We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00279486, .00134756) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .00989443, .118076) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.0119961, .0229195}, {.005975, .00622984}, {.00621881, .0104201}, ------------------------------------------------------------------------ {.00608863, .0165702}, {.00646706, .0247416}, {.00762574, .0245289}, ------------------------------------------------------------------------ {.00707638, .0127902}, {.00691633, .0117924}, {.0094885, .0128031}, ------------------------------------------------------------------------ {.00851537, .017816}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .00763678660000001 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0160611719 o7 : RR (of precision 53) |
The object testTimeForLLLonSyzygies is a method function with options.