Boculo

__ .0rg

The Leading Open Source
Backup Solution

Bacula Developer’s Guide

Kern Sibbald

January 12, 2021
This manual documents Bacula version 9.6.7 (10 December 2020)

Copyright (©) 2000-2018, Kern Sibbald
Bacula is a registered trademark of Kern Sibbald.

This Bacula documentation by Kern Sibbald with contributions from many
others,
a complete list can be found in the License chapter. Creative Commons

Attribution-ShareAlike 4.0 International License
http://creativecommons.org/licenses/by-sa/4.0/

©Nole

Bacula® is a registered trademark of Kern Sibbald

Contents

{1 Bacula Developer Notes|

IBacula Developer Notes| e

[1.0.3 Copyrights| o e

11.0.4 Copyright Assignment — Fiduciary License Agreement|

[1.1 The Development Cycle| e

1.2 Bacula Code Submissions and Projects|. L.

|Code Submissions and Projects|

1.4 Developing Bacula]

[1.4.1 Debugging|.

11.4.2 Using a Debugger| e

[1.4.3 Memory Leaks|

[1.4.4 Special Files|

11.4.5 When Implementing Incomplete Code| oL

[1.4.8 Programming Standards|o

149 Do Not Usel o o o

/ DDING| o e e 11

CONTENTS

[1.4.15 Message Classes| 12
[1.4.16 Debug Messages| e e 12
[1.4.17 FError Messages| oL 13
[1.4.18 Job Messages| e 13
[1.4.19 Queued Job Messages| L 14
11.4.20 Memory Messages| e 14
[1.4.21 Bugs Database| 14

|2 Bacula Git Usage| 15
[Bacula Bit Usage|« e 15
2.1 Bacula Git repositories|. L e 15
.. 15

D3 GREUSART - « « o o v oo e e 15
CREUSAET -« o o oo e e e e e e, 15
2.2.1 Learning Git| L 16

2.3 Step by Step Modifying Bacula Code|. 17
231 MoreDetalld 19

2.4 Forcing Changes| e e 20
3 acula ugin 23
3.1 Normal vs Command vs Options Plugins|. 23
B.2 Loading Plugins| e 24
3.3 loadPlugin|. L Lo 25
8.4 Plugin Entry Points| 27
[3.4.1 newPlugin(bpContext *ctx)| 27
[3.4.2 freePlugin(bpContext *ctx)| L 28
[3.4.3 getPluginValue(bpContext *ctx, pVariable var, void *value)| 28
[3.4.4 setPluginValue(bpContext *ctx, pVariable var, void *value)| 28
[3.4.5 handlePluginEvent(bpContext *ctx, bEvent *event, void *value)| 28
[3.4.6 startBackupFile(bpContext *ctx, struct save_pkt *sp)| 30
[3.4.7 endBackupFile(bpContext *ctx)| 31
[3.4.8 startRestoreFile(bpContext *ctx, const char *cmd)| 31
13.4.9 createFile(bpContext *ctx, struct restore pkt *rp)| 31
[3.4.10 setFileAttributes(bpContext *ctx, struct restore_pkt *rp)| 33

CONTENTS iii
[3.4.11 endRestoreFile(bpContext *ctx)| Lo 33

[3.4.12 pluginlO(bpContext *ctx, struct io_pkt *io) 33

[3.4.13 bool checkFile(bpContext *ctx, char *fname)| 34

8.5 Bacula Plugin Entrypoints|.o 34
13.5.1 bRC registerBaculaEvents(bpContext *ctx, ...)| 35

[3.5.2 bRC getBaculaValue(bpContext *ctx, bVariable var, void *value). 35

[3.5.3 bRC setBaculaValue(bpContext *ctx, bVariable var, void *value) 35

13.5.4 bRC JobMessage(bpContext *ctx, const char *file, int line, int type, utime_t mtime, |

| const char *Imt,)| . - - . - . . e 35
13.5.5 bRC DebugMessage(bpContext *ctx, const char *file, int line, int level, const char |

| FIG,). o o - o e 35
13.5.6 void baculaMalloc(bpContext *ctx, const char *file, int line, size_t size)| 35

[3.5.7 void baculaFree(bpContext *ctx, const char *file, int line, void *mem)| 35

8.6 Building Bacula Pluging| o 36

4 Platform Support| 37
[Platform Support|. e 37
EI Generallo 37
(Generall L 37

4.2 Requirements to become a Supported Plattorm| 00, 37
[Platform Requirements|. oL 37
6_Daemon Protocoll 39
BI Generall 39
(Generall L e 39

5.2 Low Level Network Protocoll. 39
[Low Level Network Protocoll. 39

5.3 General Daemon Protocollo 39
[General Daemon Protocoll 39

.4 'The Protocol Used Between the Director and the Storage Daemon| 40
|Protocol Used Between the Director and the Storage Daemon| 40

5.0 The Protocol Used Between the Director and the File Daemonl 40
[Protocol Used Between the Director and the File Daemonl 40

5.6 The Save Protocol Between the File Daemon and the Storage Daemon| 41
[Save Protocol Between the File Daemon and the Storage Daemon|. 41

CONTENTS

0.6.1 Command and Control Informationl 41
(.62 DatalInformationl. L 41

6 Director Services Daemon| 43
Director Services Daemon| oo 43
[7_File Services Daemonl| 45
[File Services Daemomnl« o o oo 45
[7.1 Commands Received from the Director for a Backup| 45
|Commands Received from the Director for a Backup| 45

[.2 Commands Received from the Director for a Restorel 46
[Commands Received from the Director for a Restore 46
Storage Daemon Design| 47
Storage Daemon Design| oo oo 47
8.1 5D Design Introduction| Lo 47
ISD Design Introduction] 47
8.2 5D Development Outline|. 47
ISD Development Outline] e 47
B.3_SD Connections and Sessionsl Lo 47
D Connections and Sessions| L 47
8.3.1 SD Append Requests|. 48

ISD Append Requests|. e 48
8.3.2 SD Read Requests| 49

ISD Read Requests| o 49

84 SD Data Structuresl oL 49
[SD Data Structures 49
[9 Catalog Services| 51
OI Generall 51
Generall e 51
9.1.1 Filenames and Maximum Filename Lengthl 51
9.1.2 Installing and Configuring MySQL|o 51
9.1.3 Installing and Configuring PostgreSQL|. 52

9.1.4 Internal Bacula Catalog| 52

CONTENTS v .

9.1.5 Database Table Design|. 52

9.2 Sequence of Creation of Records tor a Save Job| 52
|[Sequence of Creation of Records for a Save Job| 52

0.3 Database Tabled 53
[Database Tabled 53
9.3.1 MySQL Table Definition|. o 62

[10 Storage Media Output Format| 65
Storage Media Output Format| o 65
MOT Generallot 65
Generall 65
MO2ZDefnifond. . . .« o o oot 65
Defnifions. o o oo 65

110.3 Storage Daemon File Output Format|. 0. 66
[Storage Daemon File Output Format|. 66
10.4 Overall Formatl o 67
Overall Format] oo e 67
[10.5 Serializationl L e 67
Derializationl 67
0.6 Block Header] 67
BlockHeaderlt 67
[10.7 Record Headerl o o e 68
Record Headerl oot i it 68
[0.8 Version BB02 Block Headerl 69
WVersion BB02 Block Headerl oo o oo 69
10.9 Version 2 Record Header|. oo oo 69
[Version 2 Record Headerl 69
10.10Volume Label Formatl 69
Volume Tabel Formall o o 69
[L0.115ession Labell 000 70
Session Labell o o L oo e 70
110.120verall Storage Format| oo 70

[Overall Storage Format| e 70

CONTENTS

10.13Unix File Attributes 74
[Unix File Attributesd o . o 74
110.1401d Depreciated Tape Format|. o 75
|Old Depreciated Tape Format|. 75

{11 Bacula Porting Notes| 79
[Bacula Porting Notes| e 79
[11.1 Porting Requirements| 79
|Porting Requirements| L 79
[11.2 Steps to Take for Portingl o 80
Steps to Take for Porting] L 80
Implementing a Bacula GUI Intertace] oo 83
MIT Generallo 83
Generall e 83
I11.1.1 Minimal Code in Console Program| 83
I1.1.2 GUlInterfaceis Difficultl 83
M2 BVISAPT . o oo 84
89
12.1 Introduction to TLSl 89
[MLS Tntroductionl o o 89
[12.2 New Configuration Directives| 89
INew Configuration Directives| e 89
[12.3 TLS API Implementation| 90
[TLS API Implementation| e 90
[12.3.1 Library Initialization and Cleanup| L L. 90
|Library Initialization and Cleanup| L 90
112.3.2 Manipulating TLS Contexts|. 90
IManipulating TLS Contexts| o e 90
112.3.3 Performing Post-Connection Verification|. 91
|Pertorming Post-Connection Verification| 91
[12.3.4 Manipulating TLS Connections| o 91
IManipulating TLS Connections| 91

[12.4 Bnet API Changes| e 92

CONTENTS vii

IBnet API Changes|« . o e 92
[12.4.1 Negotiating a TLS Connection| 92
[Negotiating a TLS Connection| 92
[12.4.2 Manipulating Socket Blocking State| L. 92
IManipulating Socket Blocking State| oo oo oL 92

[12.5 Authentication Negotiation| L 93

[Authentication Negotiation| L L 93

[13 Bacula Regression Testing| 95

[Bacula Regression Testing] e 95

I13.1 Setting up Regession Testingl 95

Setting up Regression lesting 95

|IRunning the Regression Script| e 95
113.1.1 Setting the Configuration Parameters| 96
[Setting the Configuration Parameters| 96
[13.1.2 Building the Test Bacula] 97
|Building the Test Baculal. 97
113.1.3 Setting up your SQL engine| 97
Petting up your SQL engine|o 97
[13.1.4 Running the Disk Only Regression| 98
|[Running the Disk Only Regression| 98
[13.1.5 Other Tests] e 99
Other Testsl e 99
U316 IfaTest Failsl. o o o o o 100
MaTest Faild oo 100

113.2 Testing a Binary Installation| 100

[13.3 Running a Single Test| oo 100

[|Running a Single Test|o 100

113.4 Writing a Regression Test| 101

|Writing a Regression Test| 0 o 101
[13.4.1 Running the Tests by Hand| o 101
|IRunning the Tests by Hand| 101

113.4.2 Directory Structure] 101

. viii

CONTENTS

IDirectory Structure]. e e e 101
113.4.3 Adding a New Test|. e 101
|Adding a New Test| o o o 101
[13.4.4 Running a Test Under The Debugger| 101
|Running a Test Under The Debugger|. 101

(14 Bacula MD5 Algorithm| 103
L e 103
[14.1 Command Line Message Digest Utility | 103
|Command Line Message Digest Utility| 103
MITT Namd 103

. NOPSIS| .« v v v e e e e e e e e e e e e e 103
[14.1.3 Description] 103

4.1.4 Options| e 104
MIIE Fiedo 104

4.1.6 Bugs|. 104

[[4:2" Download md5.zip[(Zipped archive)| 104
[Download md5b.zip (Zipped archive)l L 104
MA2T See Alsalo 104
0422 BFxit Statusl 105

y DYING| .« « o o v e e e e e e e 105
114.2.4 Acknowledgements| 105

[L5 Bacula Memory Management| 107
[Bacula Memory Management| L 107
Mo Generall oo 107
Generall L e 107
[15.1.1 Statically Allocated Memory| 107
115.1.2 Dynamically Allocated Memory|. 0. 107
[15.1.3 Pooled and Non-pooled Memory| 108

(16 TCP/IP Network Protocol| 111
[TCP/IP Network Protocoll. 111
M6 Generall oot 111
Generall 111

http://www.fourmilab.ch/md5/md5.zip

CONTENTS ix .

[16.2 bnet and Threadsl. 111
bnet and Threads|. 111

16.3 bnet_open| L 111
... 111
M4 bnetsend 112
Bboetsend 112
D65 bnetdsendlo 112
boetfsendl 112
16.6 Additional Firror informationl oo o 112
[Additional Error informationl L 112
D67 bnelrecyl oo 112
brnefrecy] 112
.. 112
b Bl e 112

6.9 buet strerrorl L 113
bnetstrerrorl 113
M6I0bnetclose 113
bnefclosel 113
116.11Becoming a Server| e e e e e e e e 113
|Becoming a Server| oL e e 113
[16.12Higher Level Conventions| L 113
[Higher Level Conventions| e e 113

[17 Smart Memory Allocation| 115
[Smart Memory Allocation With Orphaned Buffer Detection| 115
117.0.1 Installing SMARTALLOC| 115
Mostalling SMARTALLOCT] - -« « o o o oo o 115
[17.0.2 Squelching a SMARTALLOC|. o o .. 116
ISquelching a SMARTALLOC| e e 116
[17.0.3 Living with Libraries| 116
[Living with Libraries| o o 116

17.04 SMARTALLOC Details

SMARTALLOC Details

CONTENTS

When SMARTALLOC is Disabled

[[7.0.6 The allocO Function] 118
alloc() Functionl. L 118
117.0.7 Overlays and Underhandedness|, 119
[Overlays and Underhandedness| 119
[17.0.8 Test and Demonstration Program|0 L. 119
[LTest and Demonstration Program|. L o 119
709 Tnvitation fo the Hackl 119
[nvitation to the Hackl oo o 119

[[7.1 Thttp://www.fourmilab.ch/smartall /smartall.zip[Download smartall.zip| (Zipped archive)| . . . 120

| Download smartall.zip (Zipped archive)| o L 120
[17.1.1 COopyINg|« o vt e e e e e e e e e e 120
pYIng] . . . e 120

[18 Bacula Copyright, Trademark, and Licenses| 121
[RITCTBY=SA] . . o o ot o e e e e e e 121
MB2GPI . . . o oot 121
MBI LGP . . o oottt e e e 121
184 Public Domainl 121
18.5 Trademarkl e 122
[18.6 Fiduciary License Agreement| 122
BT Disclalmero 122

http://www.fourmilab.ch/smartall/smartall.zip
http://www.fourmilab.ch/smartall/smartall.zip

Chapter 1

Bacula Developer Notes

This document is intended mostly for developers and describes how you can contribute to the Bacula project
and the the general framework of making Bacula source changes.

1.0.1 Contributions

Contributions to the Bacula project come in many forms: ideas, participation in helping people on the
bacula-users email list, packaging Bacula binaries for the community, helping improve the documentation,
and submitting code.

Contributions in the form of submissions for inclusion in the project are broken into two groups. The first
are contributions that are aids and not essential to Bacula. In general, these will be scripts or will go into
the bacula/examples directory. For these kinds of non-essential contributions there is no obligation to do
a copyright assignment as described below. However, a copyright assignment would still be appreciated.

The second class of contributions are those which will be integrated with Bacula and become an essential
part (code, scripts, documentation, ...) Within this class of contributions, there are two hurdles to surmount.
One is getting your patch accepted, and two is dealing with copyright issues. The following text describes
some of the requirements for such code.

1.0.2 Patches

Subject to the copyright assignment described below, your patches should be sent in git format-patch
format relative to the current contents of the master branch of the Source Forge Git repository. Please
attach the output file or files generated by the git format-patch to the email rather than include them
directory to avoid wrapping of the lines in the patch. Please be sure to use the Bacula indenting standard
(see below) for source code. If you have checked out the source with Git, you can get a diff using.

git pull
git format-patch -M

If you plan on doing significant development work over a period of time, after having your first patch reviewed
and approved, you will be eligible for having developer Git write access so that you can commit your changes
directly to the Git repository. To do so, you will need a userid on Source Forge.

1.0.3 Copyrights

To avoid future problems concerning changing licensing or copyrights, all code contributions more than a
hand full of lines must be in the Public Domain or have the copyright transferred to the Free Software

2 Bacula Version 9.6.7

Foundation Europe e.V. with a Fiduciary License Agreement (FLA) as the case for all the current code.

Prior to November 2004, all the code was copyrighted by Kern Sibbald and John Walker. After November
2004, the code was copyrighted by Kern Sibbald, then on the 15th of November 2006, Kern transferred the
copyright to the Free Software Foundation Europe e.V. In signing the FLA and transferring the copyright,
you retain the right to use the code you have submitted as you want, and you ensure that Bacula will always
remain Free and Open Source.

Your name should be clearly indicated as the author of the code, and you must be extremely careful not to
violate any copyrights or patents or use other people’s code without acknowledging it. The purpose of this
requirement is to avoid future copyright, patent, or intellectual property problems. Please read the LICENSE
agreement in the main Bacula source code directory. When you sign the Fiduciary License Agreement (FLA)
and send it in, you are agreeing to the terms of that LICENSE file.

If you don’t understand what we mean by future problems, please examine the difficulties Mozilla was having
finding previous contributors at | http://www.mozilla.org/MPL /missing.html . The other important issue is
to avoid copyright, patent, or intellectual property violations as was (May 2003) claimed by SCO against
IBM.

Although the copyright will be held by the Free Software Foundation Europe e.V., each developer is expected
to indicate that he wrote and/or modified a particular module (or file) and any other sources. The copyright
assignment may seem a bit unusual, but in reality, it is not. Most large projects require this.

If you have any doubts about this, please don’t hesitate to ask. The objective is to assure the long term
survival of the Bacula project.

Ttems not needing a copyright assignment are: most small changes, enhancements, or bug fixes of 5-10 lines
of code, which amount to less than 20

1.0.4 Copyright Assignment — Fiduciary License Agreement

Since this is not a commercial enterprise, and we prefer to believe in everyone’s good faith, previously
developers could assign the copyright by explicitly acknowledging that they do so in their first submission.
This was sufficient if the developer is independent, or an employee of a not-for-profit organization or a
university. However, in an effort to ensure that the Bacula code is really clean, beginning in August 2006,
all previous and future developers with SVN write access will be asked to submit a copyright assignment (or
Fiduciary License Agreement — FLA), which means you agree to the LICENSE in the main source directory.
It also means that you receive back the right to use the code that you have submitted.

Any developer who wants to contribute and is employed by a company should either list the employer as
the owner of the code, or get explicit permission from him to sign the copyright assignment. This is because
in many countries, all work that an employee does whether on company time or in the employee’s free time
is considered to be Intellectual Property of the company. Obtaining official approval or an FLA from the
company will avoid misunderstandings between the employee, the company, and the Bacula project. A good
number of companies have already followed this procedure.

The Fiduciary License Agreement is posted on the Bacula web site at: http://www.bacula.org/en/FLA-
bacula.en.pdf

The instructions for filling out this agreement are also at: |http://www.bacula.org/?page=fsfe
It should be filled out, then sent to:

Kern Sibbald

Cotes-de-Montmoiret 9

1012 Lausanne
Switzerland

Please note that the above address is different from the officially registered office mentioned in the document.

http://www.mozilla.org/MPL/missing.html
http://www.bacula.org/en/FLA-bacula.en.pdf
http://www.bacula.org/en/FLA-bacula.en.pdf
http://www.bacula.org/?page=fsfe

Bacula Version 9.6.7 3

When you send in such a complete document, please notify me: kern at sibbald dot com, and please add
your email address to the FLA so that I can contact you to confirm reception of the signed FLA.

1.1 The Development Cycle

As discussed on the email lists, the number of contributions are increasing significantly. We expect this
positive trend will continue. As a consequence, we have modified how we do development, and instead of
making a list of all the features that we will implement in the next version, each developer signs up for one
(maybe two) projects at a time, and when they are complete, and the code is stable, we will release a new
version. The release cycle will probably be roughly six months.

The difference is that with a shorter release cycle and fewer released feature, we will have more time to
review the new code that is being contributed, and will be able to devote more time to a smaller number of
projects (some prior versions had too many new features for us to handle correctly).

Future release schedules will be much the same, and the number of new features will also be much the same
providing that the contributions continue to come — and they show no signs of let up :-)

Feature Requests:
In addition, we have ”formalizee” the feature requests a bit.

Instead of me maintaining an informal list of everything I run into (kernstodo), we now maintain a ”formal”
list of projects. This means that all new feature requests, including those recently discussed on the email
lists, must be formally submitted and approved.

Formal submission of feature requests will take two forms:

1. non-mandatory, but highly recommended is to discuss proposed new features on the mailing list.

2. Formal submission of an Feature Request in a special format. We’ll give an example of this below, but
you can also find it on the web site under ”Support -> Feature Requests”. Since it takes a bit of time to
properly fill out a Feature Request form, you probably should check on the email list first.

Once the Feature Request is received by the keeper of the projects list, it will be sent to the Bacula project
manager (Kern), and he will either accept it (90the time), send it to the email list asking for opinions, or
reject it (very few cases).

If it is accepted, it will go in the ”projects” file (a simple ASCII file) maintained in the main Bacula source
directory.

Implementation of Feature Requests:
Any qualified developer can sign up for a project. The project must have an entry in the projects file, and
the developer’s name will appear in the Status field.

How Feature Requests are accepted:

Acceptance of Feature Requests depends on several things:

1. feedback from users. If it is negative, the Feature Request will probably not be accepted.

2. the difficulty of the project. A project that is so difficult that we cannot imagine finding someone to
implement probably won’t be accepted. Obviously if you know how to implement it, don’t hesitate to put it
in your Feature Request

3. whether or not the Feature Request fits within the current strategy of Bacula (for example an Feature
Request that requests changing the tape to tar format probably would not be accepted, ...).

How Feature Requests are prioritized:
Once an Feature Request is accepted, it needs to be implemented. If you can find a developer for it, or one
signs up for implementing it, then the Feature Request becomes top priority (at least for that developer).

Between releases of Bacula, we will generally solicit Feature Request input for the next version, and by way
of this email, we suggest that you send discuss and send in your Feature Requests for the next release. Please
verify that the Feature Request is not in the current list (attached to this email).

Once users have had several weeks to submit Feature Requests, the keeper of the projects list will organize

Bacula Version 9.6.7

them, and request users to vote on them. This will allow fixing prioritizing the Feature Requests. Having a
priority is one thing, but getting it implement is another thing — we are hoping that the Bacula community
will take more responsibility for assuring the implementation of accepted Feature Requests.

Feature Request format:

Origin:
Status:

What:

==== Empty Feature Request form ===========

One line summary ...

Date submitted

Name and email of originator.
More detailed explanation ...
Why it is important

Additional notes or features (omit if not used)

Origin:

Date:

Status:

What:

Why:

Notes:

End Feature Request form

==== Example Completed Feature Request form ===========

Implement a Migration job type that will move the job
data from one device to another.

Sponsored by Riege Sofware International GmbH. Contact:
Daniel Holtkamp <holtkamp at riege dot com>

28 October 2005

Partially coded in 1.37 -- much more to do. Assigned to
Kern.

The ability to copy, move, or archive data that is on a
device to another device is very important.

An ISP might want to backup to disk, but after 30 days
migrate the data to tape backup and delete it from
disk. Bacula should be able to handle this
automatically. It needs to know what was put where,
and when, and what to migrate -- it is a bit like
retention periods. Doing so would allow space to be
freed up for current backups while maintaining older
data on tape drives.

Migration could be triggered by:
Number of Jobs

Number of Volumes

Age of Jobs

Highwater size (keep total size)
Lowwater mark

1.2 Bacula Code Submissions and Projects

Getting code implemented in Bacula works roughly as follows:

e Kern is the project manager, but prefers not to be a ”gate keeper”. This means that the developers are
expected to be self-motivated, and once they have experience submit directly to the Git repositories.
However, it is a good idea to have your patches reviewed prior to submitting, and it is a bad idea
to submit monster patches because no one will be able to properly review them. See below for more
details on this.

Bacula Version 9.6.7 5

There are growing numbers of contributions (very good).

Some contributions come in the form of relatively small patches, which Kern reviews, integrates,
documents, tests, and maintains.

All Bacula developers take full responsibility for writing the code, posting as patches so that we can
review it as time permits, integrating it at an appropriate time, responding to our requests for tweaking
it (name changes, ...), document it in the code, document it in the manual (even though their mother
tongue is not English), test it, develop and commit regression scripts, and answer in a timely fashion
all bug reports — even occasionally accepting additional bugs :-)

This is a sustainable way of going forward with Bacula, and the direction that the project will be taking
more and more. For example, in the past, we have had some very dedicated programmers who did
major projects. However, some of these programmers due to outside obligations (job responsibilities
change of job, school duties, ...) could not continue to maintain the code. In those cases, the code
suffers from lack of maintenance, sometimes we patch it, sometimes not. In the end, if the code is not
maintained, the code gets dropped from the project (there are two such contributions that are heading
in that direction). When ever possible, we would like to avoid this, and ensure a continuation of the
code and a sharing of the development, debugging, documentation, and maintenance responsibilities.

1.3 Patches for Released Versions

If you fix a bug in a released version, you should, unless it is an absolutely trivial bug, create and release a
patch file for the bug. The procedure is as follows:

Fix the bug in the released branch and in the develpment master branch.

Make a patch file for the branch and add the branch patch to the patches directory in both the branch and
the trunk. The name should be 2.2.4-xxx.patch where xxx is unique, in this case it can be "restore”, e.g.
2.2.4-restore.patch. Add to the top of the file a brief description and instructions for applying it — see for
example 2.2.4-poll-mount.patch. The best way to create the patch file is as follows:

(edit) 2.2.4-restore.patch
(input description)
(end edit)

git format-patch -M
mv 0001-xxx 2.2.4-restore.patch

check to make sure no extra junk got put into the patch file (i.e. it should have the patch for that bug only).

If there is not a bug report on the problem, create one, then add the patch to the bug report.

Then upload it to the 2.2.x release of bacula-patches.

So, end the end, the patch file is:

Attached to the bug report
In Branch-2.2/bacula/patches/ ...
In the trunk

Loaded on Source Forge bacula-patches 2.2.x release. When you add it, click on the check box to send
an Email so that all the users that are monitoring SF patches get notified.

6 Bacula Version 9.6.7

1.4 Developing Bacula

Typically the simplest way to develop Bacula is to open one xterm window pointing to the source directory
you wish to update; a second xterm window at the top source directory level, and a third xterm window at
the bacula directory <top>/src/bacula. After making source changes in one of the directories, in the top
source directory xterm, build the source, and start the daemons by entering:

make and
./startit then in the enter:
./console or

./gnome-console to start the Console program. Enter any commands for testing. For example: run kernsver-
ify full.

Note, the instructions here to use ./startit are different from using a production system where the admin-
istrator starts Bacula by entering ./bacula start. This difference allows a development version of Bacula
to be run on a computer at the same time that a production system is running. The ./startit strip starts
Bacula using a different set of configuration files, and thus permits avoiding conflicts with any production
system.

To make additional source changes, exit from the Console program, and in the top source directory, stop the
daemons by entering:

./stopit then repeat the process.

1.4.1 Debugging

Probably the first thing to do is to turn on debug output.

A good place to start is with a debug level of 20 as in ./startit -d20. The startit command starts all the
daemons with the same debug level. Alternatively, you can start the appropriate daemon with the debug
level you want. If you really need more info, a debug level of 60 is not bad, and for just about everything a
level of 200.

1.4.2 Using a Debugger

If you have a serious problem such as a segmentation fault, it can usually be found quickly using a good
multiple thread debugger such as gdb. For example, suppose you get a segmentation violation in bacula-dir.
You might use the following to find the problem:

<start the Storage and File daemons> cd dird gdb ./bacula-dir run -f -s -c¢ ./dird.conf <it dies with a
segmentation fault> where The -f option is specified on the run command to inhibit dird from going into
the background. You may also want to add the -s option to the run command to disable signals which can
potentially interfere with the debugging.

As an alternative to using the debugger, each Bacula daemon has a built in back trace feature when a
serious error is encountered. It calls the debugger on itself, produces a back trace, and emails the report to
the developer. For more details on this, please see the chapter in the main Bacula manual entitled “What
To Do When Bacula Crashes (Kaboom)”.

1.4.3 Memory Leaks

Because Bacula runs routinely and unattended on client and server machines, it may run for a long time. As
a consequence, from the very beginning, Bacula uses SmartAlloc to ensure that there are no memory leaks.

Bacula Version 9.6.7 7

To make detection of memory leaks effective, all Bacula code that dynamically allocates memory MUST
have a way to release it. In general when the memory is no longer needed, it should be immediately released,
but in some cases, the memory will be held during the entire time that Bacula is executing. In that case,
there MUST be a routine that can be called at termination time that releases the memory. In this way,
we will be able to detect memory leaks. Be sure to immediately correct any and all memory leaks that are
printed at the termination of the daemons.

1.4.4 Special Files

Kern uses files named 1, 2, ... 9 with any extension as scratch files. Thus any files with these names are
subject to being rudely deleted at any time.

1.4.5 When Implementing Incomplete Code

Please identify all incomplete code with a comment that contains
*xxFITXME***

where there are three asterisks (*) before and after the word FIXME (in capitals) and no intervening spaces.
This is important as it allows new programmers to easily recognize where things are partially implemented.

1.4.6 Bacula Source File Structure

The distribution generally comes as a tar file of the form bacula.x.y.z.tar.gz where x, y, and z are the
version, release, and update numbers respectively.

Once you detar this file, you will have a directory structure as follows:

Tar file:
|- depkgs
|- mtx (autochanger control program + tape drive info)
|- sqlite (SQLite database program)
Tar file:
|- depkgs-win32
|- pthreads (Native win32 pthreads library -- dll1)
|- zlib (Native win32 zlib library)
|- wx (wxWidgets source code)

Project bacula:

|- bacula (main source directory containing configuration
| and installation files)
|- autoconf (automatic configuration files, not normally used
| by users)
|- intl (programs used to translate)
|- platforms (0S specific installation files)
|- redhat (Red Hat installation)
|- solaris (Sun installation)
|- freebsd (FreeBSD installation)
|- irix (Irix installation -- not tested)
|- unknown (Default if system not identified)
|- po (translations of source strings)
|- src (source directory; contains global header files)
|- cats (SQL catalog database interface directory)
|- console (bacula user agent directory)
|- dird (Director daemon)
|- filed (Unix File daemon)
|- win32 (Win32 files to make bacula-fd be a service)
|- findlib (Unix file find library for File daemon)

|- gnome-console (GNOME version of console program)

8 Bacula Version 9.6.7

|- 1ib (General Bacula library)
|- stored (Storage daemon)
|- tconsole (Tcl/tk console program -- not yet working)
|- testprogs (test programs -- normally only in Kern’s tree)
|- tools (Various tool programs)
|- win32 (Native Win32 File daemon)
|- baculafd (Visual Studio project file)
|- compat (compatibility interface library)
|- filed (links to src/filed)
|- findlib (links to src/findlib)
|- 1ib (links to src/lib)
|- console (beginning of native console program)
|- wx-console (wxWidget console Win32 specific parts)
|- wx-console (wxWidgets console main source program)

Project regress:

|- regress (Regression scripts)
|- bin (temporary directory to hold Bacula installed binaries)
|- build (temporary directory to hold Bacula source)
|- scripts (scripts and .conf files)
|- tests (test scripts)
|- tmp (temporary directory for temp files)
|- working (temporary working directory for Bacula daemons)

Project docs:

|- docs (documentation directory)
|- developers (Developer’s guide)
|- home-page (Bacula’s home page source)
|- manual (html document directory)
|- manual-fr (French translation)
|- manual-de (German translation)
|- techlogs (Technical development notes);

Project rescue:

|- rescue (Bacula rescue CDROM)
|- linux (Linux rescue CDROM)
|- cdrom (Linux rescue CDROM code)
|- solaris (Solaris rescue -- incomplete)
|- freebsd (FreeBSD rescue -- incomplete)

Project gui:

|- gui (Bacula GUI projects)
|- bacula-web (Bacula web php management code)
|- bimagemgr (Web application for burning CDROMs)

1.4.7 Header Files

Please carefully follow the scheme defined below as it permits in general only two header file includes per C
file, and thus vastly simplifies programming. With a large complex project like Bacula, it isn’t always easy
to ensure that the right headers are invoked in the right order (there are a few kludges to make this happen
—i.e. in a few include files because of the chicken and egg problem, certain references to typedefs had to be
replaced with void).

Every file should include bacula.h. It pulls in just about everything, with very few exceptions. If you have
system dependent ifdefing, please do it in baconfig.h. The version number and date are kept in version.h.

Each of the subdirectories (console, cats, dird, filed, findlib, lib, stored, ...) contains a single directory
dependent include file generally the name of the directory, which should be included just after the include
of bacula.h. This file (for example, for the dird directory, it is dird.h) contains either definitions of things
generally needed in this directory, or it includes the appropriate header files. It always includes protos.h.
See below.

Each subdirectory contains a header file named protos.h, which contains the prototypes for subroutines
exported by files in that directory. protos.h is always included by the main directory dependent include
file.

Bacula Version 9.6.7 9
1.4.8 Programming Standards

For the most part, all code should be written in C unless there is a burning reason to use C++, and then
only the simplest C++ constructs will be used. Note, Bacula is slowly evolving to use more and more C++.

Code should have some documentation — not a lot, but enough so that I can understand it. Look at the
current code, and you will see that I document more than most, but am definitely not a fanatic.

We prefer simple linear code where possible. Gotos are strongly discouraged except for handling an error to
either bail out or to retry some code, and such use of gotos can vastly simplify the program.

Remember this is a C program that is migrating to a tiny subset of C++4, so be conservative in your use of
C++ features.

1.4.9 Do Not Use

e STL — it is totally incomprehensible.

1.4.10 Avoid if Possible

e Using void * because this generally means that one must using casting, and in C++ casting is rather
ugly. It is OK to use void * to pass structure address where the structure is not known to the routines
accepting the packet (typically callback routines). However, declaring ”void *buf” is a bad idea. Please
use the correct types whenever possible.

e Using undefined storage specifications such as (short, int, long, long long, size_t ...). The problem with
all these is that the number of bytes they allocate depends on the compiler and the system. Instead
use Bacula’s types (int8_t, uint8_t, int32_t, uint32_t, int64_t, and uint64_t). This guarantees that the
variables are given exactly the size you want. Please try at all possible to avoid using size_t ssize_t and
the such. They are very system dependent. However, some system routines may need them, so their
use is often unavoidable.

e Returning a malloc’ed buffer from a subroutine — someone will forget to release it.

e Heap allocation (malloc) unless needed — it is expensive. Use POOL_MEM instead.

e Templates — they can create portability problems.

e Fancy or tricky C or C++ code, unless you give a good explanation of why you used it.

e Too much inheritance — it can complicate the code, and make reading it difficult (unless you are in
love with colons)

1.4.11 Do Use Whenever Possible

e Locking and unlocking within a single subroutine.

A single point of exit from all subroutines. A goto is perfectly OK to use to get out early, but only to
a label named bail_out, and possibly an ok_out. See current code examples.

malloc and free within a single subroutine.

Comments and global explanations on what your code or algorithm does.

e When committing a fix for a bug, make the comment of the following form:

Reason for bug fix or other message. Fixes bug #1234

10 Bacula Version 9.6.7

It is important to write the bug #1234 like that because our program that automatically pulls
messages from the git repository to make the Changelog looks for that pattern. Obviously the 1234
should be replaced with the number of the bug you actually fixed.

Providing the commit comment line has one of the following keywords (or phrases), it will be ignored:

tweak

typo

cleanup

bweb:

regress:

again

.gitignore

fix compilation
technotes

update version
update technotes
update kernstodo
update projects
update releasenotes
update version
update home
update release
update todo
update notes
update changelog

e Use the following keywords at the beginning of a git commit message

1.4.12 Indenting Standards

We find it very hard to read code indented 8 columns at a time. Even 4 at a time uses a lot of space, so we
have adopted indenting 3 spaces at every level. Note, indention is the visual appearance of the source on
the page, while tabbing is replacing a series of up to 8 spaces from a tab character.

The closest set of parameters for the Linux indent program that will produce reasonably indented code are:

-nbad -bap -bbo -nbc -br -brs -c36 -cd36 -ncdb -ce -ci3 -cli0
-cp36 -d0 -dil -ndj -nfcl -nfca -hnl -i3 -ip0O -185 -1p -npcs
-nprs -npsl -saf -sai -saw -nsob -nss -nbc -ncs -nbfda

You can put the above in your .indent.pro file, and then just invoke indent on your file. However, be warned.
This does not produce perfect indenting, and it will mess up C++ class statements pretty badly.

Braces are required in all if statements (missing in some very old code). To avoid generating too many lines,
the first brace appears on the first line (e.g. of an if), and the closing brace is on a line by itself. E.g.

if (abc) {
some_code;

}

Just follow the convention in the code. For example we I prefer non-indented cases.

switch (code) {

case ’A’:
do something
break;

case ’B’:
again();

Bacula Version 9.6.7 11

break;
default:
break;

}

Avoid using // style comments except for temporary code or turning off debug code. Standard C comments
are preferred (this also keeps the code closer to C).

Attempt to keep all lines less than 85 characters long so that the whole line of code is readable at one time.
This is not a rigid requirement.

Always put a brief description at the top of any new file created describing what it does and including your
name and the date it was first written. Please don’t forget any Copyrights and acknowledgments if it isn’t
100% your code. Also, include the Bacula copyright notice that is in src/c.

In general you should have two includes at the top of the an include for the particular directory the code is
in, for includes are needed, but this should be rare.

In general (except for self-contained packages), prototypes should all be put in protos.h in each directory.

Always put space around assignment and comparison operators.

a=1;

if (b >=2) {
cleanup();

}

but your can compress things in a for statement:

for (i=0; i < del.num_ids; i++) {

Don’t overuse the inline if (?:). A full if is preferred, except in a print statement, e.g.:

if (ua->verbose \&& del.num_del != 0) {
bsendmsg(ua, _("Pruned %d %s on Volume %s from catalog.\n"), del.num_del,
del.num_del == 1 ? "Job" : "Jobs", mr->VolumeName) ;

Leave a certain amount of debug code (Dmsg) in code you submit, so that future problems can be identified.
This is particularly true for complicated code likely to break. However, try to keep the debug code to a
minimum to avoid bloating the program and above all to keep the code readable.

Please keep the same style in all new code you develop. If you include code previously written, you have the
option of leaving it with the old indenting or re-indenting it. If the old code is indented with 8 spaces, then
please re-indent it to Bacula standards.

If you are using vim, simply set your tabstop to 8 and your shiftwidth to 3.

1.4.13 Tabbing

Tabbing (inserting the tab character in place of spaces) is as normal on all Unix systems — a tab is converted
space up to the next column multiple of 8. My editor converts strings of spaces to tabs automatically — this
results in significant compression of the files. Thus, you can remove tabs by replacing them with spaces if
you wish. Please don’t confuse tabbing (use of tab characters) with indenting (visual alignment of the code).

12 Bacula Version 9.6.7

1.4.14 Don’ts
Please don’t use:

strepy O
strcat()
strocpy ()
strncat();
sprintf ()
snprintf ()

They are system dependent and un-safe. These should be replaced by the Bacula safe equivalents:

char *bstrncpy(char *dest, char *source, int dest_size);

char *bstrncat(char *dest, char *source, int dest_size);

int bsnprintf(char xbuf, int32_t buf_len, const char *fmt, ...);

int bvsnprintf(char *str, int32_t size, const char *format, va_list ap);

See src/lib/bsys.c for more details on these routines.

Don’t use the %lld or the %q printf format editing types to edit 64 bit integers — they are not portable.
Instead, use %s with edit_uint64(). For example:

char buf[100];

uint64_t num = something;

char ed1[50];

bsnprintf (buf, sizeof (buf), "Num=Ys\n", edit_uint64(num, edl));

Note: %lld is now permitted in Bacula code — we have our own printf routines which handle it correctly. The
edit_uint64() subroutine can still be used if you wish, but over time, most of that old style will be removed.

The edit buffer ed1 must be at least 27 bytes long to avoid overflow. See src/lib/edit.c for more details. If
you look at the code, don’t start screaming that I use 1ld. I actually use subtle trick taught to me by John
Walker. The 11d that appears in the editing routine is actually #define to a what is needed on your OS
(usually “lld” or “q”) and is defined in autoconf/configure.in for each OS. C string concatenation causes the
appropriate string to be concatenated to the “%”.

Also please don’t use the STL or Templates or any complicated C++ code.

1.4.15 Message Classes

Currently, there are five classes of messages: Debug, Error, Job, Memory, and Queued.

1.4.16 Debug Messages

Debug messages are designed to be turned on at a specified debug level and are always sent to STDOUT.
There are designed to only be used in the development debug process. They are coded as:

DmsgN(level, message, argl, ...) where the N is a number indicating how many arguments are to be
substituted into the message (i.e. it is a count of the number arguments you have in your message —
generally the number of percent signs (%)). level is the debug level at which you wish the message to be
printed. message is the debug message to be printed, and argl, ... are the arguments to be substituted.
Since not all compilers support #defines with varargs, you must explicitly specify how many arguments you
have.

When the debug message is printed, it will automatically be prefixed by the name of the daemon which is
running, the filename where the Dmsg is, and the line number within the file.

Bacula Version 9.6.7 13

Some actual examples are:
Dmsg2(20, “MD5len=%d MD5=%s\n", strlen(buf), buf);

Dmsgl(9, “Created client %s record\n”, client-;jhdr.name);

1.4.17 Error Messages

Error messages are messages that are related to the daemon as a whole rather than a particular job. For
example, an out of memory condition my generate an error message. They should be very rarely needed. In
general, you should be using Job and Job Queued messages (Jmsg and Qmsg). They are coded as:

EmsgN (error-code, level, message, argl, ...) As with debug messages, you must explicitly code the of
arguments to be substituted in the message. error-code indicates the severity or class of error, and it may
be one of the following:

M_ABORT Causes the daemon to immediately abort. This
should be used only in extreme cases. It attempts
to produce a traceback.

M_ERROR_TERM Causes the daemon to immediately terminate.
This should be used only in extreme cases. It does
not, produce a traceback.

M_FATAL Causes the daemon to terminate the current job,
but the daemon keeps running

M_ERROR Reports the error. The daemon and the job con-
tinue running

M_WARNING Reports an warning message. The daemon and

the job continue running

M_INFO Reports an informational message.

There are other error message classes, but they are in a state of being redesigned or deprecated, so please
do not use them. Some actual examples are:

Emsgl(M_ABORT, 0, “Cannot create message thread: %s\n”, strerror(status));

Emsg3(M_WARNING, 0, “Connect to File daemon %s at %s:%d failed. Retrying ...\n”, client->hdr.name,
client->address, client->port);

Emsg3(M_FATAL, 0, “bdird<filed: bad response from Filed to %s command: %d %s\n”, ecmd, n, str-
error(errno));

1.4.18 Job Messages

Job messages are messages that pertain to a particular job such as a file that could not be saved, or the
number of files and bytes that were saved. They Are coded as:

Jmsg(jcr, M_FATAL, O, "Text of message");

A Jmsg with M_FATAL will fail the job. The Jmsg() takes varargs so can have any number of arguments
for substituted in a printf like format. Output from the Jmsg() will go to the Job report. jbr; If the Jmsg is
followed with a number such as Jmsgl(...), the number indicates the number of arguments to be substituted
(varargs is not standard for #defines), and what is more important is that the file and line number will be
prefixed to the message. This permits a sort of debug from user’s output.

14 Bacula Version 9.6.7

1.4.19 Queued Job Messages

Queued Job messages are similar to Jmsg()s except that the message is Queued rather than immediately
dispatched. This is necessary within the network subroutines and in the message editing routines. This is to
prevent recursive loops, and to ensure that messages can be delivered even in the event of a network error.

1.4.20 Memory Messages

Memory messages are messages that are edited into a memory buffer. Generally they are used in low level
routines such as the low level device file dev.c in the Storage daemon or in the low level Catalog routines.
These routines do not generally have access to the Job Control Record and so they return error essages
reformatted in a memory buffer. Mmsg() is the way to do this.

1.4.21 Bugs Database

We have a bugs database which is at: http://bugs.bacula.org , and as a developer you will need to respond
to bugs, perhaps bugs in general if you have time, otherwise just bugs that correspond to code that you
wrote.

If you need to answer bugs, please be sure to ask the Project Manager (currently Kern) to give you Developer
access to the bugs database. This allows you to modify statuses and close bugs.

The first thing is if you want to take over a bug, rather than just make a note, you should assign the bug
to yourself. This helps other developers know that you are the principal person to deal with the bug. You
can do so by going into the bug and clicking on the Update Issue button. Then you simply go to the
Assigned To box and select your name from the drop down box. To actually update it you must click on
the Update Information button a bit further down on the screen, but if you have other things to do such
as add a Note, you might wait before clicking on the Update Information button.

Generally, we set the Status field to either acknowledged, confirmed, or feedback when we first start working
on the bug. Feedback is set when we expect that the user should give us more information.

Normally, once you are reasonably sure that the bug is fixed, and a patch is made and attached to the bug
report, and/or in the SVN, you can close the bug. If you want the user to test the patch, then leave the bug
open, otherwise close it and set Resolution to Fixed. We generally close bug reports rather quickly, even
without confirmation, especially if we have run tests and can see that for us the problem is fixed. However,
in doing so, it avoids misunderstandings if you leave a note while you are closing the bug that says something
to the following effect: We are closing this bug because ... If for some reason, it does not fix your problem,
please feel free to reopen it, or to open a new bug report describing the problem”.

We do not recommend that you attempt to edit any of the bug notes that have been submitted, nor to delete
them or make them private. In fact, if someone accidentally makes a bug note private, you should ask the
reason and if at all possible (with his agreement) make the bug note public.

If the user has not properly filled in most of the important fields (platorm, OS, Product Version, ...) please
do not hesitate to politely ask him. Also, if the bug report is a request for a new feature, please politely
send the user to the Feature Request menu item on www.bacula.org. The same applies to a support request
(we answer only bugs), you might give the user a tip, but please politely refer him to the manual and the
Getting Support page of www.bacula.org.

http://bugs.bacula.org

Chapter 2

Bacula Git Usage

This chapter is intended to help you use the Git source code repositories to obtain, modify, and submit
Bacula source code.

2.1 Bacula Git repositories

As of September 2009, the Bacula source code has been split into three Git repositories. One is a repository
that holds the main Bacula source code with directories bacula, gui, and regress. The second repository
contains the directories docs directory, and the third repository contains the rescue directory. All three
repositories are hosted by UKFast.

Previously everything was in a single SVN repository. We have split the SVN repository into three because
Git offers significant advantages for ease of managing and integrating developer’s changes. However, one of
the disadvantages of Git is that you must work with the full repository, while SVN allows you to checkout
individual directories. If we put everything into a single Git repository it would be far bigger than most
developers would want to checkout, so we have separted the docs and rescue into their own repositories, and
moved only the parts that are most actively worked on by the developers (bacula, gui, and regress) to a the
Git Bacula repository.

Bacula developers must now have a certain knowledege of Git.

2.2 Git Usage

Please note that if you are familiar with SVN, Git is similar, (and better), but there can be a few surprising
differences that can be very confusing (nothing worse than converting from CVS to SVN).

The main Bacula Git repo contains the subdirectories bacula, gui, and regress. With Git it is not possible
to pull only a single directory, because of the hash code nature of Git, you must take all or nothing.

For developers, the most important thing to remember about Git and the bacula.org repository is not to
”force” a push to the repository. Doing so, can possibly rewrite the Git repository history and cause a lot
of problems for the project.

You can get a full copy of the Bacula Git repository with the following command:
git clone http://git.bacula.org/bacula.git bacula

This will put a read-only copy into the directory bacula in your current directory, and bacula will contain
the subdirectories: bacula, gui, and regress. Obviously you can use any name an not just bacula. In fact,

15

16 Bacula Version 9.6.7

once you have the repository in say bacula, you can copy the whole directory to another place and have a
fully functional git repository.

The above command needs to be done only once. Thereafter, you can:

cd bacula
git pull # refresh my repo with the latest code

As of August 2009, the size of the repository (bacula in the above example) will be approximately 55
Megabytes. However, if you build from source in this directory and do a lot of updates and regression
testing, the directory could become several hundred megabytes.

2.2.1 Learning Git

If you want to learn more about Git, we recommend that you visit:
http://book.git-scm.com/| .

Some of the differences between Git and SVN are:

e Your main Git directory is a full Git repository to which you can and must commit. In fact, we suggest
you commit frequently.

e When you commit, the commit goes into your local Git database. You must use another command to
write it to the master bacula.org repository (see below).

e The local Git database is kept in the directory .git at the top level of the directory.

e All the important Git configuration information is kept in the file .git/config in ASCII format that
is easy to manually edit.

e When you do a commit the changes are put in .git rather but not in the main bacula.org repository.

e You can push your changes to the external repository using the command git push providing you have
write permission on the repository.

e We restrict developers just learning git to have read-only access until they feel comfortable with git
before giving them write access.

e You can download all the current changes in the external repository and merge them into your master
branch using the command git pull.

e The command git add is used to add a new file to the repository AND to tell Git that you want a file
that has changed to be in the next commit. This has lots of advantages, because a git commit only
commits those files that have been explicitly added. Note with SVN add is used only to add new files
to the repo.

e You can add and commit all files modifed in one command using git commit -a.

e This extra use of add allows you to make a number of changes then add only a few of the files and
commit them, then add more files and commit them until you have committed everything. This has
the advantage of allowing you to more easily group small changes and do individaual commits on them.
By keeping commits smaller, and separated into topics, it makes it much easier to later select certain
commits for backporting.

e If you git pull from the main repository and make some changes, and before you do a git push
someone else pushes changes to the Git repository, your changes will apply to an older version of the
repository you will probably get an error message such as:

git push
To git@github.com:bacula/bacula.git
! [rejected] master -> master (non-fast forward)

error: failed to push some refs to ’git@github.com:bacula/bacula.git’

http://book.git-scm.com/

Bacula Version 9.6.7 17

which is Git’s way of telling you that the main repository has changed and that if you push your
changes, they will not be integrated properly. This is very similar to what happens when you do an
”svn update” and get merge conflicts. As we have noted above, you should never ask Git to force the
push. See below for an explanation of why.

e To integrate (merge) your changes properly, you should always do a git pull just prior to doing a git
push.

e If Git is unable to merge your changes or finds a conflict it will tell you and you must do conflict
resolution, which is much easier in Git than in SVN.

e Resolving conflicts is described below in the github section.

2.3 Step by Step Modifying Bacula Code

Suppose you want to download Bacula source code, build it, make a change, then submit your change to the
Bacula developers. What would you do?

e Tell git who you are:
git config --global user.name "First-name Last-name"
git config --global user.email "email@address.com"

Where you put your real name and your email address. Since this is global, you only need to do it
once on any given machine regardless of how many git repos you work with.

e Download the Source code:

git clone http://git.bacula.org/bacula.git bacula
e Configure and Build Bacula:

./configure (all-your-normal-options)

make
e Create a branch to work on:

cd bacula/bacula
git checkout -b bugfix master

e Edit, build, Test, ...

edit file jcr.h
make
test

Note: if you forget to create a working branch prior to making changes, and you make them on master,

this is no problem providing that you create the working branch before your first commit. So assuming
that you have edited master instead of your bugfix branch, you can simply:

git checkout -b bugfix master

and a new bugfix branch will be created and checked out. You can then proceed to committing to your
bugfix branch as described in the next step.

18

Bacula Version 9.6.7

commit your work:
git commit -am "Short comment on what I did"

Possibly repeat the above two items

Switch back to the master branch:

git checkout master

Pull the latest changes:

git pull

Get back on your bugfix branch:

git checkout bugfix

Merge your changes and correct any conflicts:

git rebase master bugfix

Fix any conflicts:
You will be notified if there are conflicts. The first thing to do is:

git diff

This will produce a diff of only the files having a conflict. Fix each file in turn. When it is fixed, the
diff for that file will go away.

For each file fixed, you must do the same as SVN, inform git with:
git add (name-of-file-no-longer-in-conflict)

When all files are fixed do:

git rebase --continue

If you find that it is impossible to reconcile the two branches or you made a mistake in correcting and
adding files, before you enter the:

git rebase --continue
you can instead enter:
git rebase —--abort

which will essentially cancel the the original git rebase and reset everything to the beginning with no
changes to your bugfix branch.

When you have completed the rebase and are ready to send a patch, do the following:

git checkout bugfix
git format-patch -M master

Look at the files produced. They should be numbered 0001-xxx.patch where there is one file for each
commit you did, number sequentially, and the xxx is what you put in the commit comment.

If the patch files are good, send them by email to the developers as attachments.
Then you can continue working on your code if you want, or start another branch with a new project.

If you continue working on your bugfix branch, you should do a git rebase master from time to time,
and when your changes are committed to the repo, you will be automatically synchronized. So that
the next git format-patch will produce only the changes you made since the last format-patch you
sent to the developers.

Bacula Version 9.6.7 19

2.3.1 More Details

Normally, you will work by creating a branch of the master branch of your repository, make your modifica-
tions, then make sure it is up to date, and finally create format-patch patches or push it to the bacula.org.
Assuming you call the Bacula repository bacula, you might use the following commands:

cd bacula
git checkout bacula

git pull
git checkout -b newbranch bacula
(edit, ...)

git add <file-edited>
git commit -m "<comment about commit>"

When you have completed working on your branch, you will do:

cd bacula

git checkout newbranch # ensure I am on my branch
git pull # get latest source code
git rebase master # merge my code

If you have completed your edits before anyone has modified the repository, the git rebase master will
report that there was nothing to do. Otherwise, it will merge the changes that were made in the repository
before your changes. If there are any conflicts, Git will tell you. Typically resolving conflicts with Git is
relatively easy. You simply make a diff:

git diff

Then edit each file that was listed in the git diff to remove the conflict, which will be indicated by lines of:

<<<<<<< HEAD
text
SO>>>>>>
other text

where text is what is in the Bacula repository, and other text is what you have changed.

Once you have eliminated the conflict, the git diff will show nothing, and you must do a:

git add <file-with-conflicts-fixed>

Once you have fixed all the files with conflicts in the above manner, you enter:

git rebase --continue

and your rebase will be complete.

If for some reason, before doing the —continue, you want to abort the rebase and return to what you had,
you enter:

git rebase --abort

20 Bacula Version 9.6.7

Finally to make a set of patch files
git format-patch -M master

When you see your changes have been integrated and pushed to the main repo, you can delete your branch
with:

git checkout master
git branch -D newbranch

2.4 Forcing Changes

If you want to understand why it is not a good idea to force a push to the repository, look at the following
picture:

Push A Push B
git pull HEAD
Your mods
Push A Push B
git pull Your mods HEAD
Push A Push B
git pull Your mods

HEAD

The above graphic has three lines of circles. Each circle represents a commit, and time runs from the left
to the right. The top line shows the repository just before you are going to do a push. Note the point at
which you pulled is the circle on the left, your changes are represented by the circle labeled Your mods.
It is shown below to indicate that the changes are only in your local repository. Finally, there are pushes A
and B that came after the time at which you pulled.

If you were to force your changes into the repository, Git would place them immediately after the point at
which you pulled them, so they would go before the pushes A and B. However, doing so would rewrite the
history of the repository and make it very difficult for other users to synchronize since they would have to
somehow wedge their changes at some point before the current HEAD of the repository. This situation is
shown by the second line of pushes.

What you really want to do is to put your changes after Push B (the current HEAD). This is shown in the
third line of pushes. The best way to accomplish this is to work in a branch, pull the repository so you

Bacula Version 9.6.7 21

have your master equal to HEAD (in first line), then to rebase your branch on the current master and then
commit it. The exact commands to accomplish this are shown in the next couple of sections.

Bacula Version 9.6.7

Chapter 3

Bacula FD Plugin API

To write a Bacula plugin, you create a dynamic shared object program (or dll on Win32) with a particular
name and two exported entry points, place it in the Plugins Directory, which is defined in the bacula-
fd.conf file in the Client resource, and when the FD starts, it will load all the plugins that end with -fd.so
(or -fd.dll on Win32) found in that directory.

3.1 Normal vs Command vs Options Plugins

In general, there are three ways that plugins are called. The first way, is when a particular event is detected
in Bacula, it will transfer control to each plugin that is loaded in turn informing the plugin of the event.
This is very similar to how a RunScript works, and the events are very similar. Once the plugin gets
control, it can interact with Bacula by getting and setting Bacula variables. In this way, it behaves much
like a RunScript. Currently very few Bacula variables are defined, but they will be implemented as the need
arises, and it is very extensible.

We plan to have plugins register to receive events that they normally would not receive, such as an event for
each file examined for backup or restore. This feature is not yet implemented.

The second type of plugin, which is more useful and fully implemented in the current version is what we call
a command plugin. As with all plugins, it gets notified of important events as noted above (details described
below), but in addition, this kind of plugin can accept a command line, which is a:

Plugin = <command-string>

directive that is placed in the Include section of a FileSet and is very similar to the "File = 7 directive. When
this Plugin directive is encountered by Bacula during backup, it passes the ”command” part of the Plugin
directive only to the plugin that is explicitly named in the first field of that command string. This allows
that plugin to backup any file or files on the system that it wants. It can even create ”virtual files” in the
catalog that contain data to be restored but do not necessarily correspond to actual files on the filesystem.

The important features of the command plugin entry points are:

e It is triggered by a "Plugin =" directive in the FileSet

e Only a single plugin is called that is named on the ”Plugin =" directive.

”

e The full command string after the ”Plugin =
backup/restore.

is passed to the plugin so that it can be told what to

The third type of plugin is the Options Plugin, this kind of plugin is useful to implement some custom filter
on data. For example, you can implement a compression algorithm in a very simple way. Bacula will call this

23

24 Bacula Version 9.6.7

plugin for each file that is selected in a FileSet (according to Wild/Regex/Exclude/Include rules). As with
all plugins, it gets notified of important events as noted above (details described below), but in addition,
this kind of plugin can be placed in a Options group, which is a:

FileSet {
Name = TestFS
Include {
Options {
Compression = GZIP1
Signature = MD5
Wild = "*.txt"
Plugin = <command-string>
X
File = /

3.2 Loading Plugins

Once the File daemon loads the plugins, it asks the OS for the two entry points (loadPlugin and unloadPlugin)
then calls the loadPlugin entry point (see below).

Bacula passes information to the plugin through this call and it gets back information that it needs to use
the plugin. Later, Bacula will call particular functions that are defined by the loadPlugin interface.

When Bacula is finished with the plugin (when Bacula is going to exit), it will call the unloadPlugin entry
point.

The two entry points are:

bRC loadPlugin(bInfo *1lbinfo, bFuncs *lbfuncs, pInfo **pinfo, pFuncs **pfuncs)
and

bRC unloadPlugin()

both these external entry points to the shared object are defined as C entry points to avoid name mangling
complications with C++. However, the shared object can actually be written in any language (preferably C
or C++) providing that it follows C language calling conventions.

The definitions for bRC and the arguments are src/filed /fd-plugins.h and so this header file needs to be
included in your plugin. It along with src/lib/plugins.h define basically the whole plugin interface. Within
this header file, it includes the following files:

#include <sys/types.h>
#include "config.h"
#include "bc_types.h"
#include "lib/plugins.h"
#include <sys/stat.h>

Aside from the be_types.h and confit.h headers, the plugin definition uses the minimum code from Bacula.
The bc_types.h file is required to ensure that the data type definitions in arguments correspond to the Bacula
core code.

The return codes are defined as:

Bacula Version 9.6.7 25

typedef enum {

bRC_OK =0, /* OK */
bRC_Stop = 1, /* Stop calling other plugins */
bRC_Error = 2, /* Some kind of error */
bRC_More = 3, /* More files to backup */
bRC_Term = 4, /* Unload me */
bRC_Seen = 5, /* Return code from checkFiles */
bRC_Core = 6, /* Let Bacula core handles this file */
bRC_Skip = 7, /* Skip the proposed file */

} bRC;

At a future point in time, we hope to make the Bacula libbac.a into a shared object so that the plugin can
use much more of Bacula’s infrastructure, but for this first cut, we have tried to minimize the dependence
on Bacula.

3.3 loadPlugin

As previously mentioned, the loadPlugin entry point in the plugin is called immediately after Bacula loads
the plugin when the File daemon itself is first starting. This entry point is only called once during the
execution of the File daemon. In calling the plugin, the first two arguments are information from Bacula
that is passed to the plugin, and the last two arguments are information about the plugin that the plugin
must return to Bacula. The call is:

bRC loadPlugin(bInfo *1binfo, bFuncs *1bfuncs, pInfo **pinfo, pFuncs **pfuncs)
and the arguments are:

Ibinfo This is information about Bacula in general. Currently, the only value defined in the bInfo structure
is the version, which is the Bacula plugin interface version, currently defined as 1. The size is set to
the byte size of the structure. The exact definition of the bInfo structure as of this writing is:

typedef struct s_baculalnfo {
uint32_t size;
uint32_t version;

} blnfo;

Ibfuncs The bFuncs structure defines the callback entry points within Bacula that the plugin can use register
events, get Bacula values, set Bacula values, and send messages to the Job output or debug output.

The exact definition as of this writing is:

typedef struct s_baculaFuncs {
uint32_t size;
uint32_t version;
bRC (*registerBaculaEvents) (bpContext *ctx, ...);
bRC (xgetBaculaValue) (bpContext *ctx, bVariable var, void *value);
bRC (xsetBaculaValue) (bpContext *ctx, bVariable var, void *value);
bRC (xJobMessage) (bpContext *ctx, const char *file, int line,

int type, utime_t mtime, const char *fmt, ...);
bRC (*DebugMessage) (bpContext *ctx, const char *file, int line,
int level, const char *fmt, ...);

void *(*¥baculaMalloc) (bpContext *ctx, const char *file, int line,
size_t size);
void (*baculaFree) (bpContext *ctx, const char *file, int line, void *mem);
} bFuncs;

We will discuss these entry points and how to use them a bit later when describing the plugin code.

26 Bacula Version 9.6.7

pInfo When the loadPlugin entry point is called, the plugin must initialize an information structure about
the plugin and return a pointer to this structure to Bacula.

The exact definition as of this writing is:

typedef struct s_pluginInfo {
uint32_t size;
uint32_t version;
const char *plugin_magic;
const char *plugin_license;
const char *plugin_author;
const char *plugin_date;
const char *plugin_version;
const char *plugin_description;
} pInfo;

Where:

version is the current Bacula defined plugin interface version, currently set to 1. If the interface version
differs from the current version of Bacula, the plugin will not be run (not yet implemented).

plugin_magic is a pointer to the text string "*FDPluginData*”, a sort of sanity check. If this value
is not specified, the plugin will not be run (not yet implemented).

plugin_license is a pointer to a text string that describes the plugin license. Bacula will only accept
compatible licenses (not yet implemented).

plugin_author is a pointer to the text name of the author of the program. This string can be anything
but is generally the author’s name.

plugin_date is the pointer text string containing the date of the plugin. This string can be anything
but is generally some human readable form of the date.

plugin_version is a pointer to a text string containing the version of the plugin. The contents are
determined by the plugin writer.

plugin_description is a pointer to a string describing what the plugin does. The contents are deter-
mined by the plugin writer.

The plInfo structure must be defined in static memory because Bacula does not copy it and may refer
to the values at any time while the plugin is loaded. All values must be supplied or the plugin will not
run (not yet implemented). All text strings must be either ASCII or UTF-8 strings that are terminated
with a zero byte.

pFuncs When the loadPlugin entry point is called, the plugin must initialize an entry point structure about
the plugin and return a pointer to this structure to Bacula. This structure contains pointer to each of
the entry points that the plugin must provide for Bacula. When Bacula is actually running the plugin,
it will call the defined entry points at particular times. All entry points must be defined.

The pFuncs structure must be defined in static memory because Bacula does not copy it and may refer
to the values at any time while the plugin is loaded.

The exact definition as of this writing is:

typedef struct s_pluginFuncs {
uint32_t size;
uint32_t version;
bRC (*newPlugin) (bpContext *ctx);
bRC (*freePlugin) (bpContext *ctx);
bRC (*getPluginValue) (bpContext *ctx, pVariable var, void *value);
bRC (*setPluginValue) (bpContext *ctx, pVariable var, void *value);
bRC (*handlePluginEvent) (bpContext *ctx, bEvent *event, void *value);
bRC (xstartBackupFile) (bpContext *ctx, struct save_pkt *sp);
bRC (*endBackupFile) (bpContext *ctx);
bRC (xstartRestoreFile) (bpContext *ctx, const char *cmd);
bRC (*endRestoreFile) (bpContext *ctx);
bRC (*pluginI0) (bpContext *ctx, struct io_pkt *io);

Bacula Version 9.6.7 27

bRC (*createFile) (bpContext *ctx, struct restore_pkt *rp);
bRC (*setFileAttributes) (bpContext *ctx, struct restore_pkt *rp);
bRC (xcheckFile) (bpContext *ctx, char *fname);

} pFuncs;

The details of the entry points will be presented in separate sections below.
Where:

size is the byte size of the structure.

version is the plugin interface version currently set to 3.

Sample code for loadPlugin:

bfuncs = lbfuncs; /* set Bacula funct pointers */
binfo = lbinfo;

pinfo = &pluginlnfo; / return pointer to our info */
pfuncs = &pluginFuncs; / return pointer to our functions */

return bRC_0OK;

where pluginlnfo and pluginFuncs are statically defined structures. See bpipe-fd.c for details.

3.4 Plugin Entry Points

This section will describe each of the entry points (subroutines) within the plugin that the plugin must
provide for Bacula, when they are called and their arguments. As noted above, pointers to these subroutines
are passed back to Bacula in the pFuncs structure when Bacula calls the loadPlugin() externally defined
entry point.

3.4.1 newPlugin(bpContext *ctx)

This is the entry point that Bacula will call when a new ”instance” of the plugin is created. This typically
happens at the beginning of a Job. If 10 Jobs are running simultaneously, there will be at least 10 instances
of the plugin.

The bpContext structure will be passed to the plugin, and during this call, if the plugin needs to have its
private working storage that is associated with the particular instance of the plugin, it should create it from
the heap (malloc the memory) and store a pointer to its private working storage in the pContext variable.
Note: since Bacula is a multi-threaded program, you must not keep any variable data in your plugin unless
it is truly meant to apply globally to the whole plugin. In addition, you must be aware that except the
first and last call to the plugin (loadPlugin and unloadPlugin) all the other calls will be made by threads
that correspond to a Bacula job. The bpContext that will be passed for each thread will remain the same
throughout the Job thus you can keep your private Job specific data in it (bContext).

typedef struct s_bpContext {
void *pContext; /* Plugin private context */
void *bContext; /* Bacula private context */
} bpContext;

This context pointer will be passed as the first argument to all the entry points that Bacula calls within
the plugin. Needless to say, the plugin should not change the bContext variable, which is Bacula’s private
context pointer for this instance (Job) of this plugin.

28 Bacula Version 9.6.7

3.4.2 freePlugin(bpContext *ctx)

This entry point is called when the this instance of the plugin is no longer needed (the Job is ending), and the
plugin should release all memory it may have allocated for this particular instance (Job) i.e. the pContext.
This is not the final termination of the plugin signaled by a call to unloadPlugin. Any other instances
(Job) will continue to run, and the entry point newPlugin may be called again if other jobs start.

3.4.3 getPluginValue(bpContext *ctx, pVariable var, void *value)

Bacula will call this entry point to get a value from the plugin. This entry point is currently not called.

3.4.4 setPluginValue(bpContext *ctx, pVariable var, void *value)

Bacula will call this entry point to set a value in the plugin. This entry point is currently not called.

3.4.5 handlePluginEvent(bpContext *ctx, bEvent *event, void *value)

This entry point is called when Bacula encounters certain events (discussed below). This is, in fact, the main
way that most plugins get control when a Job runs and how they know what is happening in the job. It can
be likened to the RunScript feature that calls external programs and scripts. When the plugin is called,
Bacula passes it the pointer to an event structure (bEvent), which currently has one item, the eventType:

typedef struct s_bEvent {
uint32_t eventType;
} bEvent;

which defines what event has been triggered, and for each event, Bacula will pass a pointer to a value
associated with that event. If no value is associated with a particular event, Bacula will pass a NULL
pointer, so the plugin must be careful to always check value pointer prior to dereferencing it.

The current list of events are:

typedef enum {
bEventJobStart =
bEventJobEnd =
bEventStartBackupJob =
bEventEndBackupJob =
bEventStartRestoreJob =
bEventEndRestoreJob =
bEventStartVerifyJob =
bEventEndVerifyJob =
bEventBackupCommand =
bEventRestoreCommand =
bEventLevel =
bEventSince =
bEventCancelCommand = 13, /* Executed by another thread */

© 00N O WN -

B o e
N = O
“ e .

/* Just before bEventVssPrepareSnapshot */
bEventVssBackupAddComponents = 14,

bEventVssRestoreLoadComponentMetadata = 15,
bEventVssRestoreSetComponentsSelected = 16,
bEventRestorelbject = 17,
bEventEndFileSet = 18,

Bacula Version 9.6.7 29

bEventPluginCommand =19,
bEventVssBeforeCloseRestore = 21,

/* Add drives to VSS snapshot

* argument: char[27] drivelist

* You need to add them without duplicates,

* see fd_common.h add_drive() copy_drives() to get help

*/

bEventVssPrepareSnapshot = 22,

bEventOptionPlugin = 23,

bEventHandleBackupFile = 24 /* Used with Options Plugin */

} bEventType;

Most of the above are self-explanatory.

bEventJobStart is called whenever a Job starts. The value passed is a pointer to a string that contains:
”Jobid=nnn Job=job-name”. Where nnn will be replaced by the Jobld and job-name will be replaced
by the Job name. The variable is temporary so if you need the values, you must copy them.

bEventJobEnd is called whenever a Job ends. No value is passed.
bEventStartBackupJob is called when a Backup Job begins. No value is passed.
bEventEndBackupJob is called when a Backup Job ends. No value is passed.
bEventStartRestoreJob is called when a Restore Job starts. No value is passed.
bEventEndRestoreJob is called when a Restore Job ends. No value is passed.
bEventStartVerifyJob is called when a Verify Job starts. No value is passed.
bEventEndVerifyJob is called when a Verify Job ends. No value is passed.

bEventBackupCommand is called prior to the bEventStartBackupJob and the plugin is passed the com-
mand string (everything after the equal sign in ”Plugin =" as the value.

Note, if you intend to backup a file, this is an important first point to write code that copies the
command string passed into your pContext area so that you will know that a backup is being performed
and you will know the full contents of the "Plugin =” command (i.e. what to backup and what virtual
filename the user wants to call it.

bEventRestoreCommand is called prior to the bEventStartRestoreJob and the plugin is passed the com-
mand string (everything after the equal sign in ”Plugin =" as the value.

See the notes above concerning backup and the command string. This is the point at which Bacula
passes you the original command string that was specified during the backup, so you will want to save
it in your pContext area for later use when Bacula calls the plugin again.

bEventLevel is called when the level is set for a new Job. The value is a 32 bit integer stored in the void*,
which represents the Job Level code.

bEventSince is called when the since time is set for a new Job. The value is a time_t time at which the
last job was run.

bEventCancelCommand is called whenever the currently running Job is cancelled. Be warned that this
event is sent by a different thread.

bEventVssBackupAddComponents

bEventPluginCommand is called for each PluginCommand present in the current FileSet. The event
will be sent only on plugin specifed in the command. The argument is the PluginCommand (not valid
after the call).

30 Bacula Version 9.6.7

bEventHandleBackupFile is called for each file of a FileSet when using a Options Plugin. If the plugin
returns CF_OK, it will be used for the backup, if it returns CF_SKIP, the file will be skipped. Anything
else will backup the file with Bacula core functions.

During each of the above calls, the plugin receives either no specific value or only one value, which in some
cases may not be sufficient. However, knowing the context of the event, the plugin can call back to the
Bacula entry points it was passed during the loadPlugin call and get to a number of Bacula variables. (at
the current time few Bacula variables are implemented, but it easily extended at a future time and as needs
require).

3.4.6 startBackupFile(bpContext *ctx, struct save_pkt *sp)

This entry point is called only if your plugin is a command plugin, and it is called when Bacula encounters
the ”Plugin = ” directive in the Include section of the FileSet. Called when beginning the backup of a file.
Here Bacula provides you with a pointer to the save_pkt structure and you must fill in this packet with the
7attribute” data of the file.

struct save_pkt {

int32_t pkt_size; /* size of this packet */

char *fname; /* Full path and filename */

char *link; /* Link name if any */

struct stat statp; /* System stat() packet for file */
int32_t type; /* FT_xx for this file */

uint32_t flags; /* Bacula internal flags */

bool portable; /* set if data format is portable */
char *cmd; /* command */

uint32_t delta_seq; /* Delta sequence number */

char *object_name; /* Object name to create */

char *object; /* restore object data to save */
int32_t object_len; /* restore object length */

int32_t index; /* restore object index */

int32_t pkt_end; /* end packet sentinel */

};

The second argument is a pointer to the save_pkt structure for the file to be backed up. The plugin is
responsible for filling in all the fields of the save_pkt. If you are backing up a real file, then generally, the
statp structure can be filled in by doing a stat system call on the file.

If you are backing up a database or something that is more complex, you might want to create a virtual
file. That is a file that does not actually exist on the filesystem, but represents say an object that you are
backing up. In that case, you need to ensure that the fname string that you pass back is unique so that it
does not conflict with a real file on the system, and you need to artifically create values in the statp packet.

Example programs such as bpipe-fd.c show how to set these fields. You must take care not to store pointers
the stack in the pointer fields such as fname and link, because when you return from your function, your
stack entries will be destroyed. The solution in that case is to malloc() and return the pointer to it. In order
to not have memory leaks, you should store a pointer to all memory allocated in your pContext structure so
that in subsequent calls or at termination, you can release it back to the system.

Once the backup has begun, Bacula will call your plugin at the pluginlO entry point to "read” the data to
be backed up. Please see the bpipe-fd.c plugin for how to do I/0.

Example of filling in the save_pkt as used in bpipe-fd.c:
struct plugin_ctx *p_ctx = (struct plugin_ctx *)ctx->pContext;

time_t now = time(NULL);
sp—>fname = p_ctx->fname;

Bacula Version 9.6.7 31

sp->statp.st_mode = 0700 | S_IFREG;
sp—>statp.st_ctime = now;
sp—>statp.st_mtime now;
sp->statp.st_atime = now;
sp->statp.st_size = -1;
sp->statp.st_blksize = 4096;
sp->statp.st_blocks = 1;
p_ctx->backup = true;

return bRC_0OK;

Note: the filename to be created has already been created from the command string previously sent to the
plugin and is in the plugin context (p_ctx-jfname) and is a malloc()ed string. This example creates a regular
file (SIFREG), with various fields being created.

In general, the sequence of commands issued from Bacula to the plugin to do a backup while processing the
?Plugin = ” directive are:

1. generate a bEventBackupCommand event to the specified plugin and pass it the command string.

2. make a startPluginBackup call to the plugin, which fills in the data needed in save_pkt to save as the
file attributes and to put on the Volume and in the catalog.

3. call Bacula’s internal save_file() subroutine to save the specified file. The plugin will then be called at
pluginlO() to "open” the file, and then to read the file data. Note, if you are dealing with a virtual file,
the "open” operation is something the plugin does internally and it doesn’t necessarily mean opening
a file on the filesystem. For example in the case of the bpipe-fd.c program, it initiates a pipe to the
requested program. Finally when the plugin signals to Bacula that all the data was read, Bacula will
call the plugin with the ”close” pluginIO() function.

3.4.7 endBackupFile(bpContext *ctx)

Called at the end of backing up a file for a command plugin. If the plugin’s work is done, it should return
bRC_OK. If the plugin wishes to create another file and back it up, then it must return bRC_More (not
yet implemented). This is probably a good time to release any malloc()ed memory you used to pass back
filenames.

3.4.8 startRestoreFile(bpContext *ctx, const char *cmd)

Called when the first record is read from the Volume that was previously written by the command plugin.

3.4.9 createFile(bpContext *ctx, struct restore_pkt *rp)

Called for a command plugin to create a file during a Restore job before restoring the data. This entry point
is called before any I/O is done on the file. After this call, Bacula will call pluginIO() to open the file for
write.

The data in the restore_pkt is passed to the plugin and is based on the data that was originally given by
the plugin during the backup and the current user restore settings (e.g. where, RegexWhere, replace). This
allows the plugin to first create a file (if necessary) so that the data can be transmitted to it. The next call
to the plugin will be a pluginlO command with a request to open the file write-only.

This call must return one of the following values:

enum {
CF_SKIP = 1, /* skip file (not newer or something) */

32
CF_ERROR,
CF_EXTRACT,
CF_CREATED,
CF_CORE

};

in the restore_pkt value create_status.

CF_EXTRACT.

struct restore_pkt {

/* error creating file */
/* file created, data to extract */
/* file created, no data to extract */

/* let bacula core handles the file creation */

int32_t pkt_size; /*
int32_t stream; /*
int32_t data_stream; /*
int32_t type; /*
int32_t file_index; /%
int32_t LinkFI; /*
uid_t uid; /%
struct stat statp; /*
const char *attrEx; /*
const char *ofname; /%
const char *olname; /%
const char *where; /%
const char *RegexWhere; /*
int replace; /*
int create_status; /*
int32_t pkt_end; /*

};

size of this packet */
attribute stream id */

id of data stream to follow */

file type FT */
file index */

Bacula Version 9.6.7

For a normal file, unless there is an error, you must return

file index to data if hard link */

userid */
decoded stat packet */

extended attributes if any */

output filename */
output link name */
where */

regex where */
replace flag */

status from createFile() x*/

end packet sentinel */

Typical code to create a regular file would be the following:

struct plugin_ctx *
time_t now = time(N

sp—>fname = p_ctx->fname;

sp->type = FT_REG;

p_ctx
ULL);

(struct plugin_ctx *)ctx->pContext;

/* set the full path/filename I want to create */

S_IFREG;

sp->statp.st_mode = 0700
sp->statp.st_ctime = now;
sp->statp.st_mtime = now;
sp->statp.st_atime = now;
sp->statp.st_size = -1;
sp->statp.st_blksize = 4096;
sp->statp.st_blocks = 1;

return bRC_0OK;

This will create a virtual file. If you are creating a file that actually exists, you will most likely want to fill
the statp packet using the stat() system call.

Creating a directory is similar, but requires a few extra steps:

struct plugin_ctx *
time_t now = time(N

sp->fname = p_ctx->fname;

p_ctx
ULL);

(struct plugin_ctx *)ctx->pContext;

/* set the full path I want to create */

sp—>link = xxx; where xxx is p_ctx->fname with a trailing forward slash

sp—>type = FT_DIREN
sp—>statp.st_mode =

sp->statp.st_ctime = now;

D
0700

S_IFDIR;

Bacula Version 9.6.7 33

sp->statp.st_mtime = now;
sp—>statp.st_atime = now;
sp->statp.st_size = -1;
sp->statp.st_blksize = 4096;
sp->statp.st_blocks = 1;
return bRC_OK;

The link field must be set with the full cononical path name, which always ends with a forward slash. If you
do not terminate it with a forward slash, you will surely have problems later.

As with the example that creates a file, if you are backing up a real directory, you will want to do an stat()
on the directory.

Note, if you want the directory permissions and times to be correctly restored, you must create the directory
after all the file directories have been sent to Bacula. That allows the restore process to restore all the files
in a directory using default directory options, then at the end, restore the directory permissions. If you do
it the other way around, each time you restore a file, the OS will modify the time values for the directory
entry.

3.4.10 setFileAttributes(bpContext *ctx, struct restore_pkt *rp)

This is call not yet implemented. Called for a command plugin.

See the definition of restre_pkt in the above section.

3.4.11 endRestoreFile(bpContext *ctx)

Called when a command plugin is done restoring a file.

3.4.12 pluginlO(bpContext *ctx, struct io_pkt *io)

Called to do the input (backup) or output (restore) of data from or to a file for a command plugin. These
routines simulate the Unix read(), write(), open(), close(), and lseek() I/O calls, and the arguments are
passed in the packet and the return values are also placed in the packet. In addition for Win32 systems the
plugin must return two additional values (described below).

enum {
I0_OPEN = 1,
IO_READ = 2,
IO_WRITE = 3,
I0O_CLOSE = 4,
IO_SEEK = 5

};

struct io_pkt {
int32_t pkt_size; /* Size of this packet */
int32_t func; /* Function code */
int32_t count; /* read/write count */
mode_t mode; /* permissions for created files */
int32_t flags; /* Open flags */
char *buf; /* read/write buffer */
const char *fname; /* open filename */
int32_t status; /* return status */
int32_t io_errno; /* errno code */

int32_t lerror; /* Win32 error code */

34 Bacula Version 9.6.7

int32_t whence; /* lseek argument */

boffset_t offset; /* lseek argument */

bool win32; /* Win32 GetLastError returned */
int32_t pkt_end; /* end packet sentinel */

};

The particular Unix function being simulated is indicated by the func, which will have one of the IO_OPEN,
IO_READ, ... codes listed above. The status code that would be returned from a Unix call is returned in
status for IO_OPEN, IO_CLOSE, IO_READ, and IO_WRITE. The return value for IO_SEEK is returned
in offset which in general is a 64 bit value.

When there is an error on Unix systems, you must always set io_error, and on a Win32 system, you must
always set win32, and the returned value from the OS call GetLastError() in lerror.

For all except IO_SEEK, status is the return result. In general it is a positive integer unless there is an
error in which case it is -1.

The following describes each call and what you get and what you should return:

IO_OPEN You will be passed fname, mode, and flags. You must set on return: status, and if there is a
Unix error io_errno must be set to the errno value, and if there is a Win32 error win32 and lerror.

IO_READ You will be passed: count, and buf (buffer of size count). You must set on return: status to the
number of bytes read into the buffer (buf) or -1 on an error, and if there is a Unix error io_errno must
be set to the errno value, and if there is a Win32 error, win32 and lerror must be set.

IO_WRITE You will be passed: count, and buf (buffer of size count). You must set on return: status to
the number of bytes written from the buffer (buf) or -1 on an error, and if there is a Unix error io_errno
must be set to the errno value, and if there is a Win32 error, win32 and lerror must be set.

IO_CLOSE Nothing will be passed to you. On return you must set status to 0 on success and -1 on failure.
If there is a Unix error io_errno must be set to the errno value, and if there is a Win32 error, win32
and lerror must be set.

IO_LSEEK You will be passed: offset, and whence. offset is a 64 bit value and is the position to seek to
relative to whence. whence is one of the following SEEK_SET, SEEK_CUR, or SEEK_END indicating
to either to seek to an absolute possition, relative to the current position or relative to the end of the
file. You must pass back in offset the absolute location to which you seeked. If there is an error, offset
should be set to -1. If there is a Unix error io_errno must be set to the errno value, and if there is a
Win32 error, win32 and lerror must be set.

Note: Bacula will call IO_SEEK only when writing a sparse file.

3.4.13 bool checkFile(bpContext *ctx, char *fname)

If this entry point is set, Bacula will call it after backing up all file data during an Accurate backup. It will
be passed the full filename for each file that Bacula is proposing to mark as deleted. Only files previously
backed up but not backed up in the current session will be marked to be deleted. If you return false, the file
will be be marked deleted. If you return true the file will not be marked deleted. This permits a plugin to
ensure that previously saved virtual files or files controlled by your plugin that have not change (not backed
up in the current job) are not marked to be deleted. This entry point will only be called during Accurate
Incrmental and Differential backup jobs.

3.5 Bacula Plugin Entrypoints

When Bacula calls one of your plugin entrypoints, you can call back to the entrypoints in Bacula that were
supplied during the xxx plugin call to get or set information within Bacula.

Bacula Version 9.6.7 35 .

3.5.1 DbRC registerBaculaEvents(bpContext *ctx, ...)

This Bacula entrypoint will allow you to register to receive events that are not autmatically passed to your
plugin by default. This entrypoint currently is unimplemented.

3.5.2 bRC getBaculaValue(bpContext *ctx, bVariable var, void *value)

Calling this entrypoint, you can obtain specific values that are available in Bacula. The following Variables
can be referenced:

e bVarJobld returns an int

bVarFDName returns a char *

bVarLevel returns an int

bVarClient returns a char *

bVarJobName returns a char *

e bVarJobStatus returns an int

bVarSinceTime returns an int (time_t)

bVarAccurate returns an int

3.5.3 bRC setBaculaValue(bpContext *ctx, bVariable var, void *value)

Calling this entrypoint allows you to set particular values in Bacula. The only variable that can currently
be set is bVarFileSeen and the value passed is a char * that points to the full filename for a file that you
are indicating has been seen and hence is not deleted.

3.5.4 bRC JobMessage(bpContext *ctx, const char *file, int line, int type,
utime_t mtime, const char *fmt, ...)

This call permits you to put a message in the Job Report.

3.5.5 bRC DebugMessage(bpContext *ctx, const char *file, int line, int level,
const char *fmt, ...)

This call permits you to print a debug message.

3.5.6 void baculaMalloc(bpContext *ctx, const char *file, int line, size_t size)

This call permits you to obtain memory from Bacula’s memory allocator.

3.5.7 void baculaFree(bpContext *ctx, const char *file, int line, void *mem)

This call permits you to free memory obtained from Bacula’s memory allocator.

36 Bacula Version 9.6.7

3.6 Building Bacula Plugins

There is currently one sample program example-plugin-fd.c and one working plugin bpipe-fd.c that can
be found in the Bacula src/plugins/fd directory. Both are built with the following:

cd <bacula-source>
./configure <your-options>
make

cd src/plugins/fd
make
make test

After building Bacula and changing into the src/plugins/fd directory, the make command will build the
bpipe-fd.so plugin, which is a very useful and working program.

The make test command will build the example-plugin-fd.so plugin and a binary named main, which
is build from the source code located in src/filed /fd_plugins.c.

If you execute ./main, it will load and run the example-plugin-fd plugin simulating a small number of the
calling sequences that Bacula uses in calling a real plugin. This allows you to do initial testing of your plugin
prior to trying it with Bacula.

You can get a good idea of how to write your own plugin by first studying the example-plugin-fd, and actually
running it. Then it can also be instructive to read the bpipe-fd.c code as it is a real plugin, which is still
rather simple and small.

When actually writing your own plugin, you may use the example-plugin-fd.c code as a template for your
code.

Chapter 4

Platform Support

4.1 General

This chapter describes the requirements for having a supported platform (Operating System). In general,
Bacula is quite portable. It supports 32 and 64 bit architectures as well as bigendian and littleendian
machines. For full support, the platform (Operating System) must implement POSIX Unix system calls.
However, for File daemon support only, a small compatibility library can be written to support almost any
architecture.

Currently Linux, FreeBSD, and Solaris are fully supported platforms, which means that the code has been
tested on those machines and passes a full set of regression tests.

In addition, the Windows File daemon is supported on most versions of Windows, and finally, there are a
number of other platforms where the File daemon (client) is known to run: NetBSD, OpenBSD, Mac OSX,
SGI, ...

4.2 Requirements to become a Supported Platform

As mentioned above, in order to become a fully supported platform, it must support POSIX Unix system
calls. In addition, the following requirements must be met:

e The principal developer (currently Kern) must have non-root ssh access to a test machine running the
platform.

e The ideal requirements and minimum requirements for this machine are given below.

e There must be a defined platform champion who is normally a system administrator for the machine
that is available. This person need not be a developer/programmer but must be familiar with system
administration of the platform.

e There must be at least one person designated who will run regression tests prior to each release.
Releases occur approximately once every 6 months, but can be more frequent. It takes at most a day’s
effort to setup the regression scripts in the beginning, and after that, they can either be run daily or
on demand before a release. Running the regression scripts involves only one or two command line
commands and is fully automated.

e Ideally there are one or more persons who will package each Bacula release.

e Ideally there are one or more developers who can respond to and fix platform specific bugs.

Ideal requirements for a test machine:

37

38

Bacula Version 9.6.7

The principal developer will have non-root ssh access to the test machine at all times.

The principal developer will have a root password.

The test machine will provide approximately 200 MB of disk space for continual use.

The test machine will have approximately 500 MB of free disk space for temporary use.

The test machine will run the most common version of the OS.

The test machine will have an autochanger of DDS-4 technology or later having two or more tapes.
The test machine will have MySQL and/or PostgreSQL database access for account ”bacula” available.
The test machine will have sftp access.

The test machine will provide an smtp server.

Minimum requirements for a test machine:

The principal developer will have non-root ssh access to the test machine when requested approximately
once a month.

The principal developer not have root access.

The test machine will provide approximately 80 MB of disk space for continual use.

The test machine will have approximately 300 MB of free disk space for temporary use.

The test machine will run the the OS.

The test machine will have a tape drive of DDS-4 technology or later that can be scheduled for access.
The test machine will not have MySQL and/or PostgreSQL database access.

The test machine will have no sftp access.

The test machine will provide no email access.

Bare bones test machine requirements:

The test machine is available only to a designated test person (your own machine).
The designated test person runs the regression tests on demand.

The test machine has a tape drive available.

Chapter 5

Daemon Protocol

5.1 General

This document describes the protocols used between the various daemons. As Bacula has developed, it has
become quite out of date. The general idea still holds true, but the details of the fields for each command,
and indeed the commands themselves have changed considerably.

It is intended to be a technical discussion of the general daemon protocols and as such is not targeted at end
users but rather at developers and system administrators that want or need to know more of the working
details of Bacula.

5.2 Low Level Network Protocol

At the lowest level, the network protocol is handled by BSOCK packets which contain a lot of information
about the status of the network connection: who is at the other end, etc. Each basic Bacula network read
or write actually consists of two low level network read/writes. The first write always sends four bytes of
data in machine independent byte order. If data is to follow, the first four bytes are a positive non-zero
integer indicating the length of the data that follow in the subsequent write. If the four byte integer is zero
or negative, it indicates a special request, a sort of network signaling capability. In this case, no data packet
will follow. The low level BSOCK routines expect that only a single thread is accessing the socket at a time.
It is advised that multiple threads do not read/write the same socket. If you must do this, you must provide
some sort of locking mechanism. It would not be appropriate for efficiency reasons to make every call to the
BSOCK routines lock and unlock the packet.

5.3 General Daemon Protocol

In general, all the daemons follow the following global rules. There may be exceptions depending on the
specific case. Normally, one daemon will be sending commands to another daemon (specifically, the Director
to the Storage daemon and the Director to the File daemon).

e Commands are always ASCII commands that are upper/lower case dependent as well as space sensitive.

e All binary data is converted into ASCII (either with printf statements or using base64 encoding).

e All responses to commands sent are always prefixed with a return numeric code where codes in the

1000’s are reserved for the Director, the 2000’s are reserved for the File daemon, and the 3000’s are
reserved for the Storage daemon.

39

40 Bacula Version 9.6.7

e Any response that is not prefixed with a numeric code is a command (or subcommand if you like) coming
from the other end. For example, while the Director is corresponding with the Storage daemon, the
Storage daemon can request Catalog services from the Director. This convention permits each side to
send commands to the other daemon while simultaneously responding to commands.

e Any response that is of zero length, depending on the context, either terminates the data stream being
sent or terminates command mode prior to closing the connection.

e Any response that is of negative length is a special sign that normally requires a response. For example,
during data transfer from the File daemon to the Storage daemon, normally the File daemon sends
continuously without intervening reads. However, periodically, the File daemon will send a packet of
length -1 indicating that the current data stream is complete and that the Storage daemon should
respond to the packet with an OK, ABORT JOB, PAUSE, etc. This permits the File daemon to
efficiently send data while at the same time occasionally “polling” the Storage daemon for his status
or any special requests.

Currently, these negative lengths are specific to the daemon, but shortly, the range 0 to -999 will be
standard daemon wide signals, while -1000 to -1999 will be for Director user, -2000 to -2999 for the
File daemon, and -3000 to -3999 for the Storage daemon.

5.4 The Protocol Used Between the Director and the Storage Dae-
mon

Before sending commands to the File daemon, the Director opens a Message channel with the Storage
daemon, identifies itself and presents its password. If the password check is OK, the Storage daemon accepts
the Director. The Director then passes the Storage daemon, the Jobld to be run as well as the File daemon
authorization (append, read all, or read for a specific session). The Storage daemon will then pass back to
the Director a enabling key for this Jobld that must be presented by the File daemon when opening the job.
Until this process is complete, the Storage daemon is not available for use by File daemons.

SD: listens

DR: makes connection

DR: Hello <Director-name> calling <password>

SD: 3000 OK Hello

DR: JobId=nnn Allow=(append, read) Session=(*, SessionId)

(Session not implemented yet)

SD: 3000 OK Job Authorization=<password>

DR: use device=<device-name> media_type=<media-type>
pool_name=<pool-name> pool_type=<pool_type>

SD: 3000 OK use device

For the Director to be authorized, the <Director-name> and the <password> must match the values in one
of the Storage daemon’s Director resources (there may be several Directors that can access a single Storage
daemon).

5.5 The Protocol Used Between the Director and the File Daemon

A typical conversation might look like the following;:

FD: listens

DR: makes connection

DR: Hello <Director-name> calling <password>

FD: 2000 OK Hello

DR: JobId=nnn Authorization=<password>

FD: 2000 OK Job

DR: storage address = <Storage daemon address> port = <port-number>
name = <DeviceName> mediatype = <MediaType>

FD: 2000 OK storage

DR: include

Bacula Version 9.6.7 41

DR: <directoryl>
DR: <directory2>

DR: Null packet

FD: 2000 OK include
DR: exclude

DR: <directoryl>
DR: <directory2>

DR: Null packet

FD: 2000 OK exclude

DR: full

FD: 2000 OK full

DR: save

FD: 2000 OK save

FD: Attribute record for each file as sent to the
Storage daemon (described above).

FD: Null packet

FD: <append close responses from Storage daemon>

e.g.
3000 OK Volumes = <number of volumes>
3001 Volume = <volume-id> <start file> <start block>
<end file> <end block> <volume session-id>
3002 Volume data = <date/time of last write> <Number bytes written>
<number errors>
. additional Volume / Volume data pairs for volumes 2 .. n
FD: Null packet
FD: close socket

5.6 The Save Protocol Between the File Daemon and the Storage
Daemon

Once the Director has send a save command to the File daemon, the File daemon will contact the Storage
daemon to begin the save.

In what follows: FD: refers to information set via the network from the File daemon to the Storage daemon,
and SD: refers to information set from the Storage daemon to the File daemon.

5.6.1 Command and Control Information
Command and control information is exchanged in human readable ASCII commands.

FD: listens

SD: makes connection

FD: append open session = <JobId> [<password>]

SD: 3000 OK ticket = <number>

FD: append data <ticket-number>

SD: 3000 OK data address = <IPaddress> port = <port>

5.6.2 Data Information

The Data information consists of the file attributes and data to the Storage daemon. For the most part,
the data information is sent one way: from the File daemon to the Storage daemon. This allows the File
daemon to transfer information as fast as possible without a lot of handshaking and network overhead.

However, from time to time, the File daemon needs to do a sort of checkpoint of the situation to ensure that
everything is going well with the Storage daemon. To do so, the File daemon sends a packet with a negative
length indicating that he wishes the Storage daemon to respond by sending a packet of information to the
File daemon. The File daemon then waits to receive a packet from the Storage daemon before continuing.

All data sent are in binary format except for the header packet, which is in ASCII. There are two packet

42 Bacula Version 9.6.7

types used data transfer mode: a header packet, the contents of which are known to the Storage daemon,
and a data packet, the contents of which are never examined by the Storage daemon.

The first data packet to the Storage daemon will be an ASCII header packet consisting of the following data.

<File-Index> <Stream-Id> <Info> where <File-Index> is a sequential number beginning from one that
increments with each file (or directory) sent.

where <Stream-Id> will be 1 for the Attributes record and 2 for uncompressed File data. 3 is reserved for
the MD5 signature for the file.

where <Info> transmit information about the Stream to the Storage Daemon. It is a character string field
where each character has a meaning. The only character currently defined is 0 (zero), which is simply a
place holder (a no op). In the future, there may be codes indicating compressed data, encrypted data, etc.

Immediately following the header packet, the Storage daemon will expect any number of data packets. The
series of data packets is terminated by a zero length packet, which indicates to the Storage daemon that the
next packet will be another header packet. As previously mentioned, a negative length packet is a request
for the Storage daemon to temporarily enter command mode and send a reply to the File daemon. Thus an
actual conversation might contain the following exchanges:

FD: <1 1 0> (header packet)

FD: <data packet containing file-attributes>

FD: Null packet

FD: <1 2 0>

FD: <multiple data packets containing the file data>

FD: Packet length = -1

SD: 3000 OK

FD: <2 1 0>

FD: <data packet containing file-attributes>

FD: Null packet

FD: <2 2 0>

FD: <multiple data packets containing the file data>

FD: Null packet

FD: Null packet

FD: append end session <ticket-number>

SD: 3000 OK end

FD: append close session <ticket-number>

SD: 3000 OK Volumes = <number of volumes>

SD: 3001 Volume = <volumeid> <start file> <start block>
<end file> <end block> <volume session-id>

SD: 3002 Volume data = <date/time of last write> <Number bytes written>
<number errors>

SD: ... additional Volume / Volume data pairs for
volumes 2 .. n

FD: close socket

The information returned to the File daemon by the Storage daemon in response to the append close
session is transmit in turn to the Director.

Chapter 6

Director Services Daemon

This chapter is intended to be a technical discussion of the Director services and as such is not targeted at
end users but rather at developers and system administrators that want or need to know more of the working
details of Bacula.

The Bacula Director services consist of the program that supervises all the backup and restore operations.

To be written ...

43

Bacula Version 9.6.7

Chapter 7

File Services Daemon

Please note, this section is somewhat out of date as the code has evolved significantly. The basic idea has
not changed though.

This chapter is intended to be a technical discussion of the File daemon services and as such is not targeted
at end users but rather at developers and system administrators that want or need to know more of the
working details of Bacula.

The Bacula File Services consist of the programs that run on the system to be backed up and provide the
interface between the Host File system and Bacula — in particular, the Director and the Storage services.

When time comes for a backup, the Director gets in touch with the File daemon on the client machine and
hands it a set of “marching orders” which, if written in English, might be something like the following;:

OK, File daemon, it’s time for your daily incremental backup. I want you to get in touch with the Storage
daemon on host archive.mysite.com and perform the following save operations with the designated options.
You’ll note that I've attached include and exclude lists and patterns you should apply when backing up the
file system. As this is an incremental backup, you should save only files modified since the time you started
your last backup which, as you may recall, was 2000-11-19-06:43:38. Please let me know when you’re done
and how it went. Thank you.

So, having been handed everything it needs to decide what to dump and where to store it, the File daemon
doesn’t need to have any further contact with the Director until the backup is complete providing there are
no errors. If there are errors, the error messages will be delivered immediately to the Director. While the
backup is proceeding, the File daemon will send the file coordinates and data for each file being backed up
to the Storage daemon, which will in turn pass the file coordinates to the Director to put in the catalog.

During a Verify of the catalog, the situation is different, since the File daemon will have an exchange with
the Director for each file, and will not contact the Storage daemon.

A Restore operation will be very similar to the Backup except that during the Restore the Storage
daemon will not send storage coordinates to the Director since the Director presumably already has them.

On the other hand, any error messages from either the Storage daemon or File daemon will normally be sent
directly to the Directory (this, of course, depends on how the Message resource is defined).

7.1 Commands Received from the Director for a Backup

To be written ...

45

. 46 Bacula Version 9.6.7

7.2 Commands Received from the Director for a Restore

To be written ...

Chapter 8

Storage Daemon Design

This chapter is intended to be a technical discussion of the Storage daemon services and as such is not
targeted at end users but rather at developers and system administrators that want or need to know more
of the working details of Bacula.

This document is somewhat out of date.

8.1 SD Design Introduction

The Bacula Storage daemon provides storage resources to a Bacula installation. An individual Storage
daemon is associated with a physical permanent storage device (for example, a tape drive, CD writer, tape
changer or jukebox, etc.), and may employ auxiliary storage resources (such as space on a hard disk file
system) to increase performance and/or optimize use of the permanent storage medium.

Any number of storage daemons may be run on a given machine; each associated with an individual storage
device connected to it, and BACULA operations may employ storage daemons on any number of hosts
connected by a network, local or remote. The ability to employ remote storage daemons (with appropriate
security measures) permits automatic off-site backup, possibly to publicly available backup repositories.

8.2 SD Development Outline

In order to provide a high performance backup and restore solution that scales to very large capacity devices
and networks, the storage daemon must be able to extract as much performance from the storage device
and network with which it interacts. In order to accomplish this, storage daemons will eventually have to
sacrifice simplicity and painless portability in favor of techniques which improve performance. My goal in
designing the storage daemon protocol and developing the initial prototype storage daemon is to provide
for these additions in the future, while implementing an initial storage daemon which is very simple and
portable to almost any POSIX-like environment. This original storage daemon (and its evolved descendants)
can serve as a portable solution for non-demanding backup requirements (such as single servers of modest
size, individual machines, or small local networks), while serving as the starting point for development of
higher performance configurable derivatives which use techniques such as POSIX threads, shared memory,
asynchronous I/0, buffering to high-speed intermediate media, and support for tape changers and jukeboxes.

8.3 SD Connections and Sessions

A client connects to a storage server by initiating a conventional TCP connection. The storage server
accepts the connection unless its maximum number of connections has been reached or the specified host

47

48 Bacula Version 9.6.7

is not granted access to the storage server. Once a connection has been opened, the client may make any
number of Query requests, and/or initiate (if permitted), one or more Append sessions (which transmit data
to be stored by the storage daemon) and/or Read sessions (which retrieve data from the storage daemon).

Most requests and replies sent across the connection are simple ASCII strings, with status replies prefixed by
a four digit status code for easier parsing. Binary data appear in blocks stored and retrieved from the storage.
Any request may result in a single-line status reply of “3201 Notification pending”’, which indicates the
client must send a “Query notification” request to retrieve one or more notifications posted to it. Once the
notifications have been returned, the client may then resubmit the request which resulted in the 3201 status.

The following descriptions omit common error codes, yet to be defined, which can occur from most or many
requests due to events like media errors, restarting of the storage daemon, etc. These details will be filled in,
along with a comprehensive list of status codes along with which requests can produce them in an update
to this document.

8.3.1 SD Append Requests

append open session = <JobId> [<Password> | A data append session is opened with the Job ID
given by Jobld with client password (if required) given by Password. If the session is successfully
opened, a status of 3000 OK is returned with a “ticket = number” reply used to identify subsequent
messages in the session. If too many sessions are open, or a conflicting session (for example, a read in
progress when simultaneous read and append sessions are not permitted), a status of “3502 Volume
busy” is returned. If no volume is mounted, or the volume mounted cannot be appended to, a status
of “3503 Volume not mounted” is returned.

append data = <ticket-number> If the append data is accepted, a status of 3000 0K data address
= <IPaddress> port = <port> is returned, where the IPaddress and port specify the IP address
and port number of the data channel. Error status codes are 3504 Invalid ticket number and 3505
Session aborted, the latter of which indicates the entire append session has failed due to a daemon
or media error.

Once the File daemon has established the connection to the data channel opened by the Storage
daemon, it will transfer a header packet followed by any number of data packets. The header packet
is of the form:

<file-index> <stream-id> <info>

The details are specified in the [Daemon Protocol| section of this document.

*append abort session = <ticket-number> The open append session with ticket ticket-number is
aborted; any blocks not yet written to permanent media are discarded. Subsequent attempts to
append data to the session will receive an error status of 3505 Session aborted.

append end session = <ticket-number> The open append session with ticket ticket-number is marked
complete; no further blocks may be appended. The storage daemon will give priority to saving any
buffered blocks from this session to permanent media as soon as possible.

append close session = <ticket-number> The append session with ticket ticket is closed. This mes-
sage does not receive an 3000 OK reply until all of the content of the session are stored on permanent
media, at which time said reply is given, followed by a list of volumes, from first to last, which contain
blocks from the session, along with the first and last file and block on each containing session data and
the volume session key identifying data from that session in lines with the following format:

Volume = <Volume-id> <start-file> <start-block> <end-file> <end-block>
<volume-session-id>where Volume-id is the volume label, start-file and start-block are the
file and block containing the first data from that session on the volume, end-file and end-block are the
file and block with the last data from the session on the volume and volume-session-id is the volume
session ID for blocks from the session stored on that volume.

Bacula Version 9.6.7 49

8.3.2 SD Read Requests

Read open session = <JobId> <Volume-id> <start-file> <start-block> <end-file> <end-block> <volum
where Volume-id is the volume label, start-file and start-block are the file and block containing the
first data from that session on the volume, end-file and end-block are the file and block with the last
data from the session on the volume and volume-session-id is the volume session ID for blocks from
the session stored on that volume.

If the session is successfully opened, a status of
3100 OK Ticket = number®‘

is returned with a reply used to identify subsequent messages in the session. If too many sessions are
open, or a conflicting session (for example, an append in progress when simultaneous read and append
sessions are not permitted), a status of 73502 Volume busy* is returned. If no volume is mounted, or
the volume mounted cannot be appended to, a status of 73503 Volume not mounted“ is returned. If
no block with the given volume session ID and the correct client ID number appears in the given first
file and block for the volume, a status of 73505 Session not found“ is returned.

Read data = <Ticket> > <Block> The specified Block of data from open read session with the spec-
ified Ticket number is returned, with a status of 3000 0K followed by a ”"Length = size“ line giving
the length in bytes of the block data which immediately follows. Blocks must be retrieved in ascending
order, but blocks may be skipped. If a block number greater than the largest stored on the volume is
requested, a status of 73201 End of volume* is returned. If a block number greater than the largest
in the file is requested, a status of 73401 End of file* is returned.

Read close session = <Ticket> The read session with Ticket number is closed. A read session may be
closed at any time; you needn’t read all its blocks before closing it.

by |John Walker January 30th, MM

8.4 SD Data Structures

In the Storage daemon, there is a Device resource (i.e. from conf file) that describes each physical device.
When the physical device is used it is controled by the DEVICE structure (defined in dev.h), and typically
refered to as dev in the C++ code. Anyone writing or reading a physical device must ultimately get a lock
on the DEVICE structure — this controls the device. However, multiple Jobs (defined by a JCR structure
src/jer.h) can be writing a physical DEVICE at the same time (of course they are sequenced by locking the
DEVICE structure). There are a lot of job dependent ”device” variables that may be different for each Job
such as spooling (one job may spool and another may not, and when a job is spooling, it must have an i/o
packet open, each job has its own record and block structures, ...), so there is a device control record or DCR
that is the primary way of interfacing to the physical device. The DCR contains all the job specific data as
well as a pointer to the Device resource (DEVRES structure) and the physical DEVICE structure.

Now if a job is writing to two devices (it could be writing two separate streams to the same device), it must
have two DCRs. Today, the code only permits one. This won’t be hard to change, but it is new code.

Today three jobs (threads), two physical devices each job writes to only one device:
Jobl -> DCR1 -> DEVICE1

Job2 -> DCR2 -> DEVICE1
Job3 -> DCR3 -> DEVICE2

To be implemented three jobs, three physical devices, but jobl is writing simultaneously to three devices:

Jobl -> DCR1 -> DEVICE1
-> DCR4 -> DEVICE2
-> DCR5 -> DEVICE3

http://www.fourmilab.ch/

o0

Job2 -> DCR2 -> DEVICE1
Job3 -> DCR3 -> DEVICE2

Job = job control record
DCR = Job contorl data for a specific device
DEVICE = Device only control data

Bacula Version 9.6.7

Chapter 9

Catalog Services

9.1 General

This chapter is intended to be a technical discussion of the Catalog services and as such is not targeted at
end users but rather at developers and system administrators that want or need to know more of the working
details of Bacula.

The Bacula Catalog services consist of the programs that provide the SQL database engine for storage and
retrieval of all information concerning files that were backed up and their locations on the storage media.

We have investigated the possibility of using the following SQL engines for Bacula: Beagle, mSQL, GNU
SQL, PostgreSQL, Oracle, and MSSSQL. Each presents certain problems with either licensing or maturity.
At present, we have chosen for development purposes to use MySQL and PostgreSQL. MySQL was chosen
because it is fast, proven to be reliable, widely used, and actively being developed. MySQL is released under
the GNU GPL license. PostgreSQL was chosen because it is a full-featured, very mature database, and
because Dan Langille did the Bacula driver for it. PostgreSQL is distributed under the BSD license.

The Bacula SQL code has been written in a manner that will allow it to be easily modified to support
any of the current SQL database systems on the market (for example: mSQL, iODBC, unixODBC, Solid,
OpenLink ODBC, EasySoft ODBC, InterBase, Oracle8, Oracle7, and DB2).

If you do not specify either ——with-mysql or --with-postgresql on the ./configure line, Bacula will use
its minimalist internal database. This database is kept for build reasons but is no longer supported. Bacula
requires one of the three databases (MySQL, or PostgreSQL) to run.

9.1.1 Filenames and Maximum Filename Length

In general, either MySQL or PostgreSQL permit storing arbitrary long path names and file names in the
catalog database. In practice, there still may be one or two places in the Catalog interface code that restrict
the maximum path length to 512 characters and the maximum file name length to 512 characters. These
restrictions are believed to have been removed. Please note, these restrictions apply only to the Catalog
database and thus to your ability to list online the files saved during any job. All information received and
stored by the Storage daemon (normally on tape) allows and handles arbitrarily long path and filenames.

9.1.2 Installing and Configuring MySQL

For the details of installing and configuring MySQL, please see the [Installing and Configuring MySQL|
chapter (chapter 43 on page 393) of the Bacula Community Main Manual.

o1

52 Bacula Version 9.6.7

9.1.3 Installing and Configuring PostgreSQL

For the details of installing and configuring PostgreSQL, please see the [Installing and Configuring Post-|
greSQL| chapter (chapter 44 on page 397) of the Bacula Community Main Manual.

9.1.4 Internal Bacula Catalog

Please see the [Internal Bacula Database|section (section ?? on page ??) of the Bacula Community Misc
Manual for more details.

9.1.5 Database Table Design

All discussions that follow pertain to the MySQL database. The details for the PostgreSQL database are
quite similar.

Because the Catalog database may contain very large amounts of data for large sites, we have made a
modest attempt to normalize the data tables to reduce redundant information. While reducing the size of
the database significantly, it does, unfortunately, add some complications to the structures.

In simple terms, the Catalog database must contain a record of all Jobs run by Bacula, and for each Job,
it must maintain a list of all files saved, with their File Attributes (permissions, create date, ...), and the
location and Media on which the file is stored. This is seemingly a simple task, but it represents a huge
amount interlinked data. Note: the list of files and their attributes is not maintained when using the internal
Bacula database. The data stored in the File records, which allows the user or administrator to obtain a list
of all files backed up during a job, is by far the largest volume of information put into the Catalog database.

Although the Catalog database has been designed to handle backup data for multiple clients, some users
may want to maintain multiple databases, one for each machine to be backed up. This reduces the risk of
confusion of accidental restoring a file to the wrong machine as well as reducing the amount of data in a
single database, thus increasing efficiency and reducing the impact of a lost or damaged database.

9.2 Sequence of Creation of Records for a Save Job

Start with StartDate, ClientName, Filename, Path, Attributes, MediaName, MediaCoordinates. (PartNum-
ber, NumParts). In the steps below, “Create new” means to create a new record whether or not it is unique.
“Create unique” means each record in the database should be unique. Thus, one must first search to see if
the record exists, and only if not should a new one be created, otherwise the existing RecordId should be
used.

1. Create new Job record with StartDate; save Jobld

2. Create unique Media record; save Mediald

Create unique Client record; save Clientld

Create unique Filename record; save Filenameld

Create unique Path record; save Pathld

Create unique Attribute record; save Attributeld store Clientld, Filenameld, Pathld, and Attributes
Create new File record store Jobld, Attributeld, MediaCoordinates, etc

Repeat steps 4 through 8 for each file

© X N ek w

Create a JobMedia record; save Mediald

10. Update Job record filling in EndDate and other Job statistics

Bacula Version 9.6.7 53

9.3 Database Tables

Filename

Column Name | Data Type | Remark

Filenameld integer Primary Key

Name Blob Filename

The Filename table shown above contains the name of each file backed up with the path removed. If
different directories or machines contain the same filename, only one copy will be saved in this table.

Path

Column Name | Data Type Remark

Pathld integer Primary Key
Path Blob Full Path

The Path table contains shown above the path or directory names of all directories on the system or
systems. The filename and any MSDOS disk name are stripped off. As with the filename, only one copy of
each directory name is kept regardless of how many machines or drives have the same directory. These path
names should be stored in Unix path name format.

Some simple testing on a Linux file system indicates that separating the filename and the path may be more
complication than is warranted by the space savings. For example, this system has a total of 89,097 files,
60,467 of which have unique filenames, and there are 4,374 unique paths.

Finding all those files and doing two stats() per file takes an average wall clock time of 1 min 35 seconds on
a 400MHz machine running RedHat 6.1 Linux.

Finding all those files and putting them directly into a MySQL database with the path and filename defined
as TEXT, which is variable length up to 65,535 characters takes 19 mins 31 seconds and creates a 27.6
MByte database.

Doing the same thing, but inserting them into Blob fields with the filename indexed on the first 30 characters
and the path name indexed on the 255 (max) characters takes 5 mins 18 seconds and creates a 5.24 MB
database. Rerunning the job (with the database already created) takes about 2 mins 50 seconds.

Running the same as the last one (Path and Filename Blob), but Filename indexed on the first 30 characters
and the Path on the first 50 characters (linear search done there after) takes 5 mins on the average and
creates a 3.4 MB database. Rerunning with the data already in the DB takes 3 mins 35 seconds.

Finally, saving only the full path name rather than splitting the path and the file, and indexing it on the
first 50 characters takes 6 mins 43 seconds and creates a 7.35 MB database.

File

Column Name | Data Type Remark

Fileld integer Primary Key

FileIndex integer The sequential file number in the Job
Jobld integer Link to Job Record

Pathld integer Link to Path Record

54 Bacula Version 9.6.7

Filenameld integer Link to Filename Record

MarklId integer Used to mark files during Verify Jobs
LStat tinyblob File attributes in base64 encoding

MD5 tinyblob MD5/SHAL signature in base64 encoding

The File table shown above contains one entry for each file backed up by Bacula. Thus a file that is backed
up multiple times (as is normal) will have multiple entries in the File table. This will probably be the table
with the most number of records. Consequently, it is essential to keep the size of this record to an absolute
minimum. At the same time, this table must contain all the information (or pointers to the information)
about the file and where it is backed up. Since a file may be backed up many times without having changed,
the path and filename are stored in separate tables.

This table contains by far the largest amount of information in the Catalog database, both from the stand
point of number of records, and the stand point of total database size. As a consequence, the user must
take care to periodically reduce the number of File records using the retention command in the Console
program.

Job

Column Name | Data Type Remark

Jobld integer Primary Key

Job tinyblob Unique Job Name

Name tinyblob Job Name

PurgedFiles tinyint Used by Bacula for purging/retention pe-
riods

Type binary(1) Job Type: Backup, Copy, Clone, Archive,
Migration

Level binary(1) Job Level

Clientld integer Client index

JobStatus binary(1) Job Termination Status

SchedTime datetime Time/date when Job scheduled

StartTime datetime Time/date when Job started

EndTime datetime Time/date when Job ended

RealEndTime datetime Time/date when original Job ended

JobTDate bigint Start day in Unix format but 64 bits; used
for Retention period.

VolSessionld integer Unique Volume Session ID

VolSessionTime | integer Unique Volume Session Time

JobFiles integer Number of files saved in Job

JobBytes bigint Number of bytes saved in Job

JobErrors integer Number of errors during Job

JobMissingFiles | integer Number of files not saved (not yet used)

Poolld integer Link to Pool Record

FileSetld integer Link to FileSet Record

Bacula Version 9.6.7 55

PrioJobld integer Link to prior Job Record when migrated
PurgedFiles tiny integer | Set when all File records purged
HasBase tiny integer | Set when Base Job run

The Job table contains one record for each Job run by Bacula. Thus normally, there will be one per day per
machine added to the database. Note, the Jobld is used to index Job records in the database, and it often is
shown to the user in the Console program. However, care must be taken with its use as it is not unique from
database to database. For example, the user may have a database for Client data saved on machine Rufus
and another database for Client data saved on machine Roxie. In this case, the two database will each have
Joblds that match those in another database. For a unique reference to a Job, see Job below.

The Name field of the Job record corresponds to the Name resource record given in the Director’s configu-
ration file. Thus it is a generic name, and it will be normal to find many Jobs (or even all Jobs) with the
same Name.

The Job field contains a combination of the Name and the schedule time of the Job by the Director. Thus for
a given Director, even with multiple Catalog databases, the Job will contain a unique name that represents
the Job.

For a given Storage daemon, the VolSessionld and VolSessionTime form a unique identification of the Job.
This will be the case even if multiple Directors are using the same Storage daemon.

The Job Type (or simply Type) can have one of the following values:

Value Meaning
Backup Job

Migrated Job

Verify Job

Restore Job

Alm|<lz|w

Console program (not in database)

—

Internal or system Job

Admin Job

Archive Job (not implemented)
Copy Job

Qo Ql»|-g

Migration Job

Note, the Job Type values noted above are not kept in an SQL table.

The JobStatus field specifies how the job terminated, and can be one of the following:

Value Meaning

Created but not yet running

Running

Blocked

Terminated normally

Terminated normally with warnings

ml=|R3|w|®|a

Terminated in Error

56 Bacula Version 9.6.7

e Non-fatal error
f Fatal error
D Verify Differences
A Canceled by the user
I Incomplete Job
F Waiting on the File daemon
S Waiting on the Storage daemon
m Waiting for a new Volume to be mounted
M Waiting for a Mount
S Waiting for Storage resource
j Waiting for Job resource
¢ Waiting for Client resource
d Wating for Maximum jobs
t Waiting for Start Time
p Waiting for higher priority job to finish
i Doing batch insert file records
a SD despooling attributes
1 Doing data despooling
L Committing data (last despool)
FileSet
Column Name | Data Type Remark
FileSetld integer Primary Key
FileSet tinyblob FileSet name
MD5 tinyblob MD5 checksum of FileSet
CreateTime datetime Time and date Fileset created

The FileSet table contains one entry for each FileSet that is used. The MD5 signature is kept to ensure
that if the user changes anything inside the FileSet, it will be detected and the new FileSet will be used.
This is particularly important when doing an incremental update. If the user deletes a file or adds a file, we
need to ensure that a Full backup is done prior to the next incremental.

JobMedia

Column Name | Data Type Remark

JobMediald integer Primary Key

Jobld integer Link to Job Record

Mediald integer Link to Media Record

FirstIndex integer The index (sequence number) of the first
file written for this Job to the Media

LastIndex integer The index of the last file written for this
Job to the Media

Bacula Version 9.6.7 57

StartFile integer The physical media (tape) file number of
the first block written for this Job

EndFile integer The physical media (tape) file number of
the last block written for this Job

StartBlock integer The number of the first block written for
this Job

EndBlock integer The number of the last block written for
this Job

Vollndex integer The Volume use sequence number within
the Job

The JobMedia table contains one entry at the following: start of the job, start of each new tape file, start
of each new tape, end of the job. Since by default, a new tape file is written every 2GB, in general, you
will have more than 2 JobMedia records per Job. The number can be varied by changing the ”Maximum
File Size” specified in the Device resource. This record allows Bacula to efficiently position close to (within
2GB) any given file in a backup. For restoring a full Job, these records are not very important, but if you
want to retrieve a single file that was written near the end of a 100GB backup, the JobMedia records can
speed it up by orders of magnitude by permitting forward spacing files and blocks rather than reading the
whole 100GB backup.

Media

Column Name Data Type Remark
Mediald integer Primary Key
VolumeName tinyblob Volume name
Slot integer Autochanger Slot number or zero
Poolld integer Link to Pool Record
MediaType tinyblob The MediaType supplied by the user
MediaTypeld integer The MediaTypeld
LabelType tinyint The type of label on the Volume
FirstWritten datetime Time/date when first written
LastWritten datetime Time/date when last written
LabelDate datetime Time/date when tape labeled
VolJobs integer Number of jobs written to this media
VolFiles integer Number of files written to this media
VolBlocks integer Number of blocks written to this media
VolMounts integer Number of time media mounted
VolBytes bigint Number of bytes saved in Job
VolParts integer The number of parts for a Volume

(DVD)

VolErrors integer Number of errors during Job
VolWrites integer Number of writes to media
MaxVolBytes bigint Maximum bytes to put on this media
VolCapacityBytes | bigint Capacity estimate for this volume

58 Bacula Version 9.6.7

VolStatus enum Status of media: Full, Archive, Append,
Recycle, Read-Only, Disabled, Error,
Busy

Enabled tinyint Whether or not Volume can be written

Recycle tinyint Whether or not Bacula can recycle the
Volumes: Yes, No

ActionOnPurge tinyint What happens to a Volume after purg-
ing

VolRetention bigint 64 bit seconds until expiration

VolUseDuration bigint 64 bit seconds volume can be used

MaxVolJobs integer maximum jobs to put on Volume

MaxVolFiles integer maximume EOF marks to put on Vol-
ume

InChanger tinyint Whether or not Volume in autochanger

Storageld integer Storage record 1D

Deviceld integer Device record ID

MediaAddressing integer Method of addressing media

VolReadTime bigint Time Reading Volume

VolWriteTime bigint Time Writing Volume

EndFile integer End File number of Volume

EndBlock integer End block number of Volume

Locationld integer Location record ID

RecycleCount integer Number of times recycled

InitialWrite datetime When Volume first written

ScratchPoolld integer Id of Scratch Pool

RecyclePoolld integer Pool ID where to recycle Volume

Comment blob User text field

The Volume table (internally referred to as the Media table) contains one entry for each volume, that is
each tape, cassette (8mm, DLT, DAT, ...), or file on which information is or was backed up. There is one
Volume record created for each of the NumVols specified in the Pool resource record.

Pool

Column Name Data Type Remark
Poolld integer Primary Key
Name Tinyblob Pool Name
NumVols Integer Number of Volumes in the Pool
MaxVols Integer Maximum Volumes in the Pool
UseOnce tinyint Use volume once
UseCatalog tinyint Set to use catalog

Bacula Version 9.6.7 99
AcceptAnyVolume tinyint Accept any volume from Pool
VolRetention bigint 64 bit seconds to retain volume
VolUseDuration bigint 64 bit seconds volume can be used
MaxVolJobs integer max jobs on volume
MaxVolFiles integer max EOF marks to put on Volume
MaxVolBytes bigint max bytes to write on Volume
AutoPrune tinyint yes—no for autopruning
Recycle tinyint yes—no for allowing auto recycling of

Volume
ActionOnPurge tinyint Default Volume ActionOnPurge
PoolType enum Backup, Copy, Cloned, Archive, Migra-
tion
LabelType tinyint Type of label ANSI/Bacula
LabelFormat Tinyblob Label format
Enabled tinyint Whether or not Volume can be written
ScratchPoolld integer Id of Scratch Pool
RecyclePoolld integer Pool ID where to recycle Volume
NextPoolld integer Pool ID of next Pool
MigrationHighBytes | bigint High water mark for migration
MigrationLowBytes bigint Low water mark for migration
MigrationTime bigint Time before migration

The Pool table contains one entry for each media pool controlled by Bacula in this database. One media
record exists for each of the NumVols contained in the Pool. The PoolType is a Bacula defined keyword. The
MediaType is defined by the administrator, and corresponds to the MediaType specified in the Director’s
Storage definition record. The CurrentVol is the sequence number of the Media record for the current volume.

Client

Column Name | Data Type Remark

Clientld integer Primary Key

Name TinyBlob File Services Name

UName TinyBlob uname -a from Client (not yet used)
AutoPrune tinyint yes—no for autopruning
FileRetention bigint 64 bit seconds to retain Files
JobRetention bigint 64 bit seconds to retain Job

The Client table contains one entry for each machine backed up by Bacula in this database. Normally the
Name is a fully qualified domain name.

Storage

60

Bacula Version 9.6.7

Column Name | Data Type Remark

Storageld integer Unique Id

Name tinyblob Resource name of Storage device
AutoChanger tinyint Set if it is an autochanger

The Storage table contains one entry for each Storage used.

Counter

Column Name | Data Type Remark

Counter tinyblob Counter name

MinValue integer Start/Min value for counter
MaxValue integer Max value for counter
Current Value integer Current counter value
WrapCounter tinyblob Name of another counter

The Counter table contains one entry for each permanent counter defined by the user.

JobHisto

Column Name | Data Type Remark

Jobld integer Primary Key

Job tinyblob Unique Job Name

Name tinyblob Job Name

Type binary(1) Job Type: Backup, Copy, Clone, Archive,
Migration

Level binary(1) Job Level

ClientId integer Client index

JobStatus binary(1) Job Termination Status

SchedTime datetime Time/date when Job scheduled

StartTime datetime Time/date when Job started

EndTime datetime Time/date when Job ended

RealEndTime datetime Time/date when original Job ended

JobTDate bigint Start day in Unix format but 64 bits; used
for Retention period.

VolSessionld integer Unique Volume Session ID

VolSessionTime | integer Unique Volume Session Time

JobFiles integer Number of files saved in Job

JobBytes bigint Number of bytes saved in Job

JobErrors integer Number of errors during Job

JobMissingFiles | integer Number of files not saved (not yet used)

Poolld integer Link to Pool Record

Bacula Version 9.6.7 61
FileSetld integer Link to FileSet Record
PrioJobld integer Link to prior Job Record when migrated
PurgedFiles tiny integer | Set when all File records purged
HasBase tiny integer | Set when Base Job run

The bf JobHisto table is the same as the Job table, but it keeps long term statistics (i.e. it is not pruned

with the Job).

Version

Column Name | Data Type Remark

LogldId integer Primary Key

Jobld integer Points to Job record

Time datetime Time/date log record created
LogText blob Log text

The Log table contains a log of all Job output.

Location

Column Name | Data Type Remark

Locationld integer Primary Key

Location tinyblob Text defining location

Cost integer Relative cost of obtaining Volume
Enabled tinyint Whether or not Volume is enabled

The Location table defines where a Volume is physically.

LocationLog

Column Name | Data Type Remark

locLogldId integer Primary Key

Date datetime Time/date log record created

Mediald integer Points to Media record

Locationld integer Points to Location record

NewVolStatus integer enum: Full, Archive, Append, Recycle, Purged Read-only, Disabled, Error, Busy, Us
Enabled tinyint Whether or not Volume is enabled

The Log table contains a log of all Job output.

Version

Column Name

Data Type

Remark

Versionld

integer

Primary Key

62

Bacula Version 9.6.7

The Version table defines the Bacula database version number. Bacula checks this number before reading
the database to ensure that it is compatible with the Bacula binary file.

BaseFiles

Column Name | Data Type Remark
Baseld integer Primary Key
BaseJobld integer Jobld of Base Job
Jobld integer Reference to Job
Fileld integer Reference to File
FileIndex integer File Index number

The BaseFiles table contains all the File references for a particular Jobld that point to a Base file — i.e.
they were previously saved and hence were not saved in the current Jobld but in BaseJobld under Fileld.
FileIndex is the index of the file, and is used for optimization of Restore jobs to prevent the need to read
the Fileld record when creating the in memory tree. This record is not yet implemented.

9.3.1 MySQL Table Definition

The commands used to create the MySQL tables are as follows:

USE bacula;
CREATE TABLE Filename (

FilenameId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,

Name BLOB NOT NULL,
PRIMARY KEY(FilenameId),
INDEX (Name(30))

)
CREATE TABLE Path (

PathId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,

Path BLOB NOT NULL,
PRIMARY KEY(PathId),
INDEX (Path(50))

);
CREATE TABLE File (

FileId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
FileIndex INTEGER UNSIGNED NOT NULL DEFAULT O,

JobId INTEGER UNSIGNED NOT NULL REFERENCES Job,

PathId INTEGER UNSIGNED NOT NULL REFERENCES Path,
FilenameId INTEGER UNSIGNED NOT NULL REFERENCES Filename,

MarkId INTEGER UNSIGNED NOT NULL DEFAULT O,
LStat TINYBLOB NOT NULL,
MD5 TINYBLOB NOT NULL,
PRIMARY KEY(FileId),
INDEX (JobId),
INDEX (PathId),
INDEX (FilenameId)
);
CREATE TABLE Job (

JobId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,

Job TINYBLOB NOT NULL,
Name TINYBLOB NOT NULL,
Type BINARY(1) NOT NULL,
Level BINARY(1) NOT NULL,

ClientId INTEGER NOT NULL REFERENCES Client,

JobStatus BINARY(1) NOT NULL,
SchedTime DATETIME NOT NULL,
StartTime DATETIME NOT NULL,
EndTime DATETIME NOT NULL,
JobTDate BIGINT UNSIGNED NOT NULL,

VolSessionId INTEGER UNSIGNED NOT NULL DEFAULT O,

Bacula Version 9.6.7

VolSessionTime INTEGER UNSIGNED NOT NULL DEFAULT O,
JobFiles INTEGER UNSIGNED NOT NULL DEFAULT O,
JobBytes BIGINT UNSIGNED NOT NULL,
JobErrors INTEGER UNSIGNED NOT NULL DEFAULT O,
JobMissingFiles INTEGER UNSIGNED NOT NULL DEFAULT O,
PoolId INTEGER UNSIGNED NOT NULL REFERENCES Pool,
FileSetId INTEGER UNSIGNED NOT NULL REFERENCES FileSet,
PurgedFiles TINYINT NOT NULL DEFAULT O,
HasBase TINYINT NOT NULL DEFAULT O,
PRIMARY KEY(JobId),
INDEX (Name(128))
);

CREATE TABLE FileSet (
FileSetId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
FileSet TINYBLOB NOT NULL,
MD5 TINYBLOB NOT NULL,
CreateTime DATETIME NOT NULL,
PRIMARY KEY(FileSetId)
);

CREATE TABLE JobMedia (
JobMediald INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
JobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
Mediald INTEGER UNSIGNED NOT NULL REFERENCES Media,
FirstIndex INTEGER UNSIGNED NOT NULL DEFAULT O,
LastIndex INTEGER UNSIGNED NOT NULL DEFAULT O,
StartFile INTEGER UNSIGNED NOT NULL DEFAULT O,
EndFile INTEGER UNSIGNED NOT NULL DEFAULT O,
StartBlock INTEGER UNSIGNED NOT NULL DEFAULT O,
EndBlock INTEGER UNSIGNED NOT NULL DEFAULT O,
VolIndex INTEGER UNSIGNED NOT NULL DEFAULT O,
PRIMARY KEY(JobMedialId),
INDEX (JobId, MediaId)
);

CREATE TABLE Media (
MediaId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
VolumeName TINYBLOB NOT NULL,
Slot INTEGER NOT NULL DEFAULT O,
PoolId INTEGER UNSIGNED NOT NULL REFERENCES Pool,
MediaType TINYBLOB NOT NULL,
FirstWritten DATETIME NOT NULL,
LastWritten DATETIME NOT NULL,
LabelDate DATETIME NOT NULL,
VolJobs INTEGER UNSIGNED NOT NULL DEFAULT O,
VolFiles INTEGER UNSIGNED NOT NULL DEFAULT O,
VolBlocks INTEGER UNSIGNED NOT NULL DEFAULT O,
VolMounts INTEGER UNSIGNED NOT NULL DEFAULT O,
VolBytes BIGINT UNSIGNED NOT NULL DEFAULT O,
VolErrors INTEGER UNSIGNED NOT NULL DEFAULT O,
VolWrites INTEGER UNSIGNED NOT NULL DEFAULT O,
VolCapacityBytes BIGINT UNSIGNED NOT NULL,
VolStatus ENUM(’Full’, ’Archive’, ’Append’, ’Recycle’, ’Purged’,

’Read-Only’, ’Disabled’, ’Error’, ’Busy’, ’Used’, ’Cleaning’) NOT NULL,

Recycle TINYINT NOT NULL DEFAULT O,
VolRetention BIGINT UNSIGNED NOT NULL DEFAULT O,
VolUseDuration BIGINT UNSIGNED NOT NULL DEFAULT O,
MaxVolJobs INTEGER UNSIGNED NOT NULL DEFAULT O,
MaxVolFiles INTEGER UNSIGNED NOT NULL DEFAULT O,
MaxVolBytes BIGINT UNSIGNED NOT NULL DEFAULT O,
InChanger TINYINT NOT NULL DEFAULT O,
MediaAddressing TINYINT NOT NULL DEFAULT O,
VolReadTime BIGINT UNSIGNED NOT NULL DEFAULT O,
VolWriteTime BIGINT UNSIGNED NOT NULL DEFAULT O,
PRIMARY KEY(MedialId),
INDEX (PoolId)
);

CREATE TABLE Pool (
PoolId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
Name TINYBLOB NOT NULL,
NumVols INTEGER UNSIGNED NOT NULL DEFAULT O,
MaxVols INTEGER UNSIGNED NOT NULL DEFAULT O,
UseOnce TINYINT NOT NULL,
UseCatalog TINYINT NOT NULL,
AcceptAnyVolume TINYINT DEFAULT O,
VolRetention BIGINT UNSIGNED NOT NULL,
VolUseDuration BIGINT UNSIGNED NOT NULL,
MaxVolJobs INTEGER UNSIGNED NOT NULL DEFAULT O,

63

64 Bacula Version 9.6.7

MaxVolFiles INTEGER UNSIGNED NOT NULL DEFAULT O,
MaxVolBytes BIGINT UNSIGNED NOT NULL,
AutoPrune TINYINT DEFAULT O,
Recycle TINYINT DEFAULT O,
PoolType ENUM(’Backup’, ’Copy’, ’Cloned’, ’Archive’, ’Migration’, ’Scratch’) NOT NULL,
LabelFormat TINYBLOB,
Enabled TINYINT DEFAULT 1,
ScratchPoolId INTEGER UNSIGNED DEFAULT O REFERENCES Pool,
RecyclePoolIld INTEGER UNSIGNED DEFAULT O REFERENCES Pool,
UNIQUE (Name(128)),
PRIMARY KEY (PoolId)
);
CREATE TABLE Client (
ClientId INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
Name TINYBLOB NOT NULL,
Uname TINYBLOB NOT NULL, /* full uname -a of client */
AutoPrune TINYINT DEFAULT O,
FileRetention BIGINT UNSIGNED NOT NULL,
JobRetention BIGINT UNSIGNED NOT NULL,
UNIQUE (Name(128)),
PRIMARY KEY(ClientId)
)
CREATE TABLE BaseFiles (
BaseId INTEGER UNSIGNED AUTO_INCREMENT,
BaseJobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
JobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
FileId INTEGER UNSIGNED NOT NULL REFERENCES File,
FileIndex INTEGER UNSIGNED,
PRIMARY KEY(BaseId)
);
CREATE TABLE UnsavedFiles (
UnsavedId INTEGER UNSIGNED AUTO_INCREMENT,
JobId INTEGER UNSIGNED NOT NULL REFERENCES Job,
PathId INTEGER UNSIGNED NOT NULL REFERENCES Path,
FilenameId INTEGER UNSIGNED NOT NULL REFERENCES Filename,
PRIMARY KEY (UnsavedId)
);
CREATE TABLE Version (
VersionId INTEGER UNSIGNED NOT NULL
);
-- Initialize Version
INSERT INTO Version (VersionId) VALUES (7);
CREATE TABLE Counters (
Counter TINYBLOB NOT NULL,
MinValue INTEGER,
MaxValue INTEGER,
CurrentValue INTEGER,
WrapCounter TINYBLOB NOT NULL,
PRIMARY KEY (Counter(128))
);

Chapter 10

Storage Media Output Format

10.1 General

This document describes the media format written by the Storage daemon. The Storage daemon reads and
writes in units of blocks. Blocks contain records. Each block has a block header followed by records, and
each record has a record header followed by record data.

This chapter is intended to be a technical discussion of the Media Format and as such is not targeted at end
users but rather at developers and system administrators that want or need to know more of the working
details of Bacula.

10.2 Definitions

Block A block represents the primitive unit of information that the Storage daemon reads and writes to
a physical device. Normally, for a tape device, it will be the same as a tape block. The Storage
daemon always reads and writes blocks. A block consists of block header information followed by
records. Clients of the Storage daemon (the File daemon) normally never see blocks. However, some
of the Storage tools (bls, bscan, bextract, ...) may be use block header information. In older Bacula
tape versions, a block could contain records (see record definition below) from multiple jobs. However,
all blocks currently written by Bacula are block level BB02, and a given block contains records for
only a single job. Different jobs simply have their own private blocks that are intermingled with
the other blocks from other jobs on the Volume (previously the records were intermingled within the
blocks). Having only records from a single job in any give block permitted moving the VolumeSessionId
and VolumeSessionTime (see below) from each record heading to the Block header. This has two
advantages: 1. a block can be quickly rejected based on the contents of the header without reading all
the records. 2. because there is on the average more than one record per block, less data is written to
the Volume for each job.

Record A record consists of a Record Header, which is managed by the Storage daemon and Record Data,
which is the data received from the Client. A record is the primitive unit of information sent to and
from the Storage daemon by the Client (File daemon) programs. The details are described below.

Jobld A number assigned by the Director daemon for a particular job. This number will be unique for
that particular Director (Catalog). The daemons use this number to keep track of individual jobs.
Within the Storage daemon, the Jobld may not be unique if several Directors are accessing the Storage
daemon simultaneously.

Session A Session is a concept used in the Storage daemon corresponds one to one to a Job with

the exception that each session is uniquely identified within the Storage daemon by a unique Ses-
sionld/SessionTime pair (see below).

65

66 Bacula Version 9.6.7

VolSessionId A unique number assigned by the Storage daemon to a particular session (Job) it is having
with a File daemon. This number by itself is not unique to the given Volume, but with the VolSes-
sionTime, it is unique.

VolSessionTime A unique number assigned by the Storage daemon to a particular Storage daemon exe-
cution. It is actually the Unix time_t value of when the Storage daemon began execution cast to a
32 bit unsigned integer. The combination of the VolSessionld and the VolSessionTime for a given
Storage daemon is guaranteed to be unique for each Job (or session).

FileIndex A sequential number beginning at one assigned by the File daemon to the files within a job that
are sent to the Storage daemon for backup. The Storage daemon ensures that this number is greater
than zero and sequential. Note, the Storage daemon uses negative FileIndexes to flag Session Start and
End Labels as well as End of Volume Labels. Thus, the combination of VolSessionld, VolSessionTime,
and FileIndex uniquely identifies the records for a single file written to a Volume.

Stream While writing the information for any particular file to the Volume, there can be any number of
distinct pieces of information about that file, e.g. the attributes, the file data, ... The Stream indicates
what piece of data it is, and it is an arbitrary number assigned by the File daemon to the parts (Unix
attributes, Win32 attributes, data, compressed data, ...) of a file that are sent to the Storage daemon.
The Storage daemon has no knowledge of the details of a Stream; it simply represents a numbered
stream of bytes. The data for a given stream may be passed to the Storage daemon in single record,
or in multiple records.

Block Header A block header consists of a block identification (“BB02”), a block length in bytes (typically
64,512) a checksum, and sequential block number. Each block starts with a Block Header and is followed
by Records. Current block headers also contain the VolSessionld and VolSessionTime for the records
written to that block.

Record Header A record header contains the Volume Session Id, the Volume Session Time, the FileIndex,
the Stream, and the size of the data record which follows. The Record Header is always immediately
followed by a Data Record if the size given in the Header is greater than zero. Note, for Block headers
of level BB02 (version 1.27 and later), the Record header as written to tape does not contain the
Volume Session Id and the Volume Session Time as these two fields are stored in the BB02 Block
header. The in-memory record header does have those fields for convenience.

Data Record A data record consists of a binary stream of bytes and is always preceded by a Record Header.
The details of the meaning of the binary stream of bytes are unknown to the Storage daemon, but the
Client programs (File daemon) defines and thus knows the details of each record type.

Volume Label A label placed by the Storage daemon at the beginning of each storage volume. It contains
general information about the volume. It is written in Record format. The Storage daemon manages
Volume Labels, and if the client wants, he may also read them.

Begin Session Label The Begin Session Label is a special record placed by the Storage daemon on the
storage medium as the first record of an append session job with a File daemon. This record is useful
for finding the beginning of a particular session (Job), since no records with the same VolSessionld
and VolSessionTime will precede this record. This record is not normally visible outside of the Storage
daemon. The Begin Session Label is similar to the Volume Label except that it contains additional
information pertaining to the Session.

End Session Label The End Session Label is a special record placed by the Storage daemon on the storage
medium as the last record of an append session job with a File daemon. The End Session Record is
distinguished by a FileIndex with a value of minus two (-2). This record is useful for detecting the end
of a particular session since no records with the same VolSessionld and VolSessionTime will follow this
record. This record is not normally visible outside of the Storage daemon. The End Session Label is
similar to the Volume Label except that it contains additional information pertaining to the Session.

10.3 Storage Daemon File Output Format

The file storage and tape storage formats are identical except that tape records are by default blocked into
blocks of 64,512 bytes, except for the last block, which is the actual number of bytes written rounded up to

Bacula Version 9.6.7 67

a multiple of 1024 whereas the last record of file storage is not rounded up. The default block size of 64,512
bytes may be overridden by the user (some older tape drives only support block sizes of 32K). Each Session
written to tape is terminated with an End of File mark (this will be removed later). Sessions written to file
are simply appended to the end of the file.

10.4 Overall Format

A Bacula output file consists of Blocks of data. Each block contains a block header followed by records.
Each record consists of a record header followed by the record data. The first record on a tape will always
be the Volume Label Record.

No Record Header will be split across Bacula blocks. However, Record Data may be split across any number
of Bacula blocks. Obviously this will not be the case for the Volume Label which will always be smaller than
the Bacula Block size.

To simplify reading tapes, the Start of Session (SOS) and End of Session (EOS) records are never split across
blocks. If this is about to happen, Bacula will write a short block before writing the session record (actually,
the SOS record should always be the first record in a block, excepting perhaps the Volume label).

Due to hardware limitations, the last block written to the tape may not be fully written. If your drive
permits backspace record, Bacula will backup over the last record written on the tape, re-read it and verify
that it was correctly written.

When a new tape is mounted Bacula will write the full contents of the partially written block to the new
tape ensuring that there is no loss of data. When reading a tape, Bacula will discard any block that is
not totally written, thus ensuring that there is no duplication of data. In addition, since Bacula blocks are
sequentially numbered within a Job, it is easy to ensure that no block is missing or duplicated.

10.5 Serialization

All Block Headers, Record Headers, and Label Records are written using Bacula’s serialization routines.
These routines guarantee that the data is written to the output volume in a machine independent format.

10.6 Block Header

The format of the Block Header (version 1.27 and later) is:

uint32_t CheckSum; /* Block check sum */

uint32_t BlockSize; /* Block byte size including the header */
uint32_t BlockNumber; /* Block number */

char ID[4] = "BBO2"; /* Identification and block level */
uint32_t VolSessionId; /* Session Id for Job */

uint32_t VolSessionTime; /* Session Time for Job */

The Block header is a fixed length and fixed format and is followed by Record Headers and Record Data. The
CheckSum field is a 32 bit checksum of the block data and the block header but not including the CheckSum
field. The Block Header is always immediately followed by a Record Header. If the tape is damaged, a
Bacula utility will be able to recover as much information as possible from the tape by recovering blocks
which are valid. The Block header is written using the Bacula serialization routines and thus is guaranteed
to be in machine independent format. See below for version 2 of the block header.

68

Bacula Version 9.6.7

10.7 Record Header

Each binary data record is preceded by a Record Header. The Record Header is fixed length and fixed
format, whereas the binary data record is of variable length. The Record Header is written using the Bacula
serialization routines and thus is guaranteed to be in machine independent format.

The format of the Record Header (version 1.27 or later) is:

int32_t FileIndex; /* File index supplied by File daemon */
int32_t Stream; /* Stream number supplied by File daemon */
uint32_t DataSize; /* size of following data record in bytes */

This record is followed by the binary Stream data of DataSize bytes, followed by another Record Header
record and the binary stream data. For the definitive definition of this record, see record.h in the src/stored
directory.

Additional notes on the above:

The VolSessionld is a unique sequential number that is assigned by the Storage Daemon to a particular

Job. This number is sequential since the start of execution of the daemon.

The VolSessionTime is the time/date that the current execution of the Storage Daemon started. It

assures that the combination of VolSessionld and VolSessionTime is unique for every jobs written to
the tape, even if there was a machine crash between two writes.

The FileIndex is a sequential file number within a job. The Storage daemon requires this index to be

greater than zero and sequential. Note, however, that the File daemon may send multiple Streams
for the same FileIndex. In addition, the Storage daemon uses negative FileIndices to hold the Begin
Session Label, the End Session Label, and the End of Volume Label.

The Stream is defined by the File daemon and is used to identify separate parts of the data saved for each

file (Unix attributes, Win32 attributes, file data, compressed file data, sparse file data, ...). The Storage
Daemon has no idea of what a Stream is or what it contains except that the Stream is required to be
a positive integer. Negative Stream numbers are used internally by the Storage daemon to indicate

that the record is a continuation of the previous record (the previous record would not entirely fit in
the block).

For Start Session and End Session Labels (where the FileIndex is negative), the Storage daemon uses
the Stream field to contain the Jobld. The current stream definitions are:

#define STREAM_UNIX_ATTRIBUTES 1 /* Generic Unix attributes */

#define STREAM_FILE_DATA 2 /* Standard uncompressed data */
#define STREAM_MD5_SIGNATURE 3 /* MD5 signature for the file */
#define STREAM_GZIP_DATA 4 /* GZip compressed file data */

/* Extended Unix attributes with Win32 Extended data. Deprecated. */
#define STREAM_UNIX_ATTRIBUTES_EX 5 /* Extended Unix attr for Win32 EX */

#define STREAM_SPARSE_DATA 6 /* Sparse data stream */

#define STREAM_SPARSE_GZIP_DATA 7

#define STREAM_PROGRAM_NAMES 8 /* program names for program data */
#define STREAM_PROGRAM_DATA 9 /* Data needing program */

#define STREAM_SHA1_SIGNATURE 10 /* SHA1 signature for the file */
#define STREAM_WIN32_DATA 11 /* Win32 BackupRead data */

#define STREAM_WIN32_GZIP_DATA 12 /* Gzipped Win32 BackupRead data */

#define STREAM_MACOS_FORK_DATA 13 /* Mac resource fork */

#define STREAM_HFSPLUS_ATTRIBUTES 14 /* Mac 0S extra attributes */

#define STREAM_UNIX_ATTRIBUTES_ACCESS_ACL 15 /* Standard ACL attributes on UNIX */
#define STREAM_UNIX_ATTRIBUTES_DEFAULT_ACL 16 /* Default ACL attributes on UNIX */

The DataSize is the size in bytes of the binary data record that follows the Session Record header. The

Storage Daemon has no idea of the actual contents of the binary data record. For standard Unix files,
the data record typically contains the file attributes or the file data. For a sparse file the first 64 bits
of the file data contains the storage address for the data block.

Bacula Version 9.6.7 69

The Record Header is never split across two blocks. If there is not enough room in a block for the full Record
Header, the block is padded to the end with zeros and the Record Header begins in the next block. The
data record, on the other hand, may be split across multiple blocks and even multiple physical volumes.
When a data record is split, the second (and possibly subsequent) piece of the data is preceded by a new
Record Header. Thus each piece of data is always immediately preceded by a Record Header. When reading
a record, if Bacula finds only part of the data in the first record, it will automatically read the next record
and concatenate the data record to form a full data record.

10.8 Version BB02 Block Header

Each session or Job has its own private block. As a consequence, the Sessionld and SessionTime are written
once in each Block Header and not in the Record Header. So, the second and current version of the Block
Header BB02 is:

uint32_t CheckSum; /* Block check sum */

uint32_t BlockSize; /* Block byte size including the header */
uint32_t BlockNumber; /* Block number */

char ID[4] = "BBO2"; /* Identification and block level */
uint32_t VolSessionId; /* Applies to all records */

uint32_t VolSessionTime; /* contained in this block */

As with the previous version, the BB02 Block header is a fixed length and fixed format and is followed by
Record Headers and Record Data. The CheckSum field is a 32 bit CRC checksum of the block data and the
block header but not including the CheckSum field. The Block Header is always immediately followed by
a Record Header. If the tape is damaged, a Bacula utility will be able to recover as much information as
possible from the tape by recovering blocks which are valid. The Block header is written using the Bacula
serialization routines and thus is guaranteed to be in machine independent format.

10.9 Version 2 Record Header

Version 2 Record Header is written to the medium when using Version BB02 Block Headers. The memory
representation of the record is identical to the old BB01 Record Header, but on the storage medium, the first
two fields, namely VolSessionld and VolSessionTime are not written. The Block Header is filled with these
values when the First user record is written (i.e. non label record) so that when the block is written, it will
have the current and unique VolSessionld and VolSessionTime. On reading each record from the Block, the
VolSessionld and VolSessionTime is filled in the Record Header from the Block Header.

10.10 Volume Label Format

Tape volume labels are created by the Storage daemon in response to a label command given to the Console
program, or alternatively by the btape program. created. Each volume is labeled with the following
information using the Bacula serialization routines, which guarantee machine byte order independence.

For Bacula versions 1.27 and later, the Volume Label Format is:

char I1d4[32]; /* Bacula 1.0 Immortall\n */
uint32_t VerNum; /* Label version number */

/* VerNum 11 and greater Bacula 1.27 and later */

btime_t label_btime; /* Time/date tape labeled */
btime_t write_btime; /* Time/date tape first written */
/* The following are O in VerNum 11 and greater */

float64_t write_date; /* Date this label written */
float64_t write_time; /* Time this label written */

char VolName[128]; /* Volume name */

char PrevVolName[128]; /* Previous Volume Name */

70

char PoolName[128]; /%
char PoolType[128]; /*
char MediaType[128]; /*
char HostName[128]; /*
char LabelProg[32]; /%
char ProgVersion[32]; /*
char ProgDate[32]; /*

Pool name */

Pool type */

Type of this media */

Host name of writing computer */
Label program name */

Program version */

Program build date/time */

Bacula Version 9.6.7

Note, the LabelType (Volume Label, Volume PreLabel, Session Start Label, ...) is stored in the record
FileIndex field of the Record Header and does not appear in the data part of the record.

10.11

Session La

bel

The Session Label is written at the beginning and end of each session as well as the last record on the
physical medium. It has the following binary format:

char I1d[32]; /*
uint32_t VerNum; /*
uint32_t Jobld; /*
uint32_t VolumeIndex; /*

/* Prior to VerNum 11 */
float64_t write_date; /%
/* VerNum 11 and greater */

btime_t

write_btime; /*

Bacula Immortal ... */
Label version number */
Job id */

sequence no of vol */

Date this label written */

time/date record written */

/* The following is zero VerNum 11 and greater */

float64_t write_time; /*
char PoolName[128]; /
char PoolType[128]; /
char JobName[128]; /

char ClientName[128];
/* Added in VerNum 10 */

char Job[128]; /
char FileSetName[128]; /
uint32_t JobType;
uint32_t JobLevel;

Time this label written */
* Pool name */

* Pool type */

* base Job name */

* Unique Job name */
* FileSet name */

In addition, the EOS label contains:

/* The remainder are part of EOS label only */

uint32_t
uint64_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t

JobFiles;
JobBytes;
start_block;
end_block;
start_file;
end_file;
JobErrors;

In addition, for VerNum greater than 10, the EOS label contains (in addition to the above):

uint32_t

JobStatus

/* Job termination code */

: Note, the LabelType (Volume Label, Volume PreLabel, Session Start Label, ...) is stored in the record
FileIndex field and does not appear in the data part of the record. Also, the Stream field of the Record
Header contains the Jobld. This permits quick filtering without actually reading all the session data in many

cases.

10.12 Overall Storage Format

Current Bacula Tape Format

Bacula Version 9.6.7

6 June 2001
Version BBO2 added 28 September 2002
Version BBO1 is the old deprecated format.

A Bacula tape is composed of tape Blocks. Each block
has a Block header followed by the block data. Block
Data consists of Records. Records consist of Record
Headers followed by Record Data.

Block Header (24 bytes)

Record Header (12 bytes)

Record Data

Record Header (12 bytes)

Block Header: the first item in each block. The format is
shown below.

Partial Data block: occurs if the data from a previous
block spills over to this block (the normal case except
for the first block on a tape). However, this partial

data block is always preceded by a record header.

Record Header: identifies the Volume Session, the Stream
and the following Record Data size. See below for format.

Record data: arbitrary binary data.

Block Header Format BB02

VolSessionTime (uint32_t)

| CheckSum (uint32_t)
| |
| BlockSize (uint32_t)
| |
| BlockNumber (uint32_t)
| |
| "BBO2" (char [4])
| |
| VolSessionId (uint32_t)
| |
| |

BB02: Serves to identify the block as a
Bacula block and also servers as a block format identifier
should we ever need to change the format.

BlockSize: is the size in bytes of the block. When reading
back a block, if the BlockSize does not agree with the
actual size read, Bacula discards the block.

CheckSum: a checksum for the Block.

BlockNumber: is the sequential block number on the tape.

VolSessionId: a unique sequential number that is assigned
by the Storage Daemon to a particular Job.
This number is sequential since the start
of execution of the daemon.

VolSessionTime: the time/date that the current execution
of the Storage Daemon started. It assures
that the combination of VolSessionId and
VolSessionTime is unique for all jobs
written to the tape, even if there was a
machine crash between two writes.

Record Header Format BB02

| FileIndex (int32_t) |
| |
| Stream (int32_t)

| |
| DataSize (uint32_t)

FileIndex: a sequential file number within a job. The

71

Bacula Version 9.6.7

Storage daemon enforces this index to be
greater than zero and sequential. Note,
however, that the File daemon may send
multiple Streams for the same FilelIndex.
The Storage Daemon uses negative FileIndices
to identify Session Start and End labels
as well as the End of Volume labels.
Stream: defined by the File daemon and is intended to be
used to identify separate parts of the data
saved for each file (attributes, file data,
.). The Storage Daemon has no idea of
what a Stream is or what it contains.
DataSize: the size in bytes of the binary data record
that follows the Session Record header.
The Storage Daemon has no idea of the
actual contents of the binary data record.
For standard Unix files, the data record
typically contains the file attributes or
the file data. For a sparse file
the first 64 bits of the data contains
the storage address for the data block.
Volume Label

; Id (32 bytes) ;
: VerNum (uint32_t)

: label_date (float64_t)

| label_btime (btime_t VerNum 11 |
: label_time (float64_t)

| write_btime (btime_t VerNum 11 |
: write_date (float64_t)

| 0 (float64_t) VerNum 11 |
: write_time (float64_t)

| 0 (float64_t) VerNum 11 |
: VolName (128 bytes)

: PrevVolName (128 bytes)

: PoolName (128 bytes)

: PoolType (128 bytes)

: MediaType (128 bytes)

: HostName (128 bytes)

: LabelProg (32 bytes)

: ProgVersion (32 bytes)

: ProgDate (32 bytes)

| |

Id: 32 byte Bacula identifier "Bacula 1.0 immortall\n"

(0old version also recognized:)

Id: 32 byte Bacula identifier "Bacula 0.9 mortal\n"

LabelType (Saved in the FileIndex of the Header record).
PRE_LABEL -1 Volume label on unwritten tape
VOL_LABEL -2 Volume label after tape written
EOM_LABEL -3 Label at EOM (not currently implemented)
SOS_LABEL -4 Start of Session label (format given below)
EOS_LABEL -5 End of Session label (format given below)

VerNum: 11

label_date: Julian day tape labeled

label_time: Julian time tape labeled

write_date: Julian date tape first used (data written)

write_time: Julian time tape first used (data written)

VolName: "Physical" Volume name

PrevVolName: The VolName of the previous tape (if this tape is

a continuation of the previous one).

Bacula Version 9.6.7

PoolName: Pool Name
PoolType: Pool Type
MediaType: Media Type
HostName: Name of host that is first writing the tape
LabelProg: Name of the program that labeled the tape
ProgVersion: Version of the label program
ProgDate: Date Label program built
Session Label

; Id (32 bytes) ;
: VerNum (uint32_t)

: JobId (uint32_t)

: write_btime (btime_t) VerNum 11 :
: 0 (float64_t) VerNum 11 :
: PoolName (128 bytes)

: PoolType (128 bytes)

: JobName (128 bytes)

: ClientName (128 bytes)

: Job (128 bytes) :
: FileSetName (128 bytes)

: JobType (uint32_t)

: JobLevel (uint32_t)

: FileSetMD5 (50 bytes) VerNum 11 :
| |

Additional fields in End 0Of Session Label

: JobFiles (uint32_t)
: JobBytes (uint32_t)
: start_block (uint32_t)
: end_block (uint32_t)
: start_file (uint32_t)
: end_file (uint32_t)
: JobErrors (uint32_t)
: JobStatus (uint32_t) VerNum 11 :

* => fields deprecated
Id: 32 byte Bacula Identifier "Bacula 1.0 immortalln"
LabelType (in FileIndex field of Header):

EOM_LABEL -3 Label at EOM

SOS_LABEL -4 Start of Session label

EOS_<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>