
AutoDoc
Generate documentation from GAP

source code

2016.12.04

4 December 2016

Sebastian Gutsche

Max Horn

Sebastian Gutsche

Email: gutsche@mathematik.uni-kl.de

Homepage: http://wwwb.math.rwth-aachen.de/~gutsche/

Address: Department of Mathematics

University of Kaiserslautern

67653 Kaiserslautern

Germany

Max Horn

Email: max.horn@math.uni-giessen.de

Homepage: http://www.quendi.de/math

Address: AG Algebra

Mathematisches Institut

Justus-Liebig-Universität Gießen

Arndtstraße 2

35392 Gießen

Germany

mailto://gutsche@mathematik.uni-kl.de
http://wwwb.math.rwth-aachen.de/~gutsche/
mailto://max.horn@math.uni-giessen.de
http://www.quendi.de/math

AutoDoc 2

Copyright

© 2012-2014 by Sebastian Gutsche and Max Horn

This package may be distributed under the terms and conditions of the GNU Public License Version 2.

Contents

1 Getting started using AutoDoc 4

1.1 Creating a package manual from scratch . 4

1.2 Documenting code with AutoDoc . 5

1.3 Using AutoDoc in an existing GAPDoc manual . 6

1.4 Scaffolds . 8

1.5 AutoDoc worksheets . 10

2 AutoDoc documentation comments 12

2.1 Documenting declarations . 12

2.2 Other documentation comments . 14

2.3 Title page commands . 17

2.4 Plain text �les . 18

2.5 Grouping . 18

2.6 Level . 19

2.7 Markdown-like formatting of text in AutoDoc . 19

3 AutoDoc worksheets 22

3.1 Worksheets . 22

4 AutoDoc 23

4.1 The AutoDoc() function . 23

4.2 Examples . 27

3

Chapter 1

Getting started using AutoDoc

AutoDoc is aGAP package which is meant to aidGAP package authors in creating and maintaing the

documentation of their packages. In this capacity it builds upon GAPDoc, and is not a replacement

for GAPDoc, but rather complements it.

In this chapter we describe how to get started using AutoDoc for your package. First, we explain

in Section 1.1 how to write a new package manual from scratch.

Then we show in Section 1.3 how you might bene�t from AutoDoc even if you already have a

complete manual written using GAPDoc.

In Section 1.4, we explain how you may use AutoDoc to generate a title page and the main XML

�le for your manual.

Finally, Section 1.5, explains what AutoDoc worksheets are and how to use them.

1.1 Creating a package manual from scratch

Suppose your package is already up and running, but so far has no manual. Then you can rapidly gen-

erate a �scaffold� for a package manual using the AutoDoc (4.1.1) command like this, while running

GAP from within your package's directory (the one containing the PackageInfo.g �le):

LoadPackage("AutoDoc");

AutoDoc(rec(scaffold := true));

This �rst reads the PackageInfo.g �le from the current directory. It extracts information about

package from it (such as its name and version, see Section 1.4.1). It then creates two XML �les

doc/NAME_OF_YOUR_PACKAGE.xml and doc/title.xml insider the package directory. Finally, it

runs GAPDoc on them to produce a nice initial PDF and HTML version of your fresh manual.

To ensure that theGAP help system picks up your package manual, you should also add something

like the following to your PackageInfo.g:

PackageDoc := rec(

BookName := ~.PackageName,

ArchiveURLSubset := ["doc"],

HTMLStart := "doc/chap0.html",

PDFFile := "doc/manual.pdf",

SixFile := "doc/manual.six",

LongTitle := ~.Subtitle,

),

4

AutoDoc 5

Congratulations, your package now has a minimal working manual. Of course it will be mostly

empty for now, but it already should contain some useful information, based on the data in your

PackageInfo.g. This includes your package's name, version and description as well as information

about its authors. And if you ever change the package data, (e.g. because your email address changed),

just re-run the above command to regenerate the two main XML �les with the latest information.

Next of course you need to provide actual content (unfortunately, we were not yet able to automate

that for you, more research on arti�cial intelligence is required). To add more content, you have

several options: You could add further GAPDoc XML �les containing extra chapters, sections and

so on. Or you could use classic GAPDoc source comments (in either case, see Section 1.3 on how

to teach the AutoDoc (4.1.1) command to include this extra documentation). Or you could use the

special documentation facilities AutoDoc provides (see Section 1.2).

You will probably want to re-run the AutoDoc (4.1.1) command frequently, e.g. whenever you

modi�ed your documentation or your PackageInfo.g. To make this more convenient and repro-

ducible, we recommend putting its invocation into a �le makedoc.g in your package directory, with

content based on the following example:

LoadPackage("AutoDoc");

AutoDoc(rec(autodoc := true));

QUIT;

Then you can regenerate the package manual from the command line with the following command,

executed from within in the package directory:

gap makedoc.g

1.2 Documenting code with AutoDoc

To get one of your global functions, operations, attributes etc. to appear in the package manual, simply

insert an AutoDoc comment of the form #! directly in front of it. For example:

#!

DeclareOperation("ToricVariety", [IsConvexObject]);

This tiny change is already suf�cient to ensure that the operation appears in the manual. In general,

you will want to add further information about the operation, such as in the following example:

#! @Arguments conv

#! @Returns a toric variety

#! @Description

#! Creates a toric variety out

#! of the convex object <A>conv.

DeclareOperation("ToricVariety", [IsConvexObject]);

For a thorough description of what you can do with AutoDoc documentation comments, please refer

to chapter 2.

Suppose you have not been using GAPDoc before but instead used the process described in

section 1.1 to create your manual. Then the following GAP command will regenerate the manual and

automatically include all newly documented functions, operations etc.:

AutoDoc 6

LoadPackage("AutoDoc");

AutoDoc(rec(scaffold := true,

autodoc := true));

If you are not using the scaffolding feature, e.g. because you already have an existingGAPDoc based

manual, then you can still use AutoDoc documentation comments. Just make sure to �rst edit the

main XML �le of your documentation, and insert the line

#Include SYSTEM "_AutoDocMainFile.xml"

in a suitable place. This means that you can mix AutoDoc documentation comment freely with

your existing documentation; you can even still make use of any existing GAPDoc documentation

comments in your code. The following command should be useful for you in this case; it still scans

the package code for AutoDoc documentation comments and the runs GAPDoc to produce HTML

and PDF output, but does not touch your documentation XML �les otherwise.

LoadPackage("AutoDoc");

AutoDoc(rec(autodoc := true));

1.3 Using AutoDoc in an existing GAPDoc manual

Even if you already have an existingGAPDocmanual, it might be interesting for you to use AutoDoc

for two purposes:

First off, with AutoDoc is very convenient to regenerate your documentation.

Secondly, the scaffolding feature which generates a title package with all the metadata of your

package in a uniform way is very handy. The somewhat tedious process of keeping your title page

in sync with your PackageInfo.g is fully automated this way (including the correct version, release

data, author information and so on).

There are various examples of packages using AutoDoc for only this purpose, e.g. IO and orb.

1.3.1 Using AutoDoc on a complete GAPDoc manual

Suppose you already have a complete XML manual, with some main and title XML �les and some

documentation for operations distributed over all your .g, .gd, and .gi �les. Suppose the main XML

�le is named PACKAGENAME.xml and is in the /doc subfolder of your package. Then you can rebuild

your manual by executing the following two GAP commands from a GAP sessions started started in

the root directory of your package:

LoadPackage("AutoDoc");

AutoDoc();

In contrast, the RingsForHomalg currently uses essentially the following code in its makedoc.g �le

to achieve the same result

LoadPackage("GAPDoc");

SetGapDocLaTeXOptions("utf8");

bib := ParseBibFiles("doc/RingsForHomalg.bib");

AutoDoc 7

WriteBibXMLextFile("doc/RingsForHomalgBib.xml", bib);

list := [

"../gap/RingsForHomalg.gd",

"../gap/RingsForHomalg.gi",

"../gap/Singular.gi",

"../gap/SingularBasic.gi",

"../examples/RingConstructionsExternalGAP.g",

"../examples/RingConstructionsSingular.g",

"../examples/RingConstructionsMAGMA.g",

"../examples/RingConstructionsMacaulay2.g",

"../examples/RingConstructionsSage.g",

"../examples/RingConstructionsMaple.g",

];

MakeGAPDocDoc("doc", "RingsForHomalg", list, "RingsForHomalg");

GAPDocManualLab("RingsForHomalg");

Note that in particular, you do not have to worry about keeping a list of your implementation �les

up-to-date.

But there is more. AutoDoc can create a maketest.g �le, which uses the examples in your

manual to test your package. This can be achieved via

LoadPackage("AutoDoc");

AutoDoc(rec(maketest := true));

Now the �le maketest.g appears in your package directory, and

gap maketest.g

test the examples from your manual.

1.3.2 Setting different GAPDoc options

Sometimes, the default values for the GAPDoc command used by AutoDoc may not be suitable for

your manual.

Suppose your main XML �le is not named PACKAGENAME.xml, but rather something else, e.g.

main.xml. Then you can tell AutoDoc to use this �le as the main XML �le via

LoadPackage("AutoDoc");

AutoDoc(rec(gapdoc := rec(main := "main")));

As explained above, by default AutoDoc scans all .g, .gd and .gi �les it can �nd inside of your

package root directory, and in the subdirectories gap, lib, examples and examples/doc as well.

If you keep source �les with documentation in other directories, you can adjust the list of directo-

ries AutoDoc scans via the scan_dirs option. The following example illustrates this by instructing

AutoDoc to only search in the subdirectory package_sources of the packages root directory.

LoadPackage("AutoDoc");

AutoDoc(rec(gapdoc := rec(scan_dirs := ["package_source"])));

AutoDoc 8

You can also specify an explicit list of �les containing documentation, which will be searched in

addition to any �les located within the scan directories:

LoadPackage("AutoDoc");

AutoDoc(rec(gapdoc := rec(files := ["path/to/some/hidden/file.gds"])));

Giving such a �le does not prevent the standard scan_dirs from being scanned for other �les.

Next, GAPDoc supports the documentation to be built with relative paths. This means, links

to manuals of other packages or the GAP library will not be absolute, but relative from your docu-

mentation. This can be particulary useful if you want to build a release tarball or move your GAP

installation around later. Suppose you are starting GAP in the root path of your package as always,

and the standard call of AutoDoc (4.1.1) will then build the documentation in the doc subfolder of

your package. From this folder, the gap root directory has the relative path ../../... Then you can

enable the relative paths by

LoadPackage("AutoDoc");

AutoDoc(rec(gapdoc := rec(gap_root_relative_path := "../../..")));

or, since ../../.. is the standard option for gap_root_relative_path, by

LoadPackage("AutoDoc");

AutoDoc(rec(gapdoc := rec(gap_root_relative_path := true)));

1.4 Scaffolds

1.4.1 Generating a title page

For most (if not all) GAP packages, the title page of the package manual lists information such as

the release date, version, names and contact details of the authors, and so on. All this data is also

contained in your PackageInfo.g, and whenever you make a change to that �le, there is a risk that

you forget to update your manual to match. And even if you don't forget it, you of course have to

spend some time to adjust the manual. GAPDoc can help to a degree with this via entities. Thus, you

will sometimes see code like this in PackageInfo.g �les:

Version := "1.2.3",

Date := "20/01/2015",

<#GAPDoc Label="PKGVERSIONDATA">

<!ENTITY VERSION "1.2.3">

<!ENTITY RELEASEDATE "20 January 2015">

<!ENTITY RELEASEYEAR "2015">

<#/GAPDoc>

However, it is still easy to forget both of these versions. And it doesn't solve the problem of updating

package authors addresses. Neither of these is a big issue, of course, but there have been plenty

examples in the past where people forget either of these two things, and it can be slightly embarrassing.

It may even require you to make a new release just to �x the issue, which in our opinion is a sad waste

of your valuable time.

So instead of worrying about manually synchronising these things, you can instruct AutoDoc

to generate a title page for your manual based on the information in your PackageInfo.g. The

AutoDoc 9

following commands do just that (in addition to building your manual), by generating a �le called

doc/title.xml.

LoadPackage("AutoDoc");

AutoDoc(rec(scaffold := rec(MainPage := false)));

Note that this only outputs doc/title.xml but does not touch any other �les of your documentation.

In particular, you need to explicitly include doc/title.xml from your main XML �le.

However, you can also tell AutoDoc to maintain the main XML �le for you, in which case this

is automatic. In fact, this is the default if you enabling scaffolding; the above example command

explicitly told AutoDoc not to generate a main page. More o

1.4.2 Generating the main XML �le

The following generates a main XML �le for your documentation in addition to the title page. The

main XML �le includes the title page by default, as well as any documentation generated from

AutoDoc documentation comments.

LoadPackage("AutoDoc");

AutoDoc(rec(scaffold := true));

You can instruct AutoDoc to include additional XML �les by giving it a list of �lenames, as in the

following example:

LoadPackage("AutoDoc");

AutoDoc(rec(

scaffold := rec(

includes := ["somefile.xml", "anotherfile.xml"]

)

));

For more information, please consult the documentation of the AutoDoc (4.1.1) function.

1.4.3 What data is extracted from PackageInfo.g?

AutoDoc can extract data from PackageInfo.g in order to generate a title page. Speci�cally, the

following components of the package info record are looked at:

Version

This is used to set the <Version> element of the title page, with the string �Version � prepended.

Date This is used to set the <Date> element of the title page.

Subtitle

This is used to set the <Subtitle> element of the title page (the <Title> is set to the package

name).

Persons

This is used to generate <Author> elements in the generated title page.

AutoDoc 10

PackageDoc

This is a record (or a list of records) which is used to tell theGAP help system about the package

manual. Currently AutoDoc extracts the value of the PackageDoc.BookName component and

then passes that on toGAPDocwhen creating the HTML, PDF and text versions of the manual.

AutoDoc

This is a record which can be used to control the scaffolding performed by AutoDoc,

speci�cally to provide extra information for the title page. For example, you can set

AutoDoc.TitlePage.Copyright to a string which will then be inserted on the generated title

page. Using this method you can customize the following title page elements: TitleComment,

Abstract, Copyright, Acknowledgements and Colophon.

Note that AutoDoc.TitlePage behaves exactly the same as the scaffold.TitlePage param-

eter of the AutoDoc (4.1.1) function.

1.5 AutoDoc worksheets

AutoDoc worksheets can be used to create HTML and PDF documents using AutoDoc syntax and

possibly includingGAP examples and implementations without having them associated to a package.

A �le for a worksheet could look like this:

#! @Title My first worksheet

#! @Author Charlie Brown

#! @Chapter Some groups

#! @BeginExample

S3 := SymmetricGroup(3);;

S4 := SymmetricGroup(4);;

#! @EndExample

Now, one can create a PDF and HTML document, like a package documentation out of it. Suppose

the document above is saved as worksheet.g. Then, when GAP is started in the folder of this �le,

the command

AutoDocWorksheet("worksheet.g");

will create a subfolder called doc of the current directory in which it will create the documentation.

There are several options to con�gure the output of the worksheet command, which are identical to

the options of the AutoDoc (4.1.1) command. It is even possible to test the examples in the worksheet

using the maketest option from the AutoDoc command.

Since the worksheets do not have a PackageInfo.g to extract information, all possible tags that

GAPDoc supports for the title page can be set into the document. A fully typed titlepage can look

like this:

#! @Title My first worksheet

#! @Subtitle Some small examples

#! @Author Charlie Brown

#! @Version 0.1

AutoDoc 11

#! @TitleComment Some worksheet

#! @Date 01/01/2016

#! @Address TU Kaiserslautern

#! @Abstract

#! A worksheet showing some small examples about groups.

#! @Copyright 2016 Charlie Brown

#! @Acknowledgements Woodstock

#! @Colophon Some colophon

#! @Chapter Some groups

#! @BeginExample

S3 := SymmetricGroup(3);;

S4 := SymmetricGroup(4);;

#! @EndExample

Chapter 2

AutoDoc documentation comments

You can document declarations of global functions and variables, operations, attributes etc. by insert-

ing AutoDoc comments into your sources before these declaration. An AutoDoc comment always

starts with #!. This is also the smallest possible AutoDoc command. If you want your declaration

documented, just write #! at the line before the documentation. For example:

#!

DeclareOperation("AnOperation",

[IsList]);

This will produce a manual entry for the operation AnOperation.

Inside of AutoDoc comments, AutoDoc commands starting with @ can be used to control the

output AutoDoc produces.

2.1 Documenting declarations

In the bare form above, the manual entry for AnOperation will not contain much more than the name

of the operation. In order to change this, there are several commands you can put into the AutoDoc

comment before the declaration. Currently, the following commands are provided:

2.1.1 @Description descr

Adds the text in the following lines of the AutoDoc to the description of the declaration in the manual.

Lines are until the next AutoDoc command or until the declaration is reached.

2.1.2 @Returns ret_val

The string ret_val is added to the documentation, with the text �Returns: � put in front of it. This

should usually give a brief hint about the type or meaning of the value retuned by the documented

function.

2.1.3 @Arguments args

The string args contains a description of the arguments the function expects, including optional parts,

which are denoted by square brackets. The argument names can be separated by whitespace, commas

12

AutoDoc 13

or square brackets for the optional arguments, like �grp[, elm]� or �xx[y[z]]�. If GAP options are

used, this can be followed by a colon : and one or more assignments, like �n[, r]: tries := 100�.

2.1.4 @Group grpname

Adds the following method to a group with the given name. See section 2.5 for more information

about groups.

2.1.5 @Label label

Adds label to the function as label. If this is not speci�ed, then for declarations that involve a list

of input �lters (as is the case for DeclareOperation, DeclareAttribute, etc.), a default label is

generated from this �lter list.

#! @Label testlabel

DeclareProperty("AProperty",

IsObject);

leads to this:

2.1.6 AProperty (testlabel)

. AProperty(arg) (property)

Returns: true or false

while

#!

DeclareProperty("AProperty",

IsObject);

leads to this:

2.1.7 AProperty (for IsObject)

. AProperty(arg) (property)

Returns: true or false

2.1.8 @ChapterInfo chapter, section

Adds the entry to the given chapter and section. Here, chapter and section are the respective

titles.

As an example, a full AutoDoc comment for with all options could look like this:

#! @Description

#! Computes the list of lists of degrees of ordinary characters

#! associated to the <A>p-blocks of the group <A>G

#! with <A>p-modular character table <A>modtbl

#! and underlying ordinary character table <A>ordtbl.

#! @Returns a list

#! @Arguments modtbl

AutoDoc 14

#! @Group CharacterDegreesOfBlocks

#! @FunctionLabel chardegblocks

#! @ChapterInfo Blocks, Attributes

DeclareAttribute("CharacterDegreesOfBlocks",

IsBrauerTable);

2.2 Other documentation comments

There are also some commands which can be used in AutoDoc comments that are not associated to

any declaration. This is useful for additional text in your documentation, examples, mathematical

chapters, etc..

2.2.1 @Chapter name

Sets a chapter, all functions without seperate info will be added to this chapter. Also all text comments,

i.e. lines that begin with #! without a command, and which do not follow after @description, will be

added to the chapter as regular text. Example:

#! @Chapter My chapter

#! This is my chapter.

#! I document my stuff in it.

2.2.2 @Section name

Sets a section like chapter sets a chapter.

#! @Section My first manual section

#! In this section I am going to document my first method.

2.2.3 @EndSection

Closes the current section. Please be careful here. Closing a section before opening it might cause

unexpected errors.

#! @EndSection

The following text again belongs to the chapter

#! Now we could start a second section if we want to.

2.2.4 @Subsection name

Sets a subsection like chapter sets a chapter.

#! @Subsection My first manual subsection

#! In this subsection I am going to document my first example.

AutoDoc 15

2.2.5 @EndSubsection

Closes the current subsection. Please be careful here. Closing a subsection before opening it might

cause unexpected errors.

#! @EndSubsection

The following text again belongs to the section

#! Now we are in the section again

2.2.6 @BeginAutoDoc

Causes all subsequent declarations to be documented in the manual, regardless of whether they have

an AutoDoc comment in front of them or not.

2.2.7 @EndAutoDoc

Ends the affect of @BeginAutoDoc. So from here on, again only declarations with an explicit

AutoDoc comment in front are added to the manual.

#! @BeginAutoDoc

DeclareOperation("Operation1", [IsList]);

DeclareProperty("IsProperty", IsList);

#! @EndAutoDoc

Both, Operation1 and IsProperty would appear in the manual.

2.2.8 @BeginGroup [grpname]

Starts a group. All following documented declarations without an explicit @Group command are

grouped together in the same group with the given name. If no name is given, then a new nameless

group is generated. The effect of this command is ended when an @EndGroup command is reached.

See section 2.5 for more information about groups.

2.2.9 @EndGroup

Ends the current group.

#! @BeginGroup MyGroup

#!

DeclareAttribute("GroupedAttribute",

IsList);

DeclareOperation("NonGroupedOperation",

[IsObject]);

#!

DeclareOperation("GroupedOperation",

[IsList, IsRubbish]);

#! @EndGroup

AutoDoc 16

2.2.10 @Level lvl

Sets the current level of the documentation. All items created after this, chapters, sections, and items,

are given the level lvl , until the @ResetLevel command resets the level to 0 or another level is set.

See section 2.6 for more information about groups.

2.2.11 @ResetLevel

Resets the current level to 0.

2.2.12 @BeginExample and @EndExample

@BeginExample inserts an example into the manual. The syntax is like the example enviroment in

GAPDoc. This examples can be tested by GAPDoc, and also stay readable by GAP. The GAP prompt

is added by AutoDoc. @EndExample ends the example block.

#! @BeginExample

S5 := SymmetricGroup(5);

#! Sym([1 .. 5])

Order(S5);

#! 120

#! @EndExample

2.2.13 @BeginLog and @EndLog

Works just like the @BeginExample command, but the example will not be tested. See the GAPDoc

manual for more information.

2.2.14 @DoNotReadRestOfFile

Prevents the rest of the �le from being read by the parser. Useful for not �nished or temporary �les.

#! This will appear in the manual

#! @DoNotReadRestOfFile

#! This will not appear in the manual.

2.2.15 @BeginChunk name , @EndChunk, and @InsertChunk name

Text insider of a @BeginChunk / @EndChunk part will not be inserted into the �nal documentation

directly. Instead, the text is stored in an internal buffer. That chunk of text can then later on be inserted

in any other place by using the @InsertChunk name command. If you do not provide an @EndChunk,

the chunk ends at the end of the �le.

#! @BeginChunk MyChunk

#! Hello, world.

#! @EndChunk

#! @InsertChunk MyChunk

The text "Hello, world." is inserted right before this.

AutoDoc 17

You can use this to de�ne an example like this in one �le:

#! @BeginChunk Example_Symmetric_Group

#! @BeginExample

S5 := SymmetricGroup(5);

#! Sym([1 .. 5])

Order(S5);

#! 120

#! @EndExample

#! @EndChunk

And then later, insert the example in a different �le, like this:

#! @InsertChunk Example_Symmetric_Group

2.2.16 @BeginSystem name , @EndSystem, and @InsertSystem name

Same as @BeginChunk etc. This command is deprecated. Please use chunk instead.

2.2.17 @BeginCode name , @EndCode, and @InsertCode name

Inserts the text between @BeginCode and @EndCode verbatim at the point where @InsertCode is

called. This is useful to insert code excerpts directly into the manual.

#! @BeginCode Increment

i := i + 1;

#! @EndCode

#! @InsertCode Increment

Code is inserted here.

2.2.18 @LatexOnly text , @BeginLatexOnly , and @EndLatexOnly

Code inserted between @BeginLatexOnly and @EndLatexOnly or after @LatexOnly is only inserted

in the PDF version of the manual or worksheet. It can hold arbitrary LaTeX-commands.

#! @BeginLatexOnly

#! \include{picture.tex}

#! @EndLatexOnly

#! @LatexOnly \include{picture.tex}

2.3 Title page commands

The following commands can be used to add the corresponding parts to the title page of the document,

in case the scaffolding is enabled.

� @Title

� @Subtitle

AutoDoc 18

� @Version

� @TitleComment

� @Author

� @Date

� @Address

� @Abstract

� @Copyright

� @Acknowledgements

� @Colophon

Those add the following lines at the corresponding point of the titlepage. Please note that many of

those things can be (better) extracted from the PackageInfo.g. In case you set some of those, the ex-

tracted or in scaffold de�ned items will be overwritten. While this is not very useful for documenting

packages, they are necessary for worksheets created with AutoDocWorksheet (3.1.1), since they do

not have a PackageInfo to extract those information.

2.4 Plain text �les

AutoDoc plain text �les work exactly like AutoDoc comments, except that the #! is unnecessary at the

beginning of a line which should be documented. Files that have the suf�x .autodoc will automatically

regarded as plain text �les while the commands @AutoDocPlainText and @EndAutoDocPlainText

mark parts in plain text �les which should be regarded as AutoDoc parts. All commands can be used

like before.

2.5 Grouping

InGAPDoc, it is possible to make groups of ManItems, i.e., when documenting a function, operation,

etc., it is possible to group them into suitable chunks. This can be particulary useful if there are several

de�nitions of an operation with several differen argument types, all doing more or less the same to

the arguments. Then their manual items can be grouped, sharing the same description and return type

information. Note that it is currently not possible to give a header to the Group in the manual, but the

generated ManItem heading of the �rst entry will be used.

Note that group names are globally unique throughout the whole manual. That is, groups with the

same name are in fact merged into a single group, even if they were declared in different source �les.

Thus you can have multiple @BeginGroup / @EndGroup pairs using the same group name, in different

places, and these all will refer to the same group.

Moreover, this means that you can add items to a group via the @Group command in the AutoDoc

comment of an arbitrary declaration, at any time. The following code

#! @BeginGroup Group1

#! @Description

AutoDoc 19

#! First sentence.

DeclareOperation("FirstOperation", [IsInt]);

#! @Description

#! Second sentence.

DeclareOperation("SecondOperation", [IsInt, IsGroup]);

#! @EndGroup

.. Stuff ..

#! @Description

#! Third sentence.

#! @Group Group1

KeyDependentOperation("ThirdOperation", IsGroup, IsInt, "prime);

produces the following:

2.5.1 FirstOperation (for IsInt)

. FirstOperation(arg) (operation)

. SecondOperation(arg1, arg2) (operation)

. ThirdOperation(arg1, arg2) (operation)

Returns:

First sentence. Second sentence. Third sentence.

2.6 Level

Levels can be set to not write certain parts in the manual by default. Every entry has by default the

level 0. The command @Level can be used to set the level of the following part to a higher level, for

example 1, and prevent it from being printed to the manual by default. However, if one sets the level

to a higher value in the autodoc option of AutoDoc, the parts will be included in the manual at the

speci�c place.

#! This text will be printed to the manual.

#! @Level 1

#! This text will be printed to the manual if created with level 1 or higher.

#! @Level 2

#! This text will be printed to the manual if created with level 2 or higher.

#! @ResetLevel

#! This text will be printed to the manual.

2.7 Markdown-like formatting of text in AutoDoc

AutoDoc has some convenient ways to insert special format into text, like math formulas and lists.

The syntax for them are inspired by Markdown and LaTeX, but do not follow them strictly. Neither

are all features of the Markdown language supported. The following subsections describe what is

possible.

AutoDoc 20

2.7.1 Lists

One can create lists of items by beginning a new line with *, +, -, followed by one space. The �rst

item starts the list. When items are longer than one line, the following lines have to be indented by

at least two spaces. The list ends when a line which does not start a new item is not indented by two

spaces. Of course lists can be nested. Here is an example:

#! The list starts in the next line

#! * item 1

#! * item 2

#! which is a bit longer

#! * and also contains a nested list

#! * with two items

#! * item 3 of the outer list

#! This does not belong to the list anymore.

This is the output:

The list starts in the next line

� item 1

� item 2 which is a bit longer

� and also contains a nested list

� with two items

� item 3 of the outer list

This does not belong to the list anymore.

The *, -, and + are fully interchangeable and can even be used mixed, but this is not recommended.

2.7.2 Math modes

One can start an inline formula with a $, and also end it with $, just like in LATEX. This will translate

into GAPDocs inline math enviroment. For display mode one can use $$, also like LATEX.

#! This is an inline formula: $1+1 = 2$.

#! This is a display formula:

#! $$ \sum_{i=1}^n i. $$

produces the following output:

This is an inline formula: 1+1= 2. This is a display formula:

n

å
i=1

i:

AutoDoc 21

2.7.3 Emphasize

One can emphasize text by using two asterisks (**) or two underscores (__) at the beginning and the

end of the text which should be emphasized. Example:

#! **This** is very important.

#! This is __also important__.

#! **Naturally, more than one line

#! can be important.**

This produces the following output:

This is very important. This is also important. Naturally, more than one line can be important.

Chapter 3

AutoDoc worksheets

3.1 Worksheets

3.1.1 AutoDocWorksheet

. AutoDocWorksheet(list_of_filenames: options) (function)

Returns:

The intention of these function is to create stand-alone pdf and html �les using AutoDoc without

having them associated to a package. It uses the same optional records as the AutoDoc command

itself, but instead of a package name there should be a �lename or a list of �lenames containing

AutoDoc text from which the documents are created. Please see the AutoDoc command for more

information about this and have a look at 1.5 for a simple worksheet example.

22

Chapter 4

AutoDoc

4.1 The AutoDoc() function

4.1.1 AutoDoc

. AutoDoc([package[, optrec]]) (function)

Returns: nothing

This is the main function of the AutoDoc package. It can perform any combination of the follow-

ing three tasks:

1. It can (re)generate a scaffold for your package manual. That is, it can produce two XML �les in

GAPDoc format to be used as part of your manual: First, a �le named doc/PACKAGENAME.xml

(with your package's name substituted) which is used as main XML �le for the package manual,

i.e. this �le sets the XML doctype and de�nes various XML entities, includes other XML

�les (both those generated by AutoDoc as well as additional �les created by other means),

tells GAPDoc to generate a table of content and an index, and more. Secondly, it creates a

�le doc/title.xml containing a title page for your documentation, with information about

your package (name, description, version), its authors and more, based on the data in your

PackageInfo.g.

2. It can scan your package for AutoDoc based documentation (by using AutoDoc tags and the

Autodoc command. This will produce further XML �les to be used as part of the package

manual.

3. It can use GAPDoc to generate PDF, text and HTML (with MathJaX enabled) documentation

from the GAPDoc XML �les it generated as well as additional such �les provided by you. For

this, it invokes MakeGAPDocDoc (GAPDoc: MakeGAPDocDoc) to convert the XML sources,

and it also instructs GAPDoc to copy supplementary �les (such as CSS style �les) into your

doc directory (see CopyHTMLStyleFiles (GAPDoc: CopyHTMLStyleFiles)).

For more information and some examples, please refer to Chapter 1.

The parameters have the following meanings:

package

This is either the name of package, or an IsDirectory object. In the former case, AutoDoc

uses the metadata of the �rst package with that name known toGAP. In the latter case, it checks

whether the given directory contains a PackageInfo.g �le, and extracts all needed metadata

23

AutoDoc 24

from that. This is for example useful if you have multiple versions of the package around and

want to make sure the documentation of the correct version is built.

If this argument is omitted, AutoDoc uses the DirectoryCurrent().

optrec

optrec can be a record with some additional options. The following are currently supported:

dir This should be a string containing a (relative) path or a Directory() object specifying where

the package documentation (i.e. the GAPDoc XML �les) are stored.

Default value: "doc/".

scaffold

This controls whether and how to generate scaffold XML �les for the package documen-

tation.

The value should be either true, false or a record. If it is a record or true (the latter is

equivalent to specifying an empty record), then this feature is enabled. It is also enabled

if opt.scaffold is missing but the package's info record in PackageInfo.g has an

AutoDoc entry. In all other cases (in particular if opt.scaffold is false), scaffolding

is disabled.

If scaffolding is enabled, and PackageInfo.AutoDoc exists, then it is assumed to be a

record, and its contents are used as default values for the scaffold settings.

If opt.scaffold is a record, it may contain the following entries.

includes

A list of XML �les to be included in the body of the main XML �le. If you specify

this list and also are using AutoDoc to document your operations with AutoDoc

comments, you can add _AutoDocMainFile.xml to this list to control at which point

the documentation produced by AutoDoc is inserted. If you do not do this, it will be

added after the last of your own XML �les.

index

By default, the scaffold creates an index. If you do not want an index, set this to

false.

appendix

This entry is similar to opt.scaffold.includes but is used to specify �les to in-

clude after the main body of the manual, i.e. typically appendices.

bib

The name of a bibliography �le, in Bibtex or XML format. If this key is not set, but

there is a �le doc/PACKAGENAME.bib then it is assumed that you want to use this as

your bibliography.

entities

A record whose keys are taken as entity names, set to the corresponding (string)

values. For example, if you pass the record �SomePackage�,

rec(SomePackage := "<Package>SomePackage</Package>",

RELEASEYEAR := "2015")

then the following entity de�nitions are added to the XML preamble:

<!ENTITY SomePackage '<Package>SomePackage</Package>'>

<!ENTITY RELEASEYEAR '2015'>

AutoDoc 25

This allows you to write �&SomePackage;� and �&RELEASEYEAR;� in your doc-

umentation, which will be replaced by respective values speci�ed in the entities de�-

nition.

TitlePage

A record whose entries are used to embellish the generated titlepage for the package

manual with extra information, such as a copyright statement or acknowledgments.

To this end, the names of the record components are used as XML element names,

and the values of the components are outputted as content of these XML elements.

For example, you could pass the following record to set a custom acknowledgements

text:

rec(Acknowledgements := "Many thanks to ...")

For a list of valid entries in the titlepage, please refer to theGAPDocmanual, specif-

ically section (GAPDoc: TitlePage).

MainPage

If scaffolding is enabled, by default a main XML �le is generated (this is the �le

which contains the XML doctype and more). If you do not want this (e.g. because

you have a handwritten main XML �le), but still want AutoDoc to generate a title

page for you, you can set this option to false

document_class

Sets the document class of the resulting PDF. The value can either be a string which

has to be the name of the new document class, a list containing this string, or a list of

two strings. Then the �rst one has to be the document class name, the second one the

option string (contained in []) in LaTeX.

latex_header_file

Replaces the standard header from GAPDoc completely with the header in this La-

TeX �le. Please be careful here, and look at GAPDoc's latexheader.tex �le for an

example.

gapdoc_latex_options

Must be a record with entries which can be understood by SetGapDocLaTeXOptions.

Each entry can be a string, which will be given toGAPDoc directly, or a list contain-

ing of two entries: The �rst one must be the string "�le", the second one a �lename.

This �le will be read and then its content is passed to GAPDoc as option with the

name of the entry.

autodoc

This controls whether and how to generate addition XML documentation �les by scanning

for AutoDoc documentation comments.

The value should be either true, false or a record. If it is a record or true (the latter is

equivalent to specifying an empty record), then this feature is enabled. It is also enabled

if opt.autodoc is missing but the package depends (directly) on the AutoDoc package.

In all other cases (in particular if opt.autodoc is false), this feature is disabled.

If opt.autodoc is a record, it may contain the following entries.

files

A list of �les (given by paths relative to the package directory) to be scanned

for AutoDoc documentation comments. Usually it is more convenient to use

autodoc.scan_dirs , see below.

AutoDoc 26

scan_dirs

A list of subdirectories of the package directory (given as relative paths) which

AutoDoc then scans for .gi, .gd, .g, and .autodoc �les; all of these �les are then

scanned for AutoDoc documentation comments.

Default value: [".", "gap", "lib", "examples", "examples/doc"].

level

This de�nes the level of the created documentation. The default value is 0. When

parts of the manual are declared with a higher value they will not be printed into the

manual.

gapdoc

This controls whether and how to invoke GAPDoc to create HTML, PDF and text �les

from your various XML �les.

The value should be either true, false or a record. If it is a record or true (the latter is

equivalent to specifying an empty record), then this feature is enabled. It is also enabled

if opt.gapdoc is missing. In all other cases (in particular if opt.gapdoc is false), this

feature is disabled.

If opt.gapdoc is a record, it may contain the following entries.

main

The name of the main XML �le of the package manual. This exists primarily to

support packages with existing manual which use a �lename here which differs from

the default. In particular, specifying this is unnecessary when using scaffolding.

Default value: PACKAGENAME.xml.

files

A list of �les (given by paths relative to the package directory) to be scanned

for GAPDoc documentation comments. Usually it is more convenient to use

gapdoc.scan_dirs , see below.

scan_dirs

A list of subdirectories of the package directory (given as relative paths) which

AutoDoc then scans for .gi, .gd and .g �les; all of these �les are then scanned for

GAPDoc documentation comments.

Default value: [".", "gap", "lib", "examples", "examples/doc"].

gap_root_relative_path

Either a boolean, or a string containing a relative path. By default (if this option is not

set, or is set to false), references in the generated documentation referring to external

documentation (such as the GAP manual) are encoded using absolute paths. This is

�ne as long as the documentation stays on only a single computer, but is problematic

when preparing documentation that should be used on multiple computers, e.g., when

creating a distribution archive of a GAP package.

Thus, if a relative path is provided via this option (or if it is set to true, in which case

the relative path ../../.. is used), then AutoDoc and GAPDoc attempt to replace

all absolute paths in references to GAP manuals by paths based on this relative path.

On a technical level, AutoDoc passes the relative path to the gaproot parameter of

MakeGAPDocDoc (GAPDoc: MakeGAPDocDoc)

maketest

The maketest item can be true or a record. When it is true, a simple maketest.g is created

AutoDoc 27

in the main package directory, which can be used to test the examples from the manual.

As a record, the entry can have the following entries itself, to specify some options.

�lename

Sets the name of the test �le.

commands

A list of strings, each one a command, which will be executed at the beginning of the

test �le.

4.2 Examples

Some basic examples for using AutoDoc were already shown in Chapter 1.

Index

AProperty

for IsObject, 13

testlabel, 13

AutoDoc, 23

AutoDocWorksheet, 22

FirstOperation

for IsInt, 19

makedoc.g, 5

SecondOperation

for IsInt, IsGroup, 19

ThirdOperation

for IsGroupIsGroup, , 19

28

	Getting started using AutoDoc
	Creating a package manual from scratch
	Documenting code with AutoDoc
	Using AutoDoc in an existing GAPDoc manual
	Scaffolds
	AutoDoc worksheets

	AutoDoc documentation comments
	Documenting declarations
	Other documentation comments
	Title page commands
	Plain text files
	Grouping
	Level
	Markdown-like formatting of text in AutoDoc

	AutoDoc worksheets
	Worksheets

	AutoDoc
	The AutoDoc() function
	Examples

