this. Otherwise there is no pause.

Redacted form: pl spause(pause)

Thisfunction isin examples 14,20.

pl sstrm Set current output stream

pl sstrm (strm;

Sets the number of the current output stream. The stream number defaults to O unless changed by this
routine. Thefirst use of this routine must be followed by acall initializing PLplot (e.g. pl st ar).

st rm(PLI NT, input) The current stream number.
Redacted form: pl sstrn{strm

This function is examples 1,14,20.

pl ssub: Set the number of subpages in x and y
pl ssub (nx, ny);

Set the number of subpagesin x andy.

nx (PLI NT, input) Number of windows in x direction (i.e.,, number of window
columns).
ny (PLI NT, input) Number of windowsiny direction (i.e., number of window rows).

Redacted form: pl ssub(nx, ny)

Thisfunction is examples 1,2,14,21,25,27.

184

The Common API for PLplot

pl ssym Set symbol size
pl ssym (def, scale);

This sets up the size of all subsequent symbols drawn by pl poi n and pl sym The actual height of a
symbol is the product of the default symbol size and a scaling factor as for the character height.

def (PLFLT, input) The default height of asymbol in millimeters, should be set to zero
if the default height is to remain unchanged.

scal e (PLFLT, input) Scale factor to be applied to default to get actual symbol height.
Redacted form: pl ssym(def, scal e)

This function is used in example 29.

pl st ar : Initialization
pl star (nx, ny);

Initializing the plotting package. The program prompts for the device keyword or number of the desired
output device. Hitting a RETURN in response to the prompt is the same as selecting the first device. If
only one deviceis enabled when PLplot isinstalled, pl st ar will issue no prompt. The output deviceis
divided into nx by ny subpages, each of which may be used independently. The subroutine pl adv is
used to advance from one subpage to the next.

nx (PLI NT, input) Number of subpages to divide output page in the horizontal direc-
tion.
ny (PLI NT, input) Number of subpagesto divide output pagein the vertical direction.

Redacted form: pl st ar (nx, ny)

Thisfunction isused in example 1.

pl st art: Initialization
pl start (device, nx, ny);

Alternative to pl st ar for initializing the plotting package. The devi ce name keyword for the desired
output device must be supplied as an argument. The device keywords are the same as those printed out by
pl st ar . If the requested device is not available, or if the input string is empty or begins with 7", the
prompted start up of pl st ar isused. Thisroutine aso divides the output deviceinto nx by ny subpages,
each of which may be used independently. The subroutine pl adv is used to advance from one subpage
to the next.

devi ce (const char *,input) Device name (keyword) of the required output device. If NULL or
if thefirst characterisa™?", the normal (prompted) start up is used.

nx (PLI NT, input) Number of subpages to divide output page in the horizontal direc-
tion.

ny (PLI NT, input) Number of subpagesto divide output page in the vertical direction.

Redacted form:

» Generd: pl start (device, nx, ny)

185

The Common API for PLplot

e Perl/PDL: pl start (nx, ny, device)

This function is not used in any examples.

pl st ransf or m Set a global coordinate transform function

pl stransform (transform fun, data);

This function can be used to define a coordinate transformation which affects al elements drawn with-
in the current plot window. The transformation function is similar to that provided for the pl map and
p! meri di ans functions. The dat a parameter may be used to pass extradatatot r ansf or m f un.

transform fun (void (*) Pointer to a function that defines a transformation from the input
(PLFLT, PLFLT, PLFLT*, (%, y) coordinate to a new plot world coordinate.

PLFLT*, PLPoi nter) ,input)

dat a (PLPoi nt er , input) Optional extradatafor t r ansf or m f un.

Redacted form:

» Generd: pl stransfornm(transform fun, data)

Thisfunction is used in example 19.

pl string: Plot aglyph at the specified points
plstring (n, x, y, string);

Plot a glyph at the specified points. (Supersedes pl poi n and pl sy mbecause many[!] more glyphs are
accessiblewith pl st ri ng.) The glyph is specified with a PLplot user string. Note that the user string is
not actually limited to one glyph so it is possible (but not normally useful) to plot more than one glyph
at the specified points with this function. Aswith pl nt ex and pl pt ex, the user string can contain FCI
escapes to determine the font, UTF-8 code to determine the glyph or else PLplot escapes for Hershey or
unicode text to determine the glyph.

n (PLI NT, input) Number of pointsinthex andy arrays.
X (PLFLT *,input) Pointer to an array with X coordinates of points.
y (PLFLT *,input) Pointer to an array with Y coordinates of points.

string(const char *,input) PLplotuser string corresponding to the glyph to be plotted at each
of the n points.

Redacted form: pl string(x, y, string)

Thisfunction is used in examples 4, 21 and 26.

pl string3: Plot a glyph at the specified 3D points
plstring3 (n, x, y, z, string);

Plot aglyph at the specified 3D points. (Supersedespl poi n3 because many[!] moreglyphsare accessible
with pl st ri ng3.) Set up the cal to this function similar to what is done for pl | i ne3. The glyphis
specified with a PLplot user string. Note that the user string is not actually limited to one glyph so it is
possible (but not normally useful) to plot more than one glyph at the specified points with this function.

186

The Common API for PLplot

Aswithpl nt ex and pl pt ex, theuser string can contain FCI escapes to determine the font, UTF-8 code
to determine the glyph or else PL plot escapes for Hershey or unicode text to determine the glyph.

n (PLI NT, input) Number of pointsinthex, y, and z arrays.

X (PLFLT *, input) Pointer to an array with X coordinates of points.
y (PLFLT *,input) Pointer to an array with Y coordinates of points.
z (PLFLT *, input) Pointer to an array with Z coordinates of points.

string(const char *,input) PLplotuser string corresponding to the glyph to be plotted at each
of the n points.

Redacted form: pl string3(x, y, z, string)

Thisfunction is used in example 18.
pl stri pa: Add a point to a strip chart

plstripa (id, p, X, y);

Add apoint to agiven pen of agiven strip chart. Thereisno need for all pensto have the same number of
points or to be equally sampled in the x coordinate. Allocates memory and rescales as necessary.

i d (PLI NT, input) Identification number (set upinpl st ri pc) of the strip chart.
p (PLI NT, input) Pen number (ranges from 0 to 3).

X (PLFLT, input) X coordinate of point to plot.

y (PLFLT, input) Y coordinate of point to plot.

Redacted form: pl stripa(id, p, X, Yy)

Thisfunction is used in example 17.

pl stri pc: Create a 4-pen strip chart

plstripc (id, xspec, yspec, xnin, xmax, Xjunp, ymn, ymax, x|l pos, yl pos,
y_ascl, acc, colbox, collab, colline, styline, legline[], l|abx, Iaby,
| abt op) ;

Create a 4-pen strip chart, to be used afterwards by pl st ri pa

i d (PLI NT *, output) Identification number of strip chart to use on pl stri pa and
pl stri pd.

xspec (char *,input) X-axis specification asin pl box.

yspec (char *,input) Y -axis specification asin pl box.

xm n (PLFLT, input) Initial coordinates of plot box; they will change as data are added.

xmax (PLFLT, input) Initial coordinates of plot box; they will change as data are added.

Xj unp (PLFLT, input) When x attains xmax, the length of the plot is multiplied by the

factor (1 + xj unp).

187

The Common API for PLplot

ym n (PLFLT, input)

ymax (PLFLT, input)

x| pos (PLFLT, input)

yl pos (PLFLT, input)
y_ascl (PLBOOL, input)
acc (PLBOOL, input)

col box (PLI NT, input)
col I ab (PLI NT, input)
col I'i ne (PLI NT *, input)
styline (PLI NT *,input)
| egl i ne(char **,input)
| abx (char *,input)

| aby (char *,input)

| abt op (char *,input)

Redacted form:

Initial coordinates of plot box; they will change as data are added.
Initial coordinates of plot box; they will change as data are added.
X legend box position (range from O to 1).

Y legend box position (range from 0 to 1).

Autoscaley between x jumpsif y_ascl istrue, otherwise not.
Accumulate strip plot if acc istrue, otherwise slide display.

Plot box color index (cmap0).

Legend color index (cmap0).

Pointer to array with color indices (cmap0) for the 4 pens.

Pointer to array with line styles for the 4 pens.

Pointer to character array containing legends for the 4 pens.
X-axis label.

Y-axis label.

Plot title.

* Generd:plstripc(id, xspec, yspec, xmn, xmax, Xjunp, ymn, ymax, x| pos,
yl pos, y_ascl, acc, colbox, collab, colline, styline, |egline, |abx,
| aby, |abz)

e Perl/PDL: pl stripc(xmn, xmax, Xjunp, ymn, ymax, xlpos, ylpos, y ascl
acc, colbox, collab, colline, styline, id, xspec, ypsec, |egline,
| abx, |aby, | abtop)

Thisfunction is used in example 17.

pl stri pd: Deletes and releases memory used by a strip chart
plstripd (id);
Deletes and releases memory used by a strip chart.
i d (PLI NT, input) I dentification number of strip chart to delete.
Redacted form: pl stri pd(i d)

Thisfunction isused in example 17.
pl styl : Set line style
pl styl (nels, mark, space);

This sets up the line style for all lines subsequently drawn. A line consists of segments in which the pen
is aternately down and up. The lengths of these segments are passed in the arrays mar k and space

188

The Common API for PLplot

respectively. The number of mark-space pairsis specified by nel s. In order to return the line style to the
default continuousling, pl st yl should be called with nel s=0.(seealsopl | sty)

nel s (PLI NT, input) The number of mar k and space elementsin aline. Thusasimple
broken line can be obtained by setting nel s=1. A continuous line
is specified by setting nel s=0.

mar k (PLI NT *, input) Pointer to array with the lengths of the segments during which the
pen is down, measured in micrometers.

space (PLI NT *, input) Pointer to array with the lengths of the segments during which the
pen is up, measured in micrometers.

Redacted form: pl st yl (mar k, space)

Thisfunction isused in examples 1,9,14.

pl sur f 3d: Plot shaded 3-d surface plot
plsurf3d (x, y, z, nx, ny, opt, clevel, nlevel);

Plots a three dimensional shaded surface plot within the environment set up by pl w3d. The surface is
defined by the two-dimensiona array z[nx] [ny] , thepoint z[i][]] being the value of the function
a(x[i], y[jl).Notethatthepointsinarraysx andy do not need to be equally spaced, but must be
stored in ascending order. For further details see the section called “ Three Dimensional Surface Plots”.

X (PLFLT *, input) Pointer to set of x coordinate values at which the function is eval-
uated.

y (PLFLT *,input) Pointer to set of y coordinate values at which the function is eval-
uated.

z (PLFLT **,input) Pointer to a vectored two-dimensional array with set of function
values.

nx (PLI NT, input) Number of x values at which function is evaluated.

ny (PLI NT, input) Number of y values at which function is evaluated.

opt (PLI NT, input) Determines the way in which the surface is represented. To spec-
ify more than one option just add the options, e.g. FACETED +
SURF_CONT

* opt =FACETED: Network of linesis drawn connecting points at
which function is defined.

e opt =BASE_CONT: A contour plotisdrawn at thebase XY plane
using parametersnl evel andcl evel .

e opt =SURF_CONT: A contour plot isdrawn at the surface plane
using parametersnl evel andcl evel .

« opt =DRAW SI DES: drawsacurtain betweenthebase XY plane
and the borders of the plotted function.

e opt =MAG_COLOR: the surfaceis colored according to the value
of Z; if MAG_COLOR s not used, then the default the surface is

189

The Common API for PLplot

cl evel (PLFLT *,input)
nl evel (PLI NT,input)

Redacted form: pl sur f 3d(x, v,

colored according to theintensity of the reflected light in the sur-
face from alight source whose positionisset using pl | i ght -
sour ce.

Pointer to the array that defines the contour level spacing.

Number of elementsinthecl evel array.

z, opt, clevel)

Thisfunction is not used in any examples.

pl f surf 3d: Plot shaded 3-d surface plot

pl surf3d (x, y, zops, zp,

nx, ny, opt, clevel, nlevel);

Plots a three dimensional shaded surface plot within the environment set up by pl w3d. The surface
is defined by the data contained in the 2D PLFLT ** matrix or the PLf Gri d2 structure zp. How
the data in zp is rendered is determined by the zops parameter. zops is a pointer to a function that
reads the data out of the grid structure. The following functionsin PLplot core will return an appropriate
function pointer: pl f 2ops_c() (use when zp is of type PLFLT **), pl f2ops_grid _c() (use
when zp is a pointer to a row-major PLf Gri d2 structure), pl f 2ops_grid_row nmaj or () (same
aspl f2ops_grid_c()?) andpl f 20ps_gri d_col _nmaj or () (usewhen zp isapointer to a col-
umn-major PLf Gri d2 structure). nx, ny opt cl evel and nl evel are the same asin for example

pl surf 3d.

X (PLFLT *,input)

y (PLFLT *, input)

zops (void (*) (?),input)

zp (PLFLT ** or PLfGid2
* | input)

nx (PLI NT, input)
ny (PLI NT, input)

opt (PLI NT, input)

Pointer to set of x coordinate values at which the function is eval-
uated.

Pointer to set of y coordinate values at which the function is eval-
uated.

Pointer to a function for processing the data contained in zp.

Pointer to the data to be plotted, either as a vectored two-dimen-
sional array with set of function values, or as PLfGrid2 structure.

Number of x values at which function is evaluated.
Number of y values at which function is evaluated.

Determines the way in which the surface is represented. To spec-
ify more than one option just add the options, eg. FACETED +
SURF_CONT

» opt =FACETED: Network of linesisdrawn connecting points at
which function is defined.

e opt =BASE_CONT: A contour plotisdrawn at thebase XY plane
using parametersnl evel andcl evel .

e opt =SURF_CONT: A contour plot isdrawn at the surface plane
using parametersnl evel andcl evel .

« opt =DRAW SI DES: drawsacurtain betweenthebase XY plane
and the borders of the plotted function.

190

The Common API for PLplot

* opt =MAG_COLOR: thesurfaceis colored according to the value
of Z; if MAG_COLOR is not used, then the default the surface is
colored according to theintensity of the reflected light in the sur-
face from alight source whose positionisset using pl | i ght -

source.
cl evel (PLFLT *,input) Pointer to the array that defines the contour level spacing.
nl evel (PLI NT,input) Number of elementsinthecl evel array.

Redacted form? pl f surf 3d(x, y, zops, zp, opt, clevel)

Thisfunction is used in example 8.

pl svect : Set arrow style for vector plots
pl svect (arrowx, arrowy, npts, fill);
Set the style for the arrow used by pl vect to plot vectors.

arrowx, arrowy (PLFLT Pointerstoapair of arrays containing thex and y pointswhich make

* input) up the arrow. The arrow is plotted by joining these points to form
apolygon. The scaling assumes that the x and y pointsin the arrow
lieintherange- 0.5 <= x,y <= 0.5.

npt s (PLI NT,input) Number of pointsinthe arraysar r owx and ar r owy.
fill (PLBOOL,input) If fill istruethenthearrow isclosed, if fill isfasethenthe
arrow is open.

Redacted form: pl svect (arrowx, arrowy, fill)

Thisfunction is used in example 22.

pl svpa: Specify viewport in absolute coordinates
pl svpa (xmn, xmax, ymn, ymax);

Alternateroutineto pl vpor for setting up the viewport. This routine should be used only if the viewport
is required to have a definite size in millimeters. The routine pl gspa is useful for finding out the size
of the current subpage.

xm n (PLFLT, input) The distance of the left-hand edge of the viewport from the left-
hand edge of the subpage in millimeters.

xmax (PLFLT, input) The distance of the right-hand edge of the viewport from the | eft-
hand edge of the subpage in millimeters.

ym n (PLFLT, input) The distance of the bottom edge of the viewport from the bottom
edge of the subpage in millimeters.

ymax (PLFLT, input) The distance of the top edge of the viewport from the bottom edge
of the subpage in millimeters.

Redacted form: pl svpa(xm n, xmax, ymin, ymax)

191

The Common API for PLplot

Thisfunction is used in example 10.

pI sxax: Set x axis parameters
pl sxax (digmax, digits);

Sets values of the di gmax and di gi t s flags for the x axis. See the section called “Annotating the
Viewport” for more information.

di gmax (PLI NT, input) Variable to set the maximum number of digits for the x axis. If
nonzero, the printed label will be switched to a floating point rep-
resentation when the number of digits exceedsdi gnax.

di gi ts (PLI NT, input) Field digits value. Currently, changing its value here has no effect
sinceitisset only by pl box or pl box3. However, the user may
obtain its value after a call to either of these functions by calling
pl gxax.

Redacted form: pl sxax(di gmax, digits)

Thisfunction is used in example 31.

pl syax: Sety axis parameters
pl syax (digmax, digits);

Identical to pl sxax, except that arguments are flags for y axis. See the description of pl sxax for more

detail.

di gmax (PLI NT, input) Variable to set the maximum number of digits for the y axis. If
nonzero, the printed label will be switched to a floating point rep-
resentation when the number of digits exceedsdi gnax.

di gi ts (PLI NT, input) Field digits value. Currently, changing its value here has no effect

sinceitisset only by pl box or pl box3. However, the user may
obtain its value after a call to either of these functions by calling

pl gyax.
Redacted form: pl syax(di gmax, digits)

Thisfunction is used in examples 1,14,31.
pl sym Plot a glyph at the specified points

pl sym (n, x, y, code);

Plot aglyph at the specified points. (Thisfunctionislargely superseded by pl st r i ng which givesaccess
to many[!] more glyphs.)

n (PLI NT, input) Number of pointsinthex andy arrays.

X (PLFLT *, input) Pointer to an array with X coordinates of points.

y (PLFLT *,input) Pointer to an array with Y coordinates of points.

code (PLI NT, input) Hershey symbol code corresponding to aglyph to be plotted at each

of the n points.

192

The Common API for PLplot

Redacted form: pl sym(x, y, code)
Thisfunction isused in example 7.

pl szax: Set z axis parameters
pl szax (digmax, digits);

Identical to pl sxax, except that arguments are flags for z axis. See the description of pl sxax for more

detail.

di gmax (PLI NT, input) Variable to set the maximum number of digits for the z axis. If
nonzero, the printed label will be switched to a floating point rep-
resentation when the number of digits exceedsdi gnmax.

di gi t s (PLI NT, input) Field digits value. Currently, changing its value here has no effect

sinceitisset only by pl box or pl box3. However, the user may
obtain its value after a call to either of these functions by calling
pl gzax.

Redacted form: pl szax(di gmax, digits)

This function is used in example 31.

pl t ext : Switch to text screen

pltext ();

Sets an interactive device to text mode, used in conjunction with pl gr a to alow graphics and text to
be interspersed. On a device which supports separate text and graphics windows, this command causes
control to be switched to the text window. This can be useful for printing diagnostic messages or getting
user input, which would otherwise interfere with the plots. The program must switch back to the graphics
window beforeissuing plot commands, asthetext (or console) devicewill probably become quite confused
otherwise. If aready in text mode, this command is ignored. It is also ignored on devices which only
support a single window or use a different method for shifting focus (see aso pl gr a).

Redacted form: pl t ext ()

Thisfunction isused in example 1.

pl ti mef nt: Set format for date / time labels
pltimefm (fnt);

Sets the format for date / time labels. To enable date / time format labels see the options to pl box and
pl env.

fnt (const char *,fmt) This string is passed directly to the system strftime. See the system
documentation for a full list of conversion specifications for your
system. All conversion specifications take the form of a'%' charac-
ter followed by further conversion specification character. All other
text is printed as-is. Common options include:

* %: The preferred date and time representation for the current
locale.

193

The Common API for PLplot

* 9%l: The day of the month as a decimal number.
* 9 The hour as adecimal number using a 24-hour clock.
* 9% : The day of the year as a decimal number.
¢ %m The month as a decimal number.
* 9%t The minute as a decimal number.
* U&: The second as a decimal number.
e % Theyear as adecimal number without a century.
e 9%(: Theyear as adecimal number including a century.
Redacted form: pl ti mef nmt (fnt)
This function is used in example 29.
pl vasp: Specify viewport using aspect ratio only
pl vasp (aspect);
Sets the viewport so that the ratio of the length of they axisto that of the x axisisequal to aspect .
aspect (PLFLT, input) Ratio of length of y axisto length of x axis.
Redacted form: pl vasp(aspect)

Thisfunction is used in example 13.

pl vect : Vector plot
plvect (u, v, nx, ny, scale, pltr, pltr_data);

Draws a vector plot of the vector (u[nx] [ny], v[nx] [ny]) . The scaling factor for the vectors is
givenby scal e. A transformation routine pointed to by pl t r withapointer pl t r _dat a for additional
datarequired by the transformation routineis used to map indiceswithin the array to theworld coordinates.
The style of the vector arrow may be set using pl svect .

u, v (PLFLT **,input) Pointersto apair of vectored two-dimensional arrayscontaining the
x and y components of the vector data to be plotted.

nx, ny (PLI NT, input) Physical dimensions of the arraysu and v.

scal e (PLFLT, input) Parameter to control the scaling factor of the vectors for plotting.
If scal e = 0 then the scaling factor is automatically calculated
for thedata. If scal e < 0 thenthescaling factor isautomatically
calculated for the data and then multiplied by - scal e. If scal e
> 0 then the scaling factor issetto scal e.

pltr (void (*) (PLFLT, Pointer to function that defines transformation between indicesin
PLFLT, PLFLT *, PLFLT *, array z and the world coordinates (C only). Transformation func-
PLPoi nter) ,input) tions are provided in the PLplot library: pl t r O for identity map-

ping, and pl t r 1 and pl t r 2 for arbitrary mappings respectively

194

The Common API for PLplot

defined by one- and two-dimensional arrays. In addition, user-sup-
plied routines for the transformation can be used as well. Examples
of all of these approaches are given in the section called “ Contour
Plots from C”. The transformation function should have the form
givenbyanyofpltrO,pltr1,orpltr2.

pl tr_dat a (PLPoi nt er,input) Extra parameter to help pass information to pltrO, pltr1l,
pl t r 2, or whatever routine that is externally supplied.

Redacted form: pl vect (u, v, scale, pltr, pltr_data)

Thisfunction is used in example 22.

pl vpas: Specify viewport using coordinates and aspect ratio
pl vpas (xmn, xmax, ymn, ymax, aspect);

Device-independent routine for setting up the viewport. The viewport is chosen to be the largest with
the given aspect ratio that fits within the specified region (in terms of normalized subpage coordinates).
This routine is functionally equivalent to pl vpor when a “natural” aspect ratio (0.0) is chosen. Unlike
pl vasp, thisroutine reserves no extra space at the edges for labels.

xm n (PLFLT, input) The normalized subpage coordinate of the left-hand edge of the
viewport.

xmax (PLFLT, input) The normalized subpage coordinate of the right-hand edge of the
viewport.

ym n (PLFLT, input) The normalized subpage coordinate of the bottom edge of the view-
port.

ymax (PLFLT, input) The normalized subpage coordinate of the top edge of the viewport.

aspect (PLFLT, input) Ratio of length of y axisto length of x axis.

Redacted form: pl vpas(xm n, xnmax, ymin, ymax, aspect)

Thisfunction isused in example 9.
pl vpor : Specify viewport using coordinates

pl vpor (xmn, xmax, ymn, ynmax);

Device-independent routine for setting up the viewport. This defines the viewport in terms of normalized
subpage coordinates which run from 0.0 to 1.0 (left to right and bottom to top) along each edge of the
current subpage. Use the alternate routine pl svpa in order to create a viewport of a definite size.

xm n (PLFLT, input) The normalized subpage coordinate of the left-hand edge of the
viewport.

xmax (PLFLT, input) The normalized subpage coordinate of the right-hand edge of the
viewport.

ym n (PLFLT, input) The normalized subpage coordinate of the bottom edge of the view-
port.

ymax (PLFLT, input) The normalized subpage coordinate of the top edge of the viewport.

195

The Common API for PLplot

Redacted form: pl vpor (xmi n, xmax, ymn, ymax)

This function is used in examples 2,6-8,10,11,15,16,18,21,23,24,26,27,31.

pl vst a: Select standard viewport

pl w3d:

plvsta ();

Sets up a standard viewport, leaving a left-hand margin of seven character heights, and four character
heights around the other three sides.

Redacted form: pl vst a()

Thisfunction isused in examples 1,12,14,17,25,29.

Set up window for 3-d plotting

pl w3d (basex, basey, height, xmn, xmax, ymn, ymax, zmn, zmax, alt,
az);

Sets up awindow for athree-dimensional surface plot within the currently defined two-dimensional win-
dow. The enclosing box for the surface plot defined by xm n, xmax, ym n, ynmax, zm n and znax
in user-coordinate space is mapped into a box of world coordinate size basex by basey by hei ght

so that xni n maps to - basex/ 2, xmax maps to basex/ 2, ym n mapsto - basey/ 2, ymax maps
tobasey/ 2, zm n mapsto 0 and zmax mapsto hei ght . The resulting world-coordinate box is then
viewed by an observer at atitude al t and azimuth az. This routine must be called before pl box3
or pl ot 3d. For amore complete description of three-dimensional plotting see the section called “Three
Dimensional Surface Plots”.

basex (PLFLT, input) The x coordinate size of the world-coordinate box.
basey (PLFLT, input) They coordinate size of the world-coordinate box.
hei ght (PLFLT, input) The z coordinate size of the world-coordinate box.
xm n (PLFLT, input) The minimum user x coordinate value.

xmax (PLFLT, input) The maximum user x coordinate value.

ym n (PLFLT, input) The minimum user y coordinate value.

ymax (PLFLT, input) The maximum user y coordinate value.

zmi n (PLFLT, input) The minimum user z coordinate value.

zmax (PLFLT, input) The maximum user z coordinate value.

al t (PLFLT, input) The viewing altitude in degrees above the XY plane.
az (PLFLT, input) The viewing azimuth in degrees. When az =0, the observer islook-

ing face onto the ZX plane, and as az is increased, the observer
moves clockwise around the box when viewed from above the XY
plane.

Redacted form: pl w3d(basex, basey, height, xmn, xmax, ynmn, ymax, zmn,
zmax, alt, az)

196

The Common API for PLplot

Thisfunction is examples 8,11,18,21.

pl wi dt h: Set pen width
pl wi dth (width);
Sets the pen width.
wi dt h (PLI NT, input) The desired pen width. If wi dt h is negative or the same as the
previousvalueno actionistaken.wi dt h = 0 should beinterpreted

asastheminimum valid pen width for the device. Theinterpretation
of positivewi dt h valuesisalso device dependent.

Redacted form: pl wi dt h(wi dt h)
Thisfunction isused in examples 1,2.

pl wi nd: Specify world coordinates of viewport boundaries
plwi nd (xmn, xmax, ymn, ynmax);

Sets up the world coordinates of the edges of the viewport.

xm n (PLFLT, input) The world x coordinate of the |eft-hand edge of the viewport.
xmax (PLFLT, input) The world x coordinate of the right-hand edge of the viewport.
ym n (PLFLT, input) Theworld y coordinate of the bottom edge of the viewport.
ymax (PLFLT, input) Theworld y coordinate of the top edge of the viewport.

Redacted form: pl wi nd(xm n, xmax, ymin, ymax)

Thisfunction isused in examples 1,2,4,6-12,14-16,18,21,23-27,29,31.

pl xor nod: Enter or leave xor mode

pl xornod (node, status);

Enter (when node istrue) or leave (when mode isfalse) xor mode for those drivers (e.g., the xwin driver)
that support it. Enables erasing plots by drawing twice the same line, symbol, etc. If driver is not capable
of xor operation it returnsast at us of false.

node (PLBOOL, input) nmode istrue means enter xor mode and node isfalse means leave
xor mode.
st at us (PLBOCL *, output) Pointer to status. Returned nodestatus of true (false) means driver

is capable (incapable) of xor mode.
Redacted form: pl xor nod(node, st at us)

This function is used in examples 1,20.

197

Chapter 20. The Specialized C API for
PLplot

The purpose of thischapter isto document the PL plot C functionsthat are currently not part of the common
AP, either because they are C/C++ specific utility functions (e.g. pl Al | oc2dGri d, pl Free2dGr i d)
or because they are not easily implemented in other languages (e.g. pl Get Cur sor). Some of these func-
tions are used in the examples and may be helpful for other users of plplot.

This chapter also documents some of the data types and structures defined by plplot and used by the
functions.

pl abort: Error abort

pl abort (nmessage);

Thisroutineisto be used when something goes wrong that doesn't require calling pl exi t but for which
there is no useful recovery. It calls the abort handler defined via pl sabort , does some cleanup and
returns. The user can supply his’her own abort handler and passitinviapl sabort.

nmessage (char *,input) Abort message.
Thisfunction is currently availablein C, f77, f95 and python.

This function is used in example 20.

pl Al |l oc2dGri d: Allocate a block of memory for use as a 2-d grid of
type PLFLT.

pl Alloc2dGid (f, nx, ny);

Allocates ablock of memory for use asa2-d grid of type PLFLT. The grid isavectored 2-d C-style array
and so can be accessed using syntax like*f [i] [j] . The memory associated with the grid must be freed
by calling pl Fr ee2dGri d onceit isno longer required.

f (PLFLT *** output) Pointer to a PLFLT grid. On success f will point to a pointer to
the vectored 2-d array of type PLFLT. If the allocation failsf will
be NULL.

nx, ny (PLI NT, input) Dimensions of grid to be allocated.

Thisfunction is currently available in C, C++, perl and tk.

Thisfunction isused in examples 8, 9, 11, 14, 16, 20, 21, 22, 28, 30.
pl C ear Opt s: Clear internal option table info structure.

pl CearOpts ();

Clear the internal options table info structure. This removes any option added with pl Mer geOpt s as
well as all default entries.

This function returns 0 on success.

198

The Specialized C API for PLplot

Thisfunction is currently available in C, C++ and Ocaml.

Thisfunction is not used in any examples.

pl exi t: Error exit
pl exit (nessage);

Thisroutineiscalled in case an error isencountered during execution of aPL plot routine. It printsthe error
message, tries to release allocated resources, calls the handler provided by pl sexi t and then exits. If
cleanup needs to be done in the driver program then the user may want to supply his/her own exit handler
and passitinviapl sexi t . Thisfunction should either call pl end before exiting, or smply return.

nmessage (char *,input) Error message.
Thisfunction is currently available in C and ada.

This function is not used in any examples.

pl Free2dG i d: Free the memory associated with a 2-d grid allocat-
ed using pl Al | oc2dGri d.

pl Free2dGid (f, nx, ny);

Frees a block of memory allocated using pl Al | oc2dGri d.

f (PLFLT **,input) PLFLT grid to be freed.

nx, ny (PLI NT, input) Dimensions of grid to be freed.

Thisfunction is currently available in C, C++, perl and tk.

Thisfunction isused in examples 8, 9, 11, 14, 16, 20, 21, 22, 28, 30.
pl Get Cur sor: Wait for graphics input event and translate to world
coordinates.

i nt pl GetCursor (gin);

Wait for graphics input event and translate to world coordinates. Returns O if no translation to world
coordinatesis possible.

gi n (PLG aphi csl n *, output) Pointer to PLGraphicsin structure which will contain the output.
The structure is not alocated by the routine and must exist before
the function is called.

This function returns 1 on success and O if no tranglation to world coordinates is possible.

Thisfunction is currently only available with the C, C++, Ocaml, Octave, Perl, Python and Adalanguage
bindings.

This function isused in examples 1 and 20.
pl gfi | e: Get output file handle

plagfile (file);

199

The Specialized C API for PLplot

Gets the current output file handle, if applicable.
file(FILE **, output) File pointer to current output file.
Thisfunction is currently availablein C, C++ and Ocaml.

This function is not used in any examples.

pl Mer geQpt s: Merge use option table into internal info structure.
int pl MergeOpts (options, nane, notes);

Merges in a set of user supplied command line options with the interna options table. This allows
use options to be used along with the built-in plplot options to set device driver, output file etc. See
pl par seopt s for details of how to parse these optionsin a program.

options (PLOpti onTabl e *, User option table to merge.
input)

nane (const char *name,in- Label to preface the optionsin the program help.
put)

not es (const char **,input) A null-terminated array of notes which appear after the optionsin
the program help.

Thisfunction is currently availablein C, C++ and Ocaml.

Thisfunction isused in examples 1, 8, 16, 20 and 21.
pl M nMax2dG i d: Find the minimum and maximum of a 2d grid al-
located using pl Al | oc2dGri d.

pl M nMax2dGid (f, nx, ny, fmax, fmn);

Find the minimum and maximum of a 2d grid allocated using pl Al | oc2dGri d.

f (PLFLT **,input) PLFLT grid to find the maximum / minimum of.

nx, ny (PLI NT, input) Dimensions of f .

fmax, fmn(PLFLT *,output) Maximum and minimum valuesinthegridf .

Thisfunction is currently availablein C, C++, Java, Ocaml and Python.

Thisfunction isused in examples 8, 11, 20 and 21.
pl Opt Usage: Print usage and syntax message.

pl Opt Usage ();

Prints the usage and syntax message. The message can also be display using the -h command line option.
There is a default message describing the default plplot options. The usage message is also modified by
pl Set Usage and pl Mer geOpt s.

program string (const String to appear as the name of program.
char *,input)

200

The Specialized C API for PLplot

usage_string (const char String to appear as the usage text.
* input)

Thisfunction is currently available in C, C++, Java, Ocaml, Octave and Python.

Thisfunction is not used in any examples.

pl Mer geOpt s: Reset internal option table info structure.

pl Reset Opts ();

Resets the internal command line options table to the default built in value. Any user options added with
pl Mer geOpt s will be cleared. See pl par seopt s for details of how to parse these options in a pro-
gram.

This function is currently available in C, C++, Java, Ocaml and Octave, although it is not much use in
Javaor Octave since they don't have plMergeOpts.

Thisfunction is not used in any examples.

pl sabort: Set abort handler

pl sabort (handler);
Sets an optional user abort handler. See pl abort for details.

handl er (void (*) (char Error abort handler.
*) , input)

Thisfunction is currently available in C and Ocaml.

Thisfunction is not used in any examples.

pl Set Usage: Set the strings used in usage and syntax messages.
pl Set Usage (programstring, usage_string);

Sets the program string and usage string displayed by the command line help option (-h) and by pl Op-
t Usage.

program string (const String to appear as the name of program.
char *,input)

usage_string (const char String to appear as the usage text.
* input)

Thisfunction is currently available in C, C++, Java, Ocaml, Octave and Python.

Thisfunction is not used in any examples.

pl sexi t: Set exit handler
pl sexit (handler);

Sets an optional user exit handler. Seepl exi t for details.

201

The Specialized C API for PLplot

handl er (int (*) (char Error exit handler.
*) , input)

Thisfunction is currently availablein C, C++ and Ocaml.

Thisfunction is not used in any examples.

pl sfil e: Set output file handle
plsfile (file);

Sets the current output file handle, if applicable. If the file has has not been previously opened and is
required by the driver, the user will be prompted for the file name. This routine, if used, must be called
beforeinitializing PLplot.

file(FILE *,input) File pointer. Thetype (i.e. text or binary) doesn't matter on *ix sys-
tems. On systems where it might matter it should match the type of
file that the output driver would produce, i.e. text for the postscript
driver.

Thisfunction is currently available in C, C++ and Ocaml.

This function is not used in any examples.

pl tr O0: Identity transformation for grid to world mapping

pltrO (x, vy, tx, ty, pltr_data);

Identity transformation for grid to world mapping. This routine can be used both for pl cont and
pl shade. Seealsothe section called “ Contour Plotsfrom C” and the section called “ Shade Plotsfrom C”.

X (PLFLT, input) X-position in grid coordinates.
y (PLFLT, input) Y -position in grid coordinates.
t x (PLFLT *, output) X-position in world coordinates.
ty (PLFLT *, output) Y -position in world coordinates.

pl tr _dat a (PLPoi nt er,input) Pointer to additional input data that is passed as an argument to
pl cont or pl shade and then on to the grid to world transforma-
tion routine.

Thisfunction is currently availablein C, C++, Ocaml, Perl, Python and Tcl.

Thisfunction is not used in any examples.
pl tr1: Linear interpolation for grid to world mapping using singly
dimensioned coordinate arrays

pltrl (x, vy, tx, ty, pltr_data);

Linear interpolation for grid to world mapping using singly dimensioned coordinate arrays. This routine
can be used both for pl cont and pl shade. See aso the section called “ Contour Plots from C” and the
section called “ Shade Plots from C”.

202

The Specialized C API for PLplot

X (PLFLT, input) X-position in grid coordinates.
y (PLFLT, input) Y -position in grid coordinates.
t x (PLFLT *, output) X-position in world coordinates.
ty (PLFLT *, output) Y -position in world coordinates.

pl tr_dat a (PLPoi nt er, input) Pointer to additional input data that is passed as an argument to
pl cont or pl shade and then on to the grid to world transforma-
tion routine.

Thisfunction is currently availablein C, C++, Ocaml, Perl, Python and Tcl.
Thisfunction isused in examples 9 and 16.
pl tr2: Linear interpolation for grid to world mapping using doubly

dimensioned coordinate arrays (column dominant, as per normal C
2d arrays)

pltr2 (x, vy, tx, ty, pltr_data);
Linear interpolation for grid to world mapping using doubly dimensioned coordinate arrays (column dom-

inant, as per normal C 2d arrays). This routine can be used both for pl cont and pl shade. Seeasothe
section called “ Contour Plots from C” and the section called “ Shade Plots from C”.

X (PLFLT, input) X-position in grid coordinates.
y (PLFLT, input) Y -position in grid coordinates.
t x (PLFLT *, output) X-position in world coordinates.
ty (PLFLT *, output) Y -position in world coordinates.

pl tr_dat a (PLPoi nt er,input) Pointer to additional input data that is passed as an argument to
pl cont or pl shade and then on to the grid to world transforma:
tion routine.

Thisfunction is currently availablein C, C++, Ocaml, Perl, Python and Tcl.

This function is used in example 22.

PLGraphicsin: PLplot Graphics Input structure

ThePLGraphicsln structureisused by pl Get Cur sor to returninformation on the current cursor position
and key / button state for interactive drivers. The structure contains the following fields:

type (i nt) Type of event (currently unused?).

state (unsi gned int) Key or button mask.

keysym(unsi gned i nt) Key selected.

butt on (unsi gned int) Mouse button selected.

subwi ndow (PLI NT) Subwindow (or subpage / subplot) number.

203

The Specialized C API for PLplot

string (char [PL_MAXKEY])

pX, pY(int)
dX, dY (PLFLT)

wX, WY (PLFLT)

Trandated string.
Absolute device coordinates of pointer.
relative device coordinates of pointer.

World coordinates of pointer.

PLOptionTable: PLplot command line options table structure

The PLOptionTable structure is used by pl Mer geOpt s to pass information on user-defined command
line options to plplot. The structure contains the following fields:

opt (const char*)
handl er (int (*func)
(const char *, const
char *, void *))

client_data(void *)

var (void *)

node (I ong)

synt ax (const char *)

desc (const char *)

Name of option.

User-defined handler function to be called when option is set. A
NULL value indicates that no user-defined handler is required.

Pointer to client data. A NULL value indicates that no client data
isrequired.

Pointer to variableto set to the value specified on the command line
option.

Type of variable var. Allowed values
ae PL_OPT_FUNC, PL_OPT _BOOL, PL_OPT_INT,
PL_OPT_FLOAT, PL_OPT_STRING.

Syntax for option (used in the usage message).

Description of the option (used in the usage message).

204

Chapter 21. The Specialized Fortran 95
API for PLplot

The purpose of this Chapter is to document the API for each Fortran 95 function in PLplot that differs
substantially (usualy in argument lists) from the common API that has already been documented in Chap-
ter 19, The Common API for PLplot.

Normally, the common API is wrapped in such a way for Fortran 95 that there is and one-to-one corre-
spondence between each Fortran 95 and C argument with the exception of arguments that indicate array
sizes (see Chapter 11, Fortran 95 Language for discussion). However, for certain routines documented in
this chapter the Fortran 95 argument lists necessarily differ substantially from the C versions.

This chapter isincomplete and NEEDS DOCUMENTATION.

pl cont : Contour plot for Fortran 95

Thisis an overloaded function with a variety of argument lists:

i nterface pl cont
subroutine plcontour_0(z, kx, I x, ky, ly, cl evel)

i nt eger rokx, I x,ky, 1y
real (kind=plflt), dinension(:,:) :: z
real (ki nd=plflt), dinension(:) i clevel

end subroutine plcontour_0

subroutine plcontour_1(z, kx, I x, ky,ly,clevel, xg,yg)

i nt eger rokx, I x,ky, 1y
real (kind=plflt), dinension(:,:) :: z

real (ki nd=plflt), dinension(:) i clevel

real (ki nd=plflt), dinension(:) Dl Xg

real (ki nd=plflt), dinension(:) tlyo

end subroutine plcontour_1

subroutine plcontour_2(z, kx, I x, ky,ly,clevel, xg, yg)

i nt eger rokx, I x,ky, 1y
real (kind=plflt), dinension(:,:) :: z

real (ki nd=plflt), dinension(:) i clevel

real (kind=plflt), dinension(:,:) :: Xg@

real (kind=plflt), dinension(:,:) :: yg
end subroutine plcontour_2

subroutine plcontour_tr(z, kx,|x,ky,ly,clevel,tr)

i nt eger kx, I x, ky, ly
real (kind=plflt), dinension(:,:) :: z

real (ki nd=plflt), dinension(:) i1 clevel

real (ki nd=plflt), dinension(6) Dot

end subroutine plcontour_tr

subroutine plcontour_0_all(z,clevel)
real (kind=plflt), dinension(:,:) :: z
real (ki nd=plflt), dinension(:) i1 clevel

205

The Speciaized For-
tran 95 API for PLplot

end subroutine plcontour_0_all

subroutine plcontour_1 all(z,clevel,xg,yQg)

real (kind=plflt), dinension(:,:) :: z
real (ki nd=plflt), dinension(:) cl evel
real (ki nd=plflt), dinension(:) Dl Xg
real (ki nd=plflt), dinension(:) tlyo

end subroutine plcontour_1 all

subroutine plcontour_2_all(z,clevel, xg,yg)

real (kind=plflt), dinension(:,:) :: z
real (ki nd=plflt), dinension(:) cl evel
real (kind=plflt), dinension(:,:) :: Xg@
real (kind=plflt), dinension(:,:) :: yg

end subroutine plcontour_2 all

subroutine plcontour_tr_all(z,clevel,tr)

real (kind=plflt), dinension(:,:) :: z
real (ki nd=plflt), dinension(:) cl evel
real (ki nd=pl flt), dinension(6) Dot

end subroutine plcontour_tr_all

end interface

When called from Fortran 95, this overloaded routine has the same effect as when invoked from C. See
exanpl es/ f 95/ x??f . f 90 for various ways to call plcont from Fortran 95.

The meaning of the various argumentsis as follows:

z (real (kind=plflt), di-

nmensi on(:, :),input)

kx, |x (i nteger,input)
clevel (real (kind=plflt),
di mensi on(:), input)

kx, |x (i nteger,input)

ky, ly (i nteger,input)

xg (real (ki nd=pl ft),
di mension(:) or
real (ki nd=pl ft),
sion(:,:),input)

di men-

yg (real (ki nd=plft),
di mension(:) or
real (ki nd=pl ft),
sion(:,:),input)

di men-

tr (real (kind=plft), di-

nmensi on(6) , input)

Matrix containing the values to be plotted.

Range for the first index in the matrix z to consider. If not given,
then the whole first index is considered.

Levels at which the contours are computed and drawn.

Range for the first index in the matrix z to consider. If not given,
then the whole first index is considered.

Rangefor the second index in the matrix z to consider. If not given,
then the whole second index is considered.

The x-coordinates for the grid lines (if one-dimensional) or the x-
coordinates of the grid vertices (if two-dimensional). The values
in the matrix are plotted at these coordinates. If not given, implicit
coordinates are used (equal to the indices in the matrix).

The y-coordinates for the grid lines (if one-dimensional) or the x-
coordinates of the grid vertices (if two-dimensional). Thevaluesin
the matrix are plotted at these coordinates.

The coefficients of an affine transformation:

206

The Speciaized For-
tran 95 API for PLplot

tr(l) * ix +tr(2) * iy + tr(3)
tr(4) * ix +tr(5) * iy + tr(6)

Theindices of the matrix element are used to compute the "actual"
coordinates according to the above formulae.

pl shade: Shaded plot for Fortran 95
Thisis an overloaded function with a variety of argument lists which NEED DOCUMENTATION.

When called from Fortran 95, this overloaded routine has the same effect as when invoked from C. See
exanpl es/ f 95/ x??f . f 90 for various ways to call plshade from Fortran 95.

pl shades: Continuously shaded plot for Fortran 95
Thisis an overloaded function with avariety of argument lists which NEED DOCUMENTATION.

When called from Fortran 95, this overloaded routine has the same effect as when invoked from C. See
exanpl es/ f 95/ x??f . f 90 for various ways to call plshades from Fortran 95.

pl vect : Vector plot for Fortran 95
Thisis an overloaded function with avariety of argument lists which NEED DOCUMENTATION.

When called from Fortran 95, this overloaded routine has the same effect as when invoked from C. See
exanpl es/ f 95/ x??f . f 90 for various ways to call plvect from Fortran 95.

pl mesh: Plot surface mesh for Fortran 95
pl mesh (x, y, z, nx, ny, opt, nx);

When called from Fortran 95, this routine has the same effect as when invoked from C. The interpretation
of all parameters (see pl nesh) is aso the same except there is an additional parameter given by:

mx (PLI NT, input) Length of array in x direction, for plotting subarrays.

pl ot 3d: Plot 3-d surface plot for Fortran 95
plot3d (x, y, z, nx, ny, opt, side, nx);

When called from Fortran 95, this routine has the same effect as when invoked from C. The interpretation
of all parameters (see pl ot 3d) is aso the same except there is an additional parameter given by:

mx (PLI NT, input) Length of array in x direction, for plotting subarrays.

pI par seopt S:. parse arguments for Fortran 95
pl parseopts (node);

When called from Fortran 95, this routine has the same effect as when invoked from C (see
pl par seopt s) except that the argument list just contains the parsing mode and the Fortran 95 system
routinesi ar gc and get ar g are used internally to obtain the number of arguments and argument val ues.

207

The Speciaized For-
tran 95 API for PLplot

(Note, during configuration, the user's Fortran 95 compiler is checked to see whether it supportsi ar gc
and get ar g. If it does not, the Fortran 95 plparseopts simply writes a warning message and returns.

node (PLI NT, input) Parsing mode; see pl par seopt s for details.
pl sesc: Set the escape character for text strings for Fortran 95

pl sesc (esc);

Set the escape character for text strings. From Fortran 95 it needs to be the decima ASCII value. Only
selected characters are allowed to prevent the user from shooting himself in the foot (For example, a“\”
isn't allowed sinceit conflictswith C's use of backslash as a character escape). Here are the allowed escape
characters and their corresponding decimal ASCI| values:

o “I" ASCII 33

o “#,ASCII 35

“$", ASCII 36

“%”, ASCII 37

« “&”, ASCII 38

“*x ASCII 42

“@’, ASCIl 64

“nr ASCI 94
o “~" ASCII 126

esc (char, input) NEEDS DOCUMENTATION

208

Chapter 22. The Specialized Fortran 77
API for PLplot

The purpose of this Chapter is to document the API for each Fortran 77 function in PLplot that differs
substantially (usualy in argument lists) from the common API that has already been documented in Chap-
ter 19, The Common API for PLplot.

Normally, the common API is wrapped in such away for Fortran 77 that there is and one-to-one corre-
spondence between each Fortran 77 and C argument (see Chapter 10, Fortran 77 Language for discus-
sion). However, for certain routines documented in this chapter the Fortran 77 argument lists necessarily
differ substantially from the C versions.

This chapter is incomplete and NEEDS DOCUMENTATION of, e.g., the Fortran 77 equivalent of the
plshade C routines.

pl con0: Contour plot, identity mapping for Fortran 77
pl con0 (z, nx, ny, kx, Ix, ky, ly, clevel, nlevel);

Drawsacontour plot of thedatain z[nx] [ny] , usingthenl evel contour levelsspecifiedby cl evel .
Only the region of the array from kx to | x and from ky to | y is plotted out. See the section called
“Contour and Shade Plots’ for more information.

z (PLFLT **, input) Pointer to a vectored two-dimensional array containing data to be
contoured.

nx, ny (PLI NT, input) Physical dimensions of array z.

kx, | x (PLI NT, input) Range of x indicesto consider.

ky, 1y (PLI NT,input) Range of y indicesto consider.

cl evel (PLFLT *,input) Pointer to array specifying levels at which to draw contours.

nl evel (PLI NT, input) Number of contour levelsto draw.

NOTE: this function is intended for use from a Fortran 77 caller only. The C user should instead call
pl cont using the built-in transformation function pl t r O for the same capability.

pl conl: Contour plot, general 1-d mapping for Fortran 77
pl conl (z, nx, ny, kx, Ix, ky, ly, clevel, nlevel, xg, yg);

Drawsacontour plot of thedatainz[nx] [ny] , usingthenl evel contour levelsspecifiedby cl evel .
Only the region of the array from kx to | x and from ky to | y is plotted out. The arrays xg and yg are
used to specify the transformation between array indices and world coordinates. See the section called
“Contour and Shade Plots’ for more information.

z (PLFLT **,input) Pointer to a vectored two-dimensional array containing data to be
contoured.

nx, ny (PLI NT, input) Physical dimensions of array z.

kx, | x (PLI NT, input) Range of x indicesto consider.

209

The Speciaized For-
tran 77 API for PLplot

Ky, |y (PLI NT,input) Range of y indicesto consider.

cl evel (PLFLT *,input) Pointer to array specifying levels at which to draw contours.

nl evel (PLI NT, input) Number of contour levelsto draw.

Xg, yg (PLFLT *,input) Pointers to arrays which specify the transformation from array in-

dicesto world coordinates. These must be one-dimensional arrays,
used for a transformation of the form: tx =f (x),ty =f(y).
Function values at locations between grid points are obtained via
linear interpolation.

NOTE: this function is intended for use from a Fortran 77 caller only. The C user should instead call
pl cont using the built-in transformation function pl t r 1 for the same capability.

pl con2: Contour plot, general 2-d mapping for Fortran 77
pl con2 (z, nx, ny, kx, Ix, ky, ly, clevel, nlevel, xg, yg);

Drawsacontour plot of thedatainz[nx] [ny] , usingthenl evel contour levelsspecifiedby cl evel .
Only the region of the array from kx to | x and from ky to | y is plotted out. The arrays xg and yg are
used to specify the transformation between array indices and world coordinates. See the section called
“Contour and Shade Plots’ for more information.

z (PLFLT **,input) Pointer to a vectored two-dimensional array containing data to be
contoured.

nx, ny (PLI NT, input) Physical dimensions of array z.

kx, | x (PLI NT, input) Range of x indicesto consider.

ky, 1y (PLI NT,input) Range of y indicesto consider.

cl evel (PLFLT *,input) Pointer to array specifying levels at which to draw contours.

nl evel (PLI NT, input) Number of contour levelsto draw.

Xg, yg (PLFLT *,input) Pointers to arrays which specify the transformation from array in-

dicesto world coordinates. These must be two-dimensional arrays,
used for atransformation of theform:t x =f (x, y),ty =f(x,
y) . Function values at locations between grid points are obtained
vialinear interpolation.

NOTE: this function is intended for use from a Fortran 77 caller only. The C user should instead call
pl cont using the built-in transformation function pl t r 2 for the same capability.

pl cont : Contour plot, fixed linear mapping for Fortran 77
pl cont (z, nx, ny, kx, Ix, ky, ly, clevel, nlevel);

When called from Fortran 77, this routine has the same effect aswhen invoked from C. The interpretation
of al parameters (see pl cont) isalso the same except there is no transformation function supplied asthe
last parameter. Instead, a 6-element array specifying coefficients to use in the transformation is supplied
viathe named common block pl pl ot (see code). Since this approach is somewhat inflexible, the user is
recommended to call either of pl conO, pl conl, or pl con2 instead.

210

The Speciaized For-
tran 77 API for PLplot

pl vecO: Vector plot, identity mapping for Fortran 77
pl vecO (u, v, nx, ny, scale);
Draws avector plot of thedatain (u[nx] [ny], v[nx][ny]).

u, v (PLFLT **,input) Pointer to apair of vectored two-dimensional arrays containing the
x and y components of the vector to be plotted.

nx, ny (PLI NT, input) Physical dimensions of the arraysu and v.

scal e (PLFLT, input) Parameter to control the scaling factor of the vectors for plotting.
If scal e = 0 then the scaling factor is automatically calculated
for thedata. If scal e < 0 thenthe scaling factor isautomatically
calculated for the data and then multiplied by - scal e. If scal e
> 0 then the scaling factor isset to scal e.

NOTE: this function is intended for use from a Fortran 77 caller only. The C user should instead call
pl vect using the built-in transformation function pl t r O for the same capability.

pl vecl: Vector plot, general 1-d mapping for Fortran 77
plvecl (u, v, nx, ny, scale, xg, YyQ);

Draws avector plot of thedatain (u[nx] [ny], v[nx][ny]).

u, v (PLFLT **, input) Pointer to apair of vectored two-dimensional arrays containing the
x and y components of the vector to be plotted.

nx, ny (PLI NT, input) Physical dimensions of thearraysu and v.

scal e (PLFLT, input) Parameter to control the scaling factor of the vectors for plotting.

If scal e = 0 then the scaling factor is automatically calculated
for thedata. If scal e < 0 thenthescaling factor isautomatically
calculated for the data and then multiplied by - scal e. If scal e
> 0 then the scaling factor isset to scal e.

Xg, yg (PLFLT *,input) Pointers to arrays which specify the transformation from array in-
dicesto world coordinates. These must be one-dimensional arrays,
used for a transformation of the form: tx =f (x),ty =f(y).
Function values at locations between grid points are obtained via
linear interpolation.

NOTE: this function is intended for use from a Fortran 77 caller only. The C user should instead call
pl vect using the built-in transformation function pl t r 1 for the same capability.

pl vec2: Vector plot, general 2-d mapping for Fortran 77
plvec2 (u, v, nx, ny, scale, xg, YyQ);
Draws avector plot of thedatain (u[nx] [ny], v[nx][ny]).

u, v (PLFLT **,input) Pointer to apair of vectored two-dimensional arrays containing the
x and y components of the vector to be plotted.

nx, ny (PLI NT, input) Physical dimensions of the arraysu and v.

211

The Speciaized For-
tran 77 API for PLplot

scal e (PLFLT, input) Parameter to control the scaling factor of the vectors for plotting.
If scal e = 0 then the scaling factor is automatically calculated
for thedata. If scal e < 0 thenthescaling factor isautomatically
calculated for the data and then multiplied by - scal e. If scal e
> 0 thenthe scaling factor issetto scal e.

Xg, yg (PLFLT *,input) Pointers to arrays which specify the transformation from array in-
dicesto world coordinates. These must be two-dimensional arrays,
used for atransformation of theform:t x =f (x, y),ty =f(x,
y) . Function values at locations between grid points are obtained
vialinear interpolation.

NOTE: this function is intended for use from a Fortran 77 caller only. The C user should instead call
pl vect using the built-in transformation function pl t r 2 for the same capability.

pl vect : Vector plot, fixed linear mapping for Fortran 77
plvect (u, v, nx, ny, scale);

When called from Fortran 77, this routine has the same effect as when invoked from C. The interpretation
of al parameters (seepl vect) isalso the same except there is no transformation function supplied asthe
last parameter. Instead, a 6-element array specifying coefficients to use in the transformation is supplied
viathe named common block pl pl ot (see code). Since this approach is somewhat inflexible, the user is
recommended to call either of pl vecO, pl vecl, or pl vec?2 instead.

pl mesh: Plot surface mesh for Fortran 77
pl mesh (x, y, z, nx, ny, opt, nx);

When called from Fortran 77, this routine has the same effect as when invoked from C. The interpretation
of all parameters (see pl nesh) is aso the same except there is an additional parameter given by:

nmx (PLI NT, input) Length of array in x direction, for plotting subarrays.

pl ot 3d: Plot 3-d surface plot for Fortran 77
plot3d (x, y, z, nx, ny, opt, side, nx);

When called from Fortran 77, this routine has the same effect as when invoked from C. The interpretation
of all parameters (see pl ot 3d) is also the same except there is an additional parameter given by:

nmx (PLI NT, input) Length of array in x direction, for plotting subarrays.
pl par seopt s: parse arguments for Fortran 77

pl parseopts (node);

When called from Fortran 77, this routine has the same effect as when invoked from C (see
pl par seopt s) except that the argument list just contains the parsing mode and the Fortran 77 system
routinesi ar gc and get ar g are used internally to obtain the number of arguments and argument values.
(Note, during configuration, the user's Fortran 77 compiler is checked to see whether it supportsi ar gc
and get ar g. If it does not, the Fortran 77 plparseopts simply writes a warning message and returns.

node (PLI NT, input) Parsing mode; see pl par seopt s for details.

212

The Speciaized For-
tran 77 API for PLplot

pl sesc: Set the escape character for text strings for Fortran 77

pl sesc (esc);

Set the escape character for text strings. From Fortran 77 it needs to be the decimal ASCII value. Only
selected characters are allowed to prevent the user from shooting himself in the foot (For example, a*“\”
isn't allowed sinceit conflictswith C's use of backslash as a character escape). Here are the allowed escape
characters and their corresponding decimal ASCII values:

o “I” ASCII 33

“#', ASCII 35

“$", ASCII 36

“%”, ASCII 37

“&", ASCII 38

o “*" ASCII 42

“@’, ASCIl 64
o “N ASCII 94
o “~" ASCII 126

esc (char, input) NEEDS DOCUMENTATION

213

Chapter 23. APl compatibility definition

This chapter presents the formal definition of what is considered to be in the PLplot library API. It is
assumed that major new releases of PLplot will have substantial backwards incompatible changesin the
AP, but the PL plot devel opers commit to introducing as few as possible of such incompatibilities between
minor releases such that stability across those minor releases is practically guaranteed. In al cases where
backwards incompatible changes have been introduced, then the library soname will be changed (for op-
erating systems such as Linux that support versioned shared libraries).

Theinformation in this chapter regards version 5.9.10 of PLplot, released on 2013-09-30.

What is in the API?

The formal definition of the PLplot C API is everything that is defined in the include file pl pl ot . h.
This includes all the function prototypes, the defined structures and the semantics of the constants. The
list of symbols currently exported by the shared library | i bpl pl ot . h that are declared in pl pl ot . h

isthe following:

pl Al'l oc2dG i d pl gcol O pl scmapll a
pl C ear Opt s pl gcol Oa pl scmapln
p! Fi ndCommrand pl gcol bg pl scol O

p! Fi ndNane pl gcol bga pl scol Oa
pl Free2dGi d pl gconpr essi on pl scol bg
pl Get Cur sor pl gdev pl scol bga
pl Get FI t pl gdi dev pl scol or

pl Get I nt pl gdi ori pl sconpressi on
pl Get Nane pl gdi pl t pl sdev

pl Mer geOpt s pl gdr awmrode pl sdi dev
p! M nMax2dG i d pl gesc pl sdi map

pl Opt Usage pl gf am pl sdi ori

pl Reset Opt s pl gf ci pl sdi pl t

pl Set Usage plgfile pl sdi pl z
pl Tr ansl at eCur sor pl gf nam pl sdr awmrode
pl _cnd pl gf ont pl seed

pl _setcont | abel f or mat pl gl evel pl seopH

pl _setcont | abel param pl gpage pl sesc

pl adv pl gra pl set opt

pl arc pl gradi ent pl sexi t

pl axes pl gri ddat a pl sfam

pl bi n pl gspa pl sfc

p! bop pl gstrm plsfile

pl box pl gver pl sf nam

pl box3 p! gvpd pl sf ont

pl bti nme pl gvpw pl shade

pl cal c_world pl gxax pl shadel
pl cl ear pl gyax pl shades

pl col O pl gzax pl sl abel func
pl col 1 pl hi st pl smyj

pl col or bar p!l hl srgb pl smem

pl configtine pl i mage pl smenma

pl cont pl i magefr pl smn

pl cpstrm plinit pl sori
plctinme pljoin pl spage

214

API compatibility definition

pl di d2pc

pl di p2dc

pl end

pl endl

pl env

pl envO

pl eop

pl errx
plerry

pl f 2eval

pl f 2eval 1
pl f 2eval 2
pl f 2eval r

pl f 2ops_c
pl f 2ops_grid_c
pl f 2ops_gri d_col _maj or
pl f 2ops_gri d_r ow_maj or
pl f amadv

pl f cont

pl f gri ddat a
plfill
plfill3

pl fi mage

pl fi magefr
pl flush

pl f mesh

pl f meshc

pl f ont

pl fontld

p! f pl ot 3d
p! f pl ot 3dc
pl f pl ot 3dcl
pl f shade

pl f shadel
pl f shades
pl f surf 3d
pl f surf 3dl
pl f vect

pl gDevs

pl gFi | eDevs
pl gchr

pl gcmapl_range

pl | ab

pl | egend

pl i ght source
plline
plline3
pllsty

pl map

pl meri di ans
pl mesh

pl meshc

pl nkstrm

pl nt ex

pl nt ex3

pl ot 3d

pl ot 3dc

pl ot 3dcl

pl par seopt s
pl pat

pl pat h

pl poi n

p! poi n3

p! pol y3

pl prec

pl psty

pl pt ex

pl pt ex3

pl r andd

pl repl ot

pl rgbhl s

pl sButt onEH
pl sError

pl sKeyEH

pl sabort

pl sbopH

pl schr

pl scmap0

pl scmapOa
pl scmapOn
pl scmapl

pl scmapl_range
pl scmapla
pl scrmapll

pl spal 0
pl spal 1
pl spause
pl sstrm
pl ssub

pl ssym
pl st ar

pl start
pl stransform
pl string
pl string3
pl stripa
pl stripc
pl stripd
pl styl

pl surf 3d
pl surf 3dl
pl svect
pl svpa

pl sxax

pl sxwi n
pl syax

pl sym

pl szax

pl t ext

pl ti mefm
pltr0
pltril
pltr2

pl tr2f
pltr2p

pl vasp

pl vect

pl vpas

pl vpor

pl vsta

pl w3d

pl wi dt h
pl wi nd

pl xor nod

Another important aspect of compatibility regard the Application Binary Interface (ABI). Backwards com-
patibility can be broken by changesin the C structures made public through pl pl ot . h. Currently, they

are:

typedef struct
{

const char *opt;

int (*handler)(const char *,

voi d *client _data
voi d *var;
| ong node;

const char *, void *);

215

API compatibility definition

const char *syntax;
const char *desc;
} PLOptionTabl e;

typedef struct

{
i nt type; /1
unsi gned int state; /1
unsi gned int keysym /1

unsi gned int button; /1
PLI NT subwi ndow; /1
char string[PL_MAXKEY]; //
i nt pX, pY; /1
PLFLT dX, dy; /1
PLFLT wx, wy; /1

} PLG aphi csln;

typedef struct

{
PLFLT dxm, dxma, dym, dyns;
PLFLT wxm , wxXma, wym , Wna;

} PLW ndow,

t ypedef struct
{

unsi gned int x, vy;

unsi gned int w dth, height;
} PLD spl ay;

t ypedef struct
{
const
PLI NT
} PLEGid;

PLFLT *f;

nx, ny, nz;

typedef struct
{
PLFLT **f;
PLI NT nx,
} PLFGid2;

ny;

typedef struct
{
PLFLT *xg,
PLI NT nx,
} PLcGid;

*yg, *zg;
ny, nz;

typedef struct
{
PLFLT **xg,
PLI NT nx,
} PLcGrid2;

**yg' **zg;

ny;

t ypedef struct

of event (CURRENTLY UNUSED)
key or button mask

key sel ected

nouse button sel ected
subwi ndow (al i as subpage
translated string

absol ute devi ce coordi nates of pointer
rel ati ve devi ce coordi nates of pointer
wor | d coordi nates of pointer

alias subplot) nu

// mn, max w ndow rel dev coords
// mn, max w ndow worl d coords
/1 upper left hand corner

/1 wi ndow di nensi ons

216

API compatibility definition

{
unsi gned char r; /1 red
unsi gned char g; /1 green
unsi gned char b; /1 blue
PLFLT a; /1 al pha (or transparency)
const char *name;
} PLCol or;
typedef struct
{
PLFLT h; /'l hue
PLFLT 1 ; /1 1ightness
PLFLT s; /] saturation
PLFLT p; /1 position
PLFLT a; /1 al pha (or transparency)

i nt alt _hue_pat h; /1 if set, interpolate through h=0
} PLControl Pt

t ypedef struct
{
PLI NT cnd;
PLI NT result;
} PLBufferingCB

t ypedef struct

{
PLFLT exp_I abel _di sp;
PLFLT exp_I abel _pos;
PLFLT exp_I abel _j ust;

} PLLabel Def aul ts;

t ypedef struct

{
PLFLT (*get)(PLPointer p, PLINT ix, PLINT iy);
PLFLT (*set)(PLPointer p, PLINT ix, PLINT iy, PLFLT z);
PLFLT (*add)(PLPointer p, PLINT ix, PLINT iy, PLFLT z);
PLFLT (*sub)(PLPointer p, PLINT ix, PLINT iy, PLFLT z);
PLFLT (*mul)(PLPointer p, PLINT ix, PLINT iy, PLFLT z);
PLFLT (*div)(PLPointer p, PLINT ix, PLINT iy, PLFLT z);
PLINT (*is_nan)(PLPointer p, PLINT ix, PLINT iy);
void (*m nmax)(PLPointer p, PLINT nx, PLINT ny, PLFLT *zmim PLFLT *zmax);
/1
/1 f2eval is backwards conpatible signature for "f2eval" functions that
/1 existed before plf2ops "operator function famlies" were used.
/1
PLFLT (*f2eval)(PLINT ix, PLINT iy, PLPointer p);
} pl f2ops_t;

217

API compatibility definition

Regression test for backwards compatibility

Since PLplot is developed by so many people, the task of checking for backwards compatibility of the
library isvery hard. Asfor the 5.3.1 release, we do not have any rigorous regression test for check whether
thelibrary isreally backwards compatible.

However, here are some rules to be followed by the Release Manager prior to releasing a new version
of PLplot:

» Check if thereareany changesinpl pl ot . h. If no prototypeis changed, then the chances are high that
no backwards incompatibilities have been introduced. If new functions has been added, then thelibrary
sonamewill be kept, although the soversion stringsincmak e/ nodul e/ pl pl ot _ver si on. cnmake
must be changed following the instructions in that file.

* A necessary, but not sufficient test consists of the following: first, install the previous released version
of PLplot in the system and compile all the examplesexanpl es/ c/ x??c. . After that, install the to-
be-released version of PLplot and try to run the previously compiled examples. If they either link or
run incorrectly, then backwards incompatibilities have been introduced and the soversion string must
be upgraded from x: y: z to (x+1) : 0: O.

218

Chapter 24. Obsolete/Deprecated API
for PLplot

plclr:

pl col :

pl hl s:

The purpose of this chapter isto provide minimal documentation for obsolete/deprecated API that appears
in our C library to provide backwards compatibility until our next mgjor release, PLplot-6, where these
functions will disappear. Do not use these functions, and if you already use them in legacy PL plot appli-
cations, replace them by the suggested equivalents so you won't be caught out by the next major PLplot
release.

Eject current page

pleclr ();
Removed. Use the new name, pl eop, for this function instead.
Set color

pl col (color);
Removed. Use the new name, pl col 0O, for thisfunction instead.

col or (PLI NT, input) Seepl col 0.
Set current color by HLS

plhls (h, |, s);

Set current color by hue, lightness, and saturation. Convert hls color coordinates to rgb, then call plrgb.
This function has been removed. Use pl hl sr gb and pl scol 0 instead.

h (PLFLT, input) NEEDS DOCUMENTATION
| (PLFLT, input) NEEDS DOCUMENTATION
s (PLFLT, input) NEEDS DOCUMENTATION

pl HLS RGB: Convert HLS color to RGB

pl HLS R&B (h, I, s, p_r, p_g, p_b);

Removed. Use pl hl sr gb from the common API instead.

h (PLFLT, input) Hue, in degrees on the colour cone (0.0-360.0)

| (PLFLT, input) Lightness, expressed as a fraction of the axis of the colour cone
(0.0-1.0)

s (PLFLT, input) Saturation, expressed as a fraction of the radius of the colour cone
(0.0-1.0)

p_r (PLFLT *, output) Pointer to red intensity (0.0-1.0) of the colour

p_g (PLFLT *, output) Pointer to green intensity (0.0-1.0) of the colour

219

Obsolete/Deprecated API for PLplot

p_b (PLFLT *, output) Pointer to blue intensity (0.0-1.0) of the colour
pl page: Begin a new page

pl page ();

Removed. Use the new name, pl bop, for thisfunction instead.

pl rgb: Set line color by red, green

plrgb (r, g, b);

Set line color by red, green, blue from 0. to 1. Do Removed. Use the function pl scol 0 instead.

r (PLFLT, input) NEEDS DOCUMENTATION
g (PLFLT, input) NEEDS DOCUMENTATION
b (PLFLT, input) NEEDS DOCUMENTATION

pl rgbl: Set line color by 8-bit RGB values

plrgbl (r, g, b);

Set line color by 8-bit RGB values. Do not use this. Removed. Use the function pl scol 0 instead.

r (PLI NT, input) NEEDS DOCUMENTATION
g (PLI NT, input) NEEDS DOCUMENTATION
b (PLI NT, input) NEEDS DOCUMENTATION

220

Chapter 25. Internal C functions in
PLplot

The purpose of this chapter is to document the API for every internal C function in PLplot (other than
language bindings) that is not part of the common API that has aready been documented in Chapter 19,
The Common API for PLplot or elsewhere. The functions documented here are internal plplot functions.
They are not intended for external use and may change between releases.

This chapter isawork that isjust starting. There are many C functionsin the code base that are not part of
the common API, and we haven't even gotten to the point of listing them all. What gets documented here
now iswhatever C-explicit code we are trying to understand at the time.

pl P_checkdriverinit: Checks to see if any of the specified dri-
vers have been initialized

pl P_checkdriverinit (list);

Checksto see if any of the specified drivers have been initialized. Function tests a space-delimited list of
driver names to see how many of the given drivers have been initialized, and how often. The return code
of the function is: 0 if no matching drivers were found to have been initialized; - 1 if an error occurred
allocating the internal buffer; or, a positive number indicating the number of streams encountered that
belong to drivers on the provided list. Thisfunction invokespl P_geti nitdri verli st internaly to
get acomplete list of driversthat have been initialized in order to compare with the driver names specified
in the argument list to pl P_checkdri verinit.

list (char *,input) Pointer to character string specifying aspace-delimited list of driver
names, eg.,"bnp jpeg tiff".

pl P_getinitdriverlist: Getthe initialized-driver list

pl P_getinitdriverlist (text_buffer);

Get theinitialized-driver list. Function returns a space-delimited list of the currently initialized drivers or
streams. |If more than one stream is using the same driver, then its name will be returned more than once.
The function can be analogously thought of as also returning the names of the active streams. Invoked
internally by pl P_checkdriverinit.

text _buffer (char *,output) Pointer to a user-allocated buffer to hold the result. The user must
ensure the buffer is big enough to hold the result.

221

Chapter 26. Notes for each Operating
System that We Support

The purpose of this Chapter isto present notes for each operating system that we support. Currently, those
are al operating systems supported by CMake (all forms of Unix including Linux and Mac OS X, and
al forms of Windows including MinGW, MinGW/MSY S, Cygwin, and essentially all Windows variants
directly supported by Microsoft).

Linux/Unix Notes

Linux/Unix Configure, Build, and Installation

Hereisthe short story:

Note many other cnake options are avail abl e besi des - DCMAKE | NSTALL_PREFI X
I nspect CMakeCache.txt after a prelimnary crmake run to see an annotated
list of the available options. Then renove CMvakeCache.txt and try again.
cmake - DCMAKE | NSTALL_PREFI X=<i nstal | - prefi x> \

<pat h-t o- source-tree> >& cmake. out

make >& nake. out

#(optional, requires -DBU LD TEST=ON option for cnake)

ctest >& ctest. out

make install >& make_install. out

cd <install-prefix>/share/plpl ot <versi on>/ exanpl es/

make >& nake_exanpl es. out

.Iplplot-test.sh >& plplot-test.sh. out

The longer (CMake) story is currently documented here [http://www.miscdebris.net/plplot_wiki/
index.php?title=Building_PL plot]. The eventual plan isto incorporate that material in this documentation,
but we haven't done it yet so this section NEEDS DOCUMENTATION.

Linux/Unix Building of C Programmes that Use the In-
stalled PLplot Libraries

This is incomplete. For now follow what is done to build our installed examples (see "make >&
make_examples.out above) using pkg-config. NEEDS DOCUMENTATION.

Windows Notes

Windows Configure and Build

This (CMake) story is currently documented here [http://www.miscdebris.net/plplot_wiki/index.php?
title=Specifics for_various platforms#Windows]. The eventual plan is to incorporate that materia into
this documentation, but we haven't done it yet so this section NEEDS DOCUMENTATION.

222

http://www.miscdebris.net/plplot_wiki/index.php?title=Building_PLplot
http://www.miscdebris.net/plplot_wiki/index.php?title=Building_PLplot
http://www.miscdebris.net/plplot_wiki/index.php?title=Building_PLplot
http://www.miscdebris.net/plplot_wiki/index.php?title=Specifics_for_various_platforms#Windows
http://www.miscdebris.net/plplot_wiki/index.php?title=Specifics_for_various_platforms#Windows
http://www.miscdebris.net/plplot_wiki/index.php?title=Specifics_for_various_platforms#Windows

Chapter 27. The PLplot Libraries

The purpose of this chapter is give an overview of the libraries that are created as part of a PLplot build.
These consist of bindings libraries to make the PLplot API accessible for various computer languages or
GUI environments, the PLplot core library which implements the PLplot API in C, enhancement libraries
which add essential functionality the PLplot core library, and device-driver libraries which help to imple-
ment some of our device drivers.

Bindings Libraries

The purpose of the PLplot bindings is to make the PLplot APl documented in Chapter 19, The Common
API for PLplot accessible from various computer languages and GUI environments. Some bindings (e.g.,
gt and cairo) are implemented by a special form of "external” device. Other bindings (e.g., python) are
implemented as shared objects which are dynamically loaded by the language in question. However, the
majority of our bindings are implemented as bindings libraries which must be specifically linked by the
application. (See the Makefilesin the installed examples tree for comprehensive examples of how we use
pkg-config to supply the necessary linking information.) In turn these bindings libraries are linked to the
PLplot core library described in the section called “The PLplot Core Library”. We tabulate below the
bindings library or libraries associated with the compiled languages and GUI environments we support
in this specific way.

Table 27.1. Bindings Libraries

Bindings Libraries
Ada libplplotada
C++ libplplotexx
Fortran 77 libplplotf77, libplplotf77¢c
Fortran 95 libplplotf95, libplplotf95c
Tk GUI libplplottcltk, libtclmatrix
wxWidgets GUI libpl plotwxwidgets

The PLplot Core Library

The PLplot core library is written in C and implements the PLplot APl documented in Chapter 19, The
Common API for PLplot. The name of that core library is libplplot. libplplot links to the enhancement
libraries documented in the section called “Enhancement Libraries’. libplplot al'so normally dynamically
loads devices (a build mode is also available to put the driver code right into the core library) which in
turn can potentially link to device-driver libraries that are described in the section called “ Device-driver
Libraries’.

Enhancement Libraries

The enhancement libraries add essential functionality to the PLplot core library (see the section called
“The PLplot Core Library”). They consist of a cubic spline approximation library, libcsirocsa; a natural
neighbours interpolation library, libcsironn; and a time format conversion library libgsastime.

The CSIRO Cubic Spline Approximation Library

libcsirocscaNEEDS DOCUMENTATION.

223

The PLplot Libraries

The CSIRO Natural Neighbours Interpolation Library

libcsironn NEEDS DOCUMENTATION.

The QSAS Time Format Conversion Library

This library grew out of a discussion with Steve Schwartz of the QSAS Support Team, Cluster Science
Centre, Imperia College and our mutual frustrations with the poor time conversion capabilities of POSIX-
compliant computer operating systems. For such systems, the continuous time variable is often stored
internally as a 32-bit integer containing the number of seconds since 1970. This gives alimited date range
of only 136 years, and a limited numerical precision of only a second. Furthermore, although the POSIX
standard includes gmtime which provides a conversion between broken-down time (year, month, day,
hour, min, sec), and the continuous time variable, theinverse of gmtime (called timegm on Linux) isnot a
POSIX standard. Finally, the POSI X standard ignores|eap seconds. All theselimitations are not acceptable
for plotting of scientific time series and are addressed by the gsastime library which was originally donated
under the L GPL to the PL plot project in early 2009 by Anthony J. Allen of the QSA Steam and substantially

modified after that by a PLplot developer, Alan W. Irwin (e.g., to add leap-second functionality).

Thegsastimelibrary usesM JD (modified Julian Date = Julian Date - 2400000.5) for theinternal continuous
time variable. This variable is stored as a signed int (to hold the integer part) and a double (to hold the
seconds since midnight). On 32-bit systems, this combination gives an effective date range of roughly +/-
6 million years from the MJD epoch in late 1858 and an effective numerical time precision of 0.01 ns.
This should cover most range and precision requirements of those doing plots of scientific time series.

The gsastime library provides internal routines to convert between the broken-down time representation
and the interna continuous time variable and vice versa using the formal rules of either the Gregorian
or Julian calendars. These routines have been tested extensively for the internal consistency of the rou-
tines both for the Gregorian and Julian calendars and also by comparing the Gregorian results against the
equivalent Linux C library gmtime and timegm routines on a 64-bit platform. These tests were done for a
number of epochsincluding every year from -5000000 to 5000000 for critical datesin the year (January 1,
February 28, February 29, March 1, and December 31). These extensive tests give some confidence that
the formal conversion from broken-down to continuous time (and vice versa) should be reliable for the

gsastime library on al 32-bit and 64-bit platforms.

The gsastime library also provides an internal routine that gives formatted time results as a function of
continuous time. This routine has been lightly tested against the results of the C library strftime routine

on Linux.

The three internal routines described above are wrapped by functions that provide the externaly visible

API for the gsastime library. This API is described below.

Device-driver Libraries

Device-driver libraries are libraries which are built as part to the PLplot build and which are linked by
PLplot device drivers. At thistime we only have one example of this, the NIST cd library which makesit
easy to create filesin CGM format. The original name of this library was libcd, but we call it libnistcd to
distinguish it from all other "cd" libraries out there. Thislibrary islinked by our cgm device driver.

CGM format isalong-established (since 1987) open standard for vector graphics (see http://www.w3.org/
Graphics/WebCGMY/). The libnistcd software was developed by G. Edward Johnson at NIST to provide
convenient access to the CGM format. The library is no longer maintained (the last official release was
in 1997), but the software is mature and works well. Furthermore, it is in the public domain except for
the small part licensed under the libgd open-source license (see lib/nistcd/cd.html in the PLplot source

224

The PLplot Libraries

tree). PLplot devel opers have added amodern CM ake-based build system for libnistcd and also have done
some visihility support so the code builds properly under Windows and also under Linux with gcc when
the -fvisibility=hidden option for gcc is used. Otherwise, the code is identical to the 1997 version. For
documentation of the libnistcd API see lib/nistcd/cd.html in the PLplot source tree.

225

	The PLplot Plotting Library
	Table of Contents
	Part I. Introduction
	Chapter 1. Introduction
	The PLplot Plotting Library
	Getting a Copy of the PLplot Package
	Installing and Using the PLplot Library
	Organization of this Manual
	Copyrights
	Additional Copyrights

	Credits

	Part II. Programming
	Chapter 2. Simple Use of PLplot
	Plotting a Simple Graph
	Initializing PLplot
	Defining Plot Scales and Axes
	Labelling the Graph
	Drawing the Graph
	Drawing Points
	Drawing Lines or Curves
	Writing Text on a Graph
	Area Fills
	More Complex Graphs

	Finishing Up
	In Case of Error

	Chapter 3. Advanced Use of PLplot
	Command Line Arguments
	Output Devices
	Driver Functions
	PLplot Metafiles and Plrender
	Family File Output
	Interactive Output Devices
	Specifying the Output Device

	Adding FreeType Library Support to Bitmap Drivers
	Write a call back function to plot a single pixel
	Initialize FreeType
	Add A Command to redraw text (interactive drivers only)
	Add Function Prototypes
	Add Closing functions

	View Surfaces, (Sub-)Pages, Viewports and Windows
	Defining the Viewport
	Defining the Window
	Annotating the Viewport
	Setting up a Standard Window

	Setting Line Attributes
	Setting the Area Fill Pattern
	Setting Color
	Color Map0
	Color Map1

	Setting Character Attributes
	Hershey fonts
	Unicode fonts
	FCI
	Escape sequences in text
	Character size adjustment

	Three Dimensional Surface Plots
	Contour and Shade Plots
	Contour Plots from C
	Shade Plots from C
	Contour Plots from the Fortran 95 interface
	Shade Plots from the Fortran 95 interface
	Contour Plots from the Fortran 77 interface
	Shade Plots from the Fortran 77 interface

	Legends and color bars

	Chapter 4. Deploying programs that use PLplot
	Chapter 5. The PLplot Display Driver Family
	The Xwin Driver (X-Windows)
	The Tk Driver
	The AquaTerm Driver (Mac OS X)
	The wxWidgets Driver (Linux, Mac OS X, Windows)
	wxWidgets Driver Basics

	Chapter 6. The PLplot Output Driver Family
	The GD Driver
	The PDF Driver
	The PostScript Driver
	The TrueType PostScript Driver
	The LaTeX PostScript Driver
	The SVG Driver

	Part III. Language Bindings
	Chapter 7. Ada Language
	Overview
	The Bindings
	Thin Binding
	The Thick Bindings
	Standard Thick Binding Using Enhanced Names
	Thick Binding Using Traditional Names

	The Examples
	Obtaining the Software
	Obtaining an Ada compiler
	Download and install PLplot
	The Ada bindings to PLplot

	How to use the Ada bindings
	Ada 95 versus Ada 2005
	GNAT versus non-GNAT
	Sample command line project

	Unique Features of the Ada bindings
	High-level features for simplified plotting
	Foreground-background control
	Draw_On_Black, Draw_On_White

	Simple Plotters
	Multiplot_Pairs
	Simple_Plot
	Simple_Plot_Log_X
	Simple_Plot_Log_Y
	Simple_Plot_Log_XY
	Simple_Plot_Pairs
	Single_Plot
	Simple_Contour
	Simple_Mesh_3D
	Simple_Surface_3D

	Simple color map manipulations

	Integer Options Given Ada Names
	One-offs

	Parts That Retain a C Flavor
	Map-drawing

	Known Variances
	Documentation
	API

	Compilation notes
	Ada 95 Versus Ada 2005
	GNAT Dependence
	PLplot_Auxiliary

	Notes for Apple Macintosh OS X users
	Using Apple's Xcode IDE
	AquaTerm
	X11
	GNAT for OS X

	Chapter 8. C Language
	Chapter 9. A C++ Interface for PLplot
	Motivation for the C++ Interface
	Design of the PLplot C++ Interface
	Stream/Object Identity
	Namespace Management
	Abstraction of Data Layout
	Collapsing the API

	Specializing the PLplot C++ Interface
	Status of the C++ Interface

	Chapter 10. Fortran 77 Language
	Chapter 11. Fortran 95 Language
	Chapter 12. OCaml Language
	Overview
	The Bindings
	Core Binding
	OCaml-specific variations to the core PLplot API
	OCaml high level 2D plotting API

	The Examples
	Obtaining the Software
	Obtaining the OCaml compiler

	How to use the OCaml bindings
	How to setup findlib for use with the OCaml bindings
	Sample command line project (core API)
	Sample command line project (OCaml-specific API)
	Sample toplevel project

	Known Issues

	Chapter 13. Using PLplot from Perl
	Chapter 14. Using PLplot from Python
	Chapter 15. Using PLplot from Tcl
	Motivation for the Tcl Interface to PLplot
	Overview of the Tcl Language Binding
	The PLplot Tcl Matrix Extension
	Using Tcl Matrices from Tcl
	Using Tcl Matrices from C
	Using Tcl Matrices from C++
	Extending the Tcl Matrix facility

	Contouring and Shading from Tcl
	Drawing a Contour Plot from Tcl
	Drawing a Shaded Plot from Tcl

	Understanding the Performance Characteristics of Tcl

	Chapter 16. Building an Extended WISH
	Introduction to Tcl
	Motivation for Tcl
	Capabilities of Tcl
	Acquiring Tcl

	Introduction to Tk
	Introduction to [incr Tcl]
	PLplot Extensions to Tcl
	Custom Extensions to Tcl
	WISH Construction
	WISH Linking
	WISH Programming

	Chapter 17. Embedding Plots in Graphical User Interfaces

	Part IV. Reference
	Chapter 18. Bibliography
	References

	Chapter 19. The Common API for PLplot
	pl_setcontlabelformat: Set format of numerical label for contours
	pl_setcontlabelparam: Set parameters of contour labelling other than format of numerical label
	pladv: Advance the (sub-)page
	plarc: Draw a circular or elliptical arc
	plaxes: Draw a box with axes, etc. with arbitrary origin
	plbin: Plot a histogram from binned data
	plbop: Begin a new page
	plbox: Draw a box with axes, etc
	plbox3: Draw a box with axes, etc, in 3-d
	plcalc_world: Calculate world coordinates and corresponding window index from relative device coordinates
	plclear: Clear current (sub)page
	plcol0: Set color, map0
	plcol1: Set color, map1
	plcolorbar: Plot color bar for image, shade or gradient plots
	plcont: Contour plot
	plcpstrm: Copy state parameters from the reference stream to the current stream
	plend: End plotting session
	plend1: End plotting session for current stream
	plenv0: Same as plenv but if in multiplot mode does not advance the subpage, instead clears it.
	plenv: Set up standard window and draw box
	pleop: Eject current page
	plerrx: Draw x error bar
	plerry: Draw y error bar
	plfamadv: Advance to the next family file on the next new page
	plfill: Draw filled polygon
	plfill3: Draw filled polygon in 3D
	plflush: Flushes the output stream
	plfont: Set character font
	plfontld: Load character font
	plgchr: Get character default height and current (scaled) height
	plgcol0: Returns 8-bit RGB values for given color from color map0
	plgcol0a: Returns 8-bit RGB values and double alpha value for given color from color map0.
	plgcolbg: Returns the background color (cmap0[0]) by 8-bit RGB value
	plgcolbga: Returns the background color (cmap0[0]) by 8-bit RGB value and double alpha value.
	plgcompression: Get the current device-compression setting
	plgdev: Get the current device (keyword) name
	plgdidev: Get parameters that define current device-space window
	plgdiori: Get plot orientation
	plgdiplt: Get parameters that define current plot-space window
	plgfam: Get family file parameters
	plgfci: Get FCI (font characterization integer)
	plgfnam: Get output file name
	plgfont: Get family, style and weight of the current font
	plglevel: Get the (current) run level
	plgpage: Get page parameters
	plgra: Switch to graphics screen
	plgradient: Draw linear gradient inside polygon
	plgriddata: Grid data from irregularly sampled data
	plgspa: Get current subpage parameters
	plgstrm: Get current stream number
	plgver: Get the current library version number
	plgvpd: Get viewport limits in normalized device coordinates
	plgvpw: Get viewport limits in world coordinates
	plgxax: Get x axis parameters
	plgyax: Get y axis parameters
	plgzax: Get z axis parameters
	plhist: Plot a histogram from unbinned data
	plhlsrgb: Convert HLS color to RGB
	plimagefr: Plot a 2D matrix using color map1
	plimage: Plot a 2D matrix using color map1 with automatic colour adjustment
	plinit: Initialize PLplot
	pljoin: Draw a line between two points
	pllab: Simple routine to write labels
	pllegend: Plot legend using discretely annotated filled boxes, lines, and/or lines of symbols
	pllightsource: Sets the 3D position of the light source
	plline: Draw a line
	plline3: Draw a line in 3 space
	pllsty: Select line style
	plmap: Plot continental outline in world coordinates.
	plmeridians: Plot latitude and longitude lines.
	plmesh: Plot surface mesh
	plmeshc: Magnitude colored plot surface mesh with contour.
	plmkstrm: Creates a new stream and makes it the default
	plmtex: Write text relative to viewport boundaries
	plmtex3: Write text relative to viewport boundaries in 3D plots.
	plot3d: Plot 3-d surface plot
	plot3dc: Magnitude colored plot surface with contour.
	plparseopts: Parse command-line arguments
	plpat: Set area fill pattern
	plpath: Draw a line between two points, accounting for coordinate transforms.
	plpoin: Plot a glyph at the specified points
	plpoin3: Plot a glyph at the specified 3D points
	plpoly3: Draw a polygon in 3 space
	plprec: Set precision in numeric labels
	plpsty: Select area fill pattern
	plptex: Write text inside the viewport
	plptex3: Write text inside the viewport of a 3D plot.
	plrandd: Random number generator returning a real random number in the range [0,1].
	plreplot: Replays contents of plot buffer to current device/file
	plrgbhls: Convert RGB color to HLS
	plschr: Set character size
	plscmap0: Set color map0 colors by 8-bit RGB values
	plscmap0a: Set color map0 colors by 8-bit RGB values and double alpha value.
	plscmap0n: Set number of colors in color map0
	plscmap1: Set color map1 colors using 8-bit RGB values
	plscmap1a: Set color map1 colors using 8-bit RGB values and double alpha values.
	plscmap1l: Set color map1 colors using a piece-wise linear relationship
	plscmap1la: Set color map1 colors using a piece-wise linear relationship
	plscmap1n: Set number of colors in color map1
	plscol0: Set a given color from color map0 by 8 bit RGB value
	plscol0a: Set a given color from color map0 by 8 bit RGB value and double alpha value.
	plscolbg: Set the background color by 8-bit RGB value
	plscolbga: Set the background color by 8-bit RGB value and double alpha value.
	plscolor: Used to globally turn color output on/off
	plscompression: Set device-compression level
	plsdev: Set the device (keyword) name
	plsdidev: Set parameters that define current device-space window
	plsdimap: Set up transformation from metafile coordinates
	plsdiori: Set plot orientation
	plsdiplt: Set parameters that define current plot-space window
	plsdiplz: Set parameters incrementally (zoom mode) that define current plot-space window
	plseed: Set seed for internal random number generator.
	plsesc: Set the escape character for text strings
	plsetopt: Set any command-line option
	plsfam: Set family file parameters
	plsfci: Set FCI (font characterization integer)
	plsfnam: Set output file name
	plsfont: Set family, style and weight of the current font
	plshades: Shade regions on the basis of value
	plshade: Shade individual region on the basis of value
	plshade1: Shade individual region on the basis of value
	plslabelfunc: Assign a function to use for generating custom axis labels
	plsmaj: Set length of major ticks
	plsmem: Set the memory area to be plotted (RGB)
	plsmema: Set the memory area to be plotted (RGBA)
	plsmin: Set length of minor ticks
	plsori: Set orientation
	plspage: Set page parameters
	plspal0: Set the colors for color table 0 from a cmap0 file
	plspal1: Set the colors for color table 1 from a cmap1 file
	plspause: Set the pause (on end-of-page) status
	plsstrm: Set current output stream
	plssub: Set the number of subpages in x and y
	plssym: Set symbol size
	plstar: Initialization
	plstart: Initialization
	plstransform: Set a global coordinate transform function
	plstring: Plot a glyph at the specified points
	plstring3: Plot a glyph at the specified 3D points
	plstripa: Add a point to a strip chart
	plstripc: Create a 4-pen strip chart
	plstripd: Deletes and releases memory used by a strip chart
	plstyl: Set line style
	plsurf3d: Plot shaded 3-d surface plot
	plfsurf3d: Plot shaded 3-d surface plot
	plsvect: Set arrow style for vector plots
	plsvpa: Specify viewport in absolute coordinates
	plsxax: Set x axis parameters
	plsyax: Set y axis parameters
	plsym: Plot a glyph at the specified points
	plszax: Set z axis parameters
	pltext: Switch to text screen
	pltimefmt: Set format for date / time labels
	plvasp: Specify viewport using aspect ratio only
	plvect: Vector plot
	plvpas: Specify viewport using coordinates and aspect ratio
	plvpor: Specify viewport using coordinates
	plvsta: Select standard viewport
	plw3d: Set up window for 3-d plotting
	plwidth: Set pen width
	plwind: Specify world coordinates of viewport boundaries
	plxormod: Enter or leave xor mode

	Chapter 20. The Specialized C API for PLplot
	plabort: Error abort
	plAlloc2dGrid: Allocate a block of memory for use as a 2-d grid of type PLFLT.
	plClearOpts: Clear internal option table info structure.
	plexit: Error exit
	plFree2dGrid: Free the memory associated with a 2-d grid allocated using plAlloc2dGrid.
	plGetCursor: Wait for graphics input event and translate to world coordinates.
	plgfile: Get output file handle
	plMergeOpts: Merge use option table into internal info structure.
	plMinMax2dGrid: Find the minimum and maximum of a 2d grid allocated using plAlloc2dGrid.
	plOptUsage: Print usage and syntax message.
	plMergeOpts: Reset internal option table info structure.
	plsabort: Set abort handler
	plSetUsage: Set the strings used in usage and syntax messages.
	plsexit: Set exit handler
	plsfile: Set output file handle
	pltr0: Identity transformation for grid to world mapping
	pltr1: Linear interpolation for grid to world mapping using singly dimensioned coordinate arrays
	pltr2: Linear interpolation for grid to world mapping using doubly dimensioned coordinate arrays (column dominant, as per normal C 2d arrays)
	PLGraphicsIn: PLplot Graphics Input structure
	PLOptionTable: PLplot command line options table structure

	Chapter 21. The Specialized Fortran 95 API for PLplot
	plcont: Contour plot for Fortran 95
	plshade: Shaded plot for Fortran 95
	plshades: Continuously shaded plot for Fortran 95
	plvect: Vector plot for Fortran 95
	plmesh: Plot surface mesh for Fortran 95
	plot3d: Plot 3-d surface plot for Fortran 95
	plparseopts: parse arguments for Fortran 95
	plsesc: Set the escape character for text strings for Fortran 95

	Chapter 22. The Specialized Fortran 77 API for PLplot
	plcon0: Contour plot, identity mapping for Fortran 77
	plcon1: Contour plot, general 1-d mapping for Fortran 77
	plcon2: Contour plot, general 2-d mapping for Fortran 77
	plcont: Contour plot, fixed linear mapping for Fortran 77
	plvec0: Vector plot, identity mapping for Fortran 77
	plvec1: Vector plot, general 1-d mapping for Fortran 77
	plvec2: Vector plot, general 2-d mapping for Fortran 77
	plvect: Vector plot, fixed linear mapping for Fortran 77
	plmesh: Plot surface mesh for Fortran 77
	plot3d: Plot 3-d surface plot for Fortran 77
	plparseopts: parse arguments for Fortran 77
	plsesc: Set the escape character for text strings for Fortran 77

	Chapter 23. API compatibility definition
	What is in the API?
	Regression test for backwards compatibility

	Chapter 24. Obsolete/Deprecated API for PLplot
	plclr: Eject current page
	plcol: Set color
	plhls: Set current color by HLS
	plHLS_RGB: Convert HLS color to RGB
	plpage: Begin a new page
	plrgb: Set line color by red, green
	plrgb1: Set line color by 8-bit RGB values

	Chapter 25. Internal C functions in PLplot
	plP_checkdriverinit: Checks to see if any of the specified drivers have been initialized
	plP_getinitdriverlist: Get the initialized-driver list

	Chapter 26. Notes for each Operating System that We Support
	Linux/Unix Notes
	Linux/Unix Configure, Build, and Installation
	Linux/Unix Building of C Programmes that Use the Installed PLplot Libraries

	Windows Notes
	Windows Configure and Build

	Chapter 27. The PLplot Libraries
	Bindings Libraries
	The PLplot Core Library
	Enhancement Libraries
	The CSIRO Cubic Spline Approximation Library
	The CSIRO Natural Neighbours Interpolation Library
	The QSAS Time Format Conversion Library

	Device-driver Libraries

