We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00777306 seconds elapsed -- 0.0186489 seconds elapsed -- 0.000163964 seconds elapsed -- 0.000141269 seconds elapsed -- 0.000129229 seconds elapsed -- 0.00012639 seconds elapsed -- 0.000136265 seconds elapsed -- 0.000133404 seconds elapsed -- 0.000152646 seconds elapsed -- 0.000161097 seconds elapsed -- 0.000144502 seconds elapsed -- 0.000141014 seconds elapsed -- 0.000129408 seconds elapsed -- 0.000132994 seconds elapsed -- 0.000130156 seconds elapsed -- 0.000131627 seconds elapsed -- 0.00013597 seconds elapsed -- 0.000299211 seconds elapsed -- 0.000226035 seconds elapsed -- 0.00014036 seconds elapsed -- 0.000158353 seconds elapsed -- 0.000142712 seconds elapsed -- 0.000137233 seconds elapsed -- 0.000131062 seconds elapsed -- 0.000219593 seconds elapsed -- 0.000220961 seconds elapsed -- 0.000165949 seconds elapsed -- 0.000185515 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.