| v

ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2011 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 5.8.3
March 28 2011

Copyright © 1997-2011 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 28 2011

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

1.1 Installing the Binary Release

1 User's Guide

How to install Erlang/OTP on UNIX or Windows.

1.1 Installing the Binary Release

1.1.1 UNIX

Introduction
The system is delivered as a single compressed tar file.
To browse the on-line HTML documentation, Netscape or an equivalent browser supporting frames is needed.

Installation Procedure

When installed, the entire system, except for a small start-up script, residesin asingle directory tree. The location of
this directory tree can be chosen arbitrarily by the installer, and it does not need to be in the user's $PATH. The only
requirements are that the file system whereit is placed has enough free space, and that the users who run Erlang/OTP
have read access to it. In the example below, the directory tree is assumed to be located at / usr/ | ocal / er | ang,
which is here called the top-level directory.

It is assumed that you have the compressed tar file, the name of which is <PREFI X>. t ar . gz, where <PREFI X>
isastring denoting the particular Erlang/OTP release, e.g. ot p_LXA 11930_sunos5_R9B.

Wherever the string <PREFI X> is used below, it should be replaced by the actual name prefix of the compressed
tar file.

The tape archive file does not have one single directory in which all other files are rooted. Therefore the tape archive
file must be extracted into an empty (newly created) directory.

e |f thetop-level directory does not already exist, create it:

nkdir /usr/local/erlang

* Changethe current directory to the top level directory:

cd /usr/local/erlang

» Createtheingtallation directory with an appropriate name. For example:

nkdir otp_r7b

« Changeto theinstallation directory, e.g.

cd otp_r7b

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Installation Verification

e Assuming the compressed tar file residesin the directory <SOVE- DI R>,. extract the compressed tar file into the
current directory:

gunzip -c <SOVE-DI R>/ <PREFI X>.tar.gz | tar xfp -

* Read the README file in the installation directory for last minute updates, before proceeding.

e Runthelnstall scriptin the installation directory, with the absolute path of the installation directory as
argument,

./lnstall /usr/local/erlang/otp_r7b

and supply answers to the prompts.

In most cases, thereisadefault answer in square brackets([]). If thedefault is satisfactory, just press<Ret ur n>.
In general you are only prompted for one thing:

e "Doyou want to use aminimal system startup instead of the SASL startup?"
In aminimal system, only the Kernel and STDLIB applications are loaded and started. If the SASL startup
isused, the SASL application isincluded aswell. Normally, the minimal system is enough.

e Make Erlang/OTP available for users, either by putting the path / usr /| ocal / erl ang/ ot p_r 7b/ bi n in
users $PATH variable, or link the executable/ usr /| ocal / er| ang/ ot p_r 7b/ bi n/ er| accordingly, e.g.:

In -s /usr/local/erlang/otp_r7b/bin/erl /usr/local/bin/erl

1.1.2 Windows

Introduction
The systemisdelivered asasingle. exe file.

To browse the on-line HTML documentation, Netscape or an equivalent browser supporting framesis needed.

Installation Procedure

Theinstallation procedure isis automated. Double-click the . exe fileicon and follow the instructions.

1.2 Installation Verification

This chapter is about verifying your installation by performing afew simple tests to see that your system is properly
installed.

1.2.1 UNIX

e Start Erlang/OTP from the command line,

uni x> erl

Expect the following output:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

1.3 Building and Installing Erlang/OTP

Erl ang (BEAM emul ator version 5.0.1 [threads]

Eshell V5.0.1 (abort with *"Q
1>

Start the GS-based toolbar from the Erlang shell,

1> tool bar:start ().

and check that the toolbar window pops up.

Note: The trailing full stop (". ") is an end marker for all commands in the Erlang shell, and must be entered
for acommand to begin execution.

Exit by entering the command hal t (),

2> hal t().

which should end both the toolbar window and the command line window.

1.2.2 Windows

Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.
Expect acommand line window to pop up with the following output,

Erl ang (BEAM enul ator version 5.0.1 [threads]

Eshell V5.0.1 (abort with "G
1>

Start the GS-based toolbar from the Erlang shell,

1> tool bar:start().

and check that the toolbar window pops up.

Note: The trailing full stop (*. ") is an end marker for all commands in the Erlang shell, and must be entered
for a command to begin execution.

Exit by entering the command hal t (),

2> halt().

which should end both the toolbar window and the command line window.

1.3 Building and Installing Erlang/OTP

Table of Contents

Introduction
Daily Build and Test

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Building and Installing Erlang/OTP

Versions Known NOT to Work

Required Utilities
e Unpacking
e Building

* Building Documentation
e Buildingin Git

* Installing

How to Build and Install Erlang/OTP
e Unpacking

e Configuring

e Building

e Installing

e ACloser Look at the individual Steps

e Configuring

e Building

e Ingtalling

» Alternative Installation Procedures

e Symboalic Linksin --bindir
e Pre-built Source Release
e Buildingin Git
e makeand $ERL_TOP
The Erlang/OTP Documentation
e How to Build the Documentation

e Build Issues
* Howto Install the Pre-formatted Documentation
Support for SMP (Symmetric Multi Processing)
GS (Graphic System)
Using HiPE
Mac OS X (Darwin)
How to Build a Debug Enabled Erlang RunTime System
Authors
Copyright and License
More Information
Modifying This Document

1.3.1 Introduction

This document describes how to build and install Erlang/OTP-R14B02. Y ou are advised to read the whole document
before attempting to build and install Erlang/OTP. Y ou can find more information about Open Source Erlang/OTP at:

http://www.erlang.or g/
The source code for Erlang/OTP can also be found in a Git repository:
http://github.com/erlang/otp

Erlang/OTP should be possible to build from source on any Unix system, including Mac OS X. This document
describes how to native compile Erlang/OTP on Unix. For detailed instructions on how to

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

href
href

1.3 Building and Installing Erlang/OTP

e cross compile Erlang/OTP, see the $ERL_TOP/INSTALL-CROSSmd document.
* Dbuild Erlang/OTP on Windows, see the $ERL_TOP/INSTALL-WIN32.md document.

Binary releases for Windows can be found at http://www.erlang.or g/download.html.

Before reading the above mensioned documents you are in any case advised to read this document first, sinceit covers
building Erlang/OTP in general aswell as other important information.

1.3.2 Daily Build and Test

« Solaris 8,9
e Sparc32
e Sparctd

e Solaris10
e Sparc32
e Sparctd
e x86

e SuSELinux/GNU 9.4, 10.1
e Xx86

e SUuSE Linux/GNU 10.0, 10.1
e x86
e Xx86 64

e SuSELinux/GNU 11.0
* X86 64

e Gentoo Linux/GNU 1.12.11.1
e Xx86

« MontaVistaLinux/GNU 4.0.1
PowerPC

e FreeBSD 7.1
e x86

e MacOSX 10.4.11 (Tiger), 10.5.8 (Leopard), 10.6.0 (Snow Leopard)
e x86

e Windows XP SP3, 2003, Vista, 7
e x86

We aso have the following "Daily Cross Builds":

* SUSE Linux/GNU 10.1 x86 -> SUSE Linux/GNU 10.1 x86_64
* SuSE Linux/GNU 10.1 x86_64 -> Linux/GNU TILEPro64

and the following "Daily Cross Build Tests":
e SUSE Linux/GNU 10.1 x86_64

1.3.3 Versions Known NOT to Work

e Suselinux 9.1isshipped withapatched GCC version 3.3.3, havingtherpmnamedgcc- 3. 3. 3- 41. That version
has a serious optimization bug that makes it unusable for building the Erlang emulator. Please upgrade GCC to a
newer version before building on Suse 9.1. Suse Linux Enterprise edition 9 (SLES9) hasgcc- 3. 3. 3-43 and
is not affected.

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.3 Building and Installing Erlang/OTP

gcc- 4. 3. 0 has a serious optimizer bug. It produces an Erlang emulator that will crash immediately. The bug
issupposed to befixedingcc- 4. 3. 1.

FreeBSD had a bug which caused kqueue/pol | /sel ect tofail to detect thatawri t ev() onapipe hasbeen
made. This bug should have been fixed in FreeBSD 6.3 and FreeBSD 7.0. NetBSD and DragonFlyBSD probably
have or have had the same bug. More information can be found at:

e http://www.freebsd.or g/cgi/cvsweb.cgi/sr c/sys’kern/sys pipe.c

« http://lists.freebsd.or g/piper mail/fr eebsd-ar ch/2007-September/006790.html

get cwd() on Solaris9 can cause an emulator crash. If you have async-threads enabled you can increase the stack
size of the async-threads as a temporary workaround. See the +a command-line argument in the documentation
of er| (1) . Without async-threads the emulator is not as vulnerable to this bug, but if you hit it without async-
threads the only workaround available is to enable async-threads and increase the stack size of the async-threads.
Sun has however released patches that fixes the issue:

Problem Description: 6448300 large mnttab can cause stack overrun during Solaris 9 getcwd
More information can be found at:

* http://sunsolve.sun.com/sear ch/document.do?assetk ey=1-21-112874-40-1& sear chclause=6448300
e http://sunsolve.sun.com/sear ch/document.do?assetkey=1-21-114432-29-1& sear chclause=6448300

1.3.4 Required Utilities
These are the tools you will need in order to unpack and build Erlang/OTP.

Unpacking

GNU unzip, or amodern uncompress.
A TAR program that understands the GNU TAR format for long filenames (such as GNU TAR).

Building

GNU nmake

gcc -- GNU C compiler

Perl 5

GNU m4 -- If HiPE (native code) support is enabled. HiPE can be disabled using - - di sabl e- hi pe

ncur ses,terncap,orterm i b -- The development headers and libraries are needed, often known as
ncur ses-devel . Use- - wi t hout - t er ncap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

OpenSSL -- Optional, but needed for building the Erlang/OTP applicationsss| and cr ypt 0. You need

the "devel opment package" of OpenSSL, i.e. including the header files. For building the application ssl the

OpenSSL binary command program openss| isalso needed. At least version 0.9.7 of OpenSSL is required.
Can be downloaded from http://www.openssl.org.

Sun Java jdk-1.5.0 or higher -- Optional but needed for building the Erlang/OTP application j i nt er f ace and
partsof i ¢ and or ber . Can be downloaded from http://java.sun.com. We have also tested IBM's JDK 1.5.0.
X Windows -- Optional, but devel opment headers and libraries are needed to build the Erlang/OTP application
gs on Unix/Linux.

sed -- There seem to be some problems with some of the sed version on Solaris. Make sure/ bi n/ sed or/
usr/ bi n/ sed isused on the Solaris platform.

f I ex -- Optional, headers and libraries are needed to build thef | ex scanner for the megaco application on
Unix/Linux.

Building Documentation

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

href
href
href
href
href
href

1.3 Building and Installing Erlang/OTP

e Xsltproc -- XSLT processor. A tool for applying XSLT stylesheets to XML documents. Can be downl oaded
from http://xmlsoft.or g/X SL T/xdtproc2.html.

« fop -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.org/
fop.

Building in Git
e« GNU aut oconf of at least version 2.59. Note that aut oconf is not needed when building an unmodified
version of the released source.

Installing
* Aninstall program that can take multiple file names.

1.3.5 How to Build and Install Erlang/OTP

The following instructions are for building the released sourcetar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below. If you are building in git you
probably want to take alook at the Building in Git section below before proceeding.

Unpacking
Step 1: Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.

$ gunzip -c otp_src_R14B02.tar.gz | tar xf -

aternatively:

$ zcat otp_src_R14B02.tar.gz | tar xf -

Step 2: Now cd into the base directory (SERL_TCP).

$ cd otp_src_R14B02

Configuring

Step 3: On some platforms Perl may behave strangely if certain locales are set, so optionally you may need to set
the LANG variable:

Bourne shell
$ LANG=C, export LANG

or
C- Shel |

$ setenv LANG C

Step 4: Run the following commands to configure the build:

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href

1.3 Building and Installing Erlang/OTP

$./configure [options]

By default, Erlang/OTP will be installed in /usr/local/{bin,lib/erlang}. To instead ingtal in
<BaseDi r>/{bin,|ib/erlang},usethe--prefix=<BaseDi r > option.

If you upgraded the source with some patch you may need to clean up from previous builds before the new build.
Before doing amake cl ean, be sureto read the Pre-built Source Release section below.

Building

Step 5: Build the Erlang/OTP package.

$ nmake

Installing
Step 6: Install then Erlang/OTP package

$ make install

A Closer Look at the individual Steps
L et us go through them in some detail.
Configuring

Step 4 runs a configuration script created by the GNU autoconf utility, which checks for system specific features and
then creates a number of makefiles.

The configure script alows you to customize a number of parameters; type ./ configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for al
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
lusr/local/{bin,lib/erlang}.Tokeepthesame structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis: . / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are;

e --prefix=PATH- Specify installation prefix.

e --{enabl e, di sabl e} -t hreads - Thread support (enabled by default if possible)

e --{enabl e, di sabl e} - snp- support - SMP support (enabled by default if possible)

e --{enabl e, di sabl e}-kernel - pol | -Kernel poll support (enabled by default if possible)
--{enabl e, di sabl e} - hi pe - HiPE support (enabled by default on supported platforms)

* --enabl e-darw n-uni versal -Builduniversal binaries on darwin i386.

e --enabl e-darwi n-64bi t - Build 64-bit binaries on darwin

e --enabl e- n64- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc

e --enabl e- nB2- bui | d - Build 32-bit binariesusing the - n82 flagto (g) cc

e --{with,w thout}-terntap -termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC- Specify Javacompiler to use

e --{with,w thout}-javac - Javacompiler (without impliesthat thej i nt er f ace application won't be
built)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

1.3 Building and Installing Erlang/OTP

e --{enabl e, di sabl e}-dynani c-ssl -1i b - Dynamic OpenSSL libraries
e --{enabl e, di sabl e}-shar ed- zl i b - Shared zlib library
e --W th-ssl =PATH- Specify location of OpenSSL include and lib

e --{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt o, ssh, and ssl won't be built)
* --enabl e-et hread- pre-pentiunmd-conpati bility - Enable compatibility with x86 processors

before pentium 4 (back to 486) in the ethread library. If not passed the ethread library (part of the runtime
system) will use instructions that first appeared on the pentium 4 processor when building for x86. This option
will be automatically enabled if required on the build machine.

e --with-libatom c_ops=PATH- Usethel i bat om c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try
usingthel i bat om c_ops library. It can be downloaded from http://www.hpl.hp.com/r esear ch/linux/
atomic_opsg.

If you or your system has special requirements please read the Makef i | e for additional configuration information.
Building

Step 5 buildsthe Erlang/OTP system. On afast computer, thiswill take about 5 minutes. After completion of this step,
you should have a working Erlang/OTP system which you can try by typing bi n/ er | . This should start up Erlang/
OTP and give you a prompt:

$ bin/erl
Erl ang R14B02 (erts-5.8.3) [source] [snp:4:4] [rq:4] [async-threads: 0] [kernel-poll:false]

Eshell V5.8.3 (abort with *"Q
1> _

Installing

Step 6 is optional. It installs Erlang/OTP at a standardized location (if you change your mind about where you wish
to install you can rerun step 4, without having to do step 5 again).

Alternative I nstallation Procedures

e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI Rvariable:

$ make DESTDI R=<tnp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill besetto| NSTALL _PREFI X. Notethat | NSTALL _PREFI X
in pre R13B04 was buggy and behaved as EXTRA_PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

$./configure --prefix=/opt/local
make
make DESTDI R=/tnp/erlang-build install
cd /tnp/erlang-buil d/opt/local

gnu-tar is used in this exanple
tar -zcf /honme/me/ my-erlang-build.tgz *
su -

R e R

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

1.3 Building and Installing Erlang/OTP

Password: **xxx
$ cd /opt/l ocal
$ tar -zxf /hone/ me/ny-erlang-build.tgz

Install using ther el ease target. Instead of doing make i nstal | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangifyoudotheinstall using make i nstal | .All installation paths provided in the
confi gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want linksfrom a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

./ configure

make

make RELEASE ROOT=/ hone/ me/ OTP r el ease
cd / hone/ ne/ OTP

./lnstall -mniml /hone/ne/ OTP

nkdir -p /home/ e/ bin

cd /hore/ ne/ bin

In -s /honme/ me/ OTP/ bin/erl erl

In -s /honme/ me/ OTP/ bin/erlc erlc

In -s /home/ ne/ OTP/ bi n/ escript escript

R R A

Thel nst al | script should currently be invoked as follows in the directory where it resides (the top directory):

$./Install [-cross] [-mninmal|-sasl] <ERL_ROOT>

where:

 -m ni mal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

* -sasl Createsan installation that also starts up the sas| application.
e -cross For cross compilation. Informs the install script that it is run on the build machine.
e <ERL_ROQOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe

current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

Testinstall using EXTRA_PREFI X. The content of the EXTRA_PREFI Xvariablewill prefix all installation paths
when doing make i nst al | . Notethat EXTRA_PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA _PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA PREFI X.

Symbolic Links in --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ 1 ocal / bi ntoal public Erlang/OTP executablesin/ usr /1 ocal /1i b/ er| ang/ bi n. Theinstallation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- pr ef i x defaultsto - - prefi x. --prefix,
--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconfi gur e. Onecanforce

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

1.3 Building and Installing Erlang/OTP

relative, or absolute links by passing Bl NDI R_SYML_I NKS=r el at i ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.
Pre-built Source Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_buil d renpbve_prebuilt fil es fromthe $SERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

Warning:
Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping
the build.

Doing ./ ot p_buil d save_ boot st rap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing nake cl ean../otp_build save_boot st rap will
be invoked automatically when make isinvoked from $ERL_TOP with either the cl ean target, or the default
target. It isalso automatically invoked if . / ot p_bui | d renove prebuilt fil es isinvoked.

Building in Git
When building in a Git working directory you also have to have a GNU aut oconf of at least version 2.59 on your
system. This since you need to generate the conf i gur e scripts before you can start building.

Theconfi gur e scripts are generated by invoking . / ot p_bui I d aut oconf inthe $ERL_TOP directory. The
conf i gur e scripts aso have to be regenerated whenaconf i gure. i noracl ocal . n% file has been modified.
Note that when checking out abranch aconfi gure. i n or acl ocal . n4 file may change content, and you may
therefore have to regenerate the conf i gur e scripts when checking out a branch. Regenerated conf i gur e scripts
imply that you have to run conf i gur e and build again.

Note:

Running . / ot p_bui | d aut oconf isnot needed when building an unmaodified version the released source.

Other useful information can be found at our github wiki: http://wiki.github.com/er lang/otp

make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_ TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it
will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

$ cd lib/stdlib; env ERL_TOP=<Dir> make

where <Di r > would be what you find ERL_ TOP is set to in the top level Makefile.

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.3 Building and Installing Erlang/OTP

1.3.6 The Erlang/OTP Documentation

How to Build the Documentation

$ cd $ERL_TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]

When building the documentation you need a full Erlang/OTP-R14B02 system in the SPATH.

$ export PATH=<Er| ang/ OTP- R14B02 bi n dir>: $PATH # Assumi ng bash/sh

Build the documentation.

$ make docs

The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

« If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al I -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing make install .

$ make install-docs

« Ifyouhaveinstalled Erlang/OTPusingther el ease target, install the documentationusingther el ease_docs
target. You typically want to use the same RELEASE ROOT aswhen invoking meke r el ease.
$ make rel ease_docs RELEASE ROOT=<r el ease dir>

Build | ssues

We have sometimes experienced problems with Sun's j ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xnx<Installed amount of RAMin MB>nf

More information can be found at http://xmlgraphics.apache.or g/fop/0.95/r unning.html#memory.

How to Install the Pre-formatted Documentation

Pre-formatted html documentation and man pages can be downloaded at http://www.erlang.or g/download.html.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

href
href
href
href

1.3 Building and Installing Erlang/OTP

For some graphical toolsto find the on-line help you have to install the HTML documentation on top of the installed
OTP applications, i.e.

$ cd <Rel easeDir>
$ gunzip -c otp_htm _R14B02.tar.gz | tar xf -

Forerl -man <page> towork the Unix manual pages haveto beinstalled in the same way, i.e.

$ cd <Rel easeDir>
$ gunzip -c otp_man_R14B02.tar.gz | tar xf -

Where<Rel easeDi r > is

o <PrefixDir>/Iib/erlangifyouhaveinstaled Erlang/OTP using make i nstall.

 $DESTDI R<PrefixDir>/1ib/erlangif youhaveinstaled Erlang/OTP using neke i nstal |
DESTDI R=<Tnpl nstal | Di r >.

« RELEASE_ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

1.3.7 Support for SMP (Symmetric Multi Processing)

An emulator with SMP support will be built by default on most platforms if a usable POSIX thread library or native
Windows threadsis found.

You can force building of an SMP emulator, by using . / confi gure --enabl e- snp-support . However, if
configure does not automatically enable SMP support, the build is very likely to fail.

Use./configure --disabl e-snp-support if youfor some reason do not want to have the emulator with
SMP support built.

If SMP support isenabled, support for threaded 1/0 will also be turned on (also in the emul ator without SM P support).

The er | command will automatically start the SMP emulator if the computer has more than one logical processor.
You can force a start of the emulator with SMP support by passing - snmp enabl e as command line arguments to
erl, and you can force a start of the emulator without SMP support by passing - snp di sabl e.

1.3.8 GS (Graphic System)
GSnow Tcl/Tk 8.4. It will be searched for when starting GS.

1.3.9 Using HIPE

HiPE supports the following system configurations:
* x86: All 32-bit and 64-bit mode processors should work.
* Linux: Fedora Coreis supported. Both 32-bit and 64-bit modes are supported.
NPTL glibcisstrongly preferred, or a LinuxThreads glibc configured for "floating stacks'. Old non-floating
stacks glibcs have afundamental problem that makes HiPE support and threads support mutually exclusive.

» Solaris: Solaris 10 (32-bit and 64-hit) and 9 (32-bit) are supported. The build requires aversion of the GNU C
compiler (gec) that has been configured to use the GNU assembler (gas). Sun's x86 assembler isemphatically
not supported.

* FreeBSD: FreeBSD 6.1 and 6.2 in 32-hit and 64-bit modes should work.
e MacOSX/Darwin: Darwin 9.8.0 in 32-bit mode should work.

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Building and Installing Erlang/OTP

e PowerPC: All 32-hit 6xx/7xx(G3)/74xx(G4) processors should work. 32-bit mode on 970 (G5) and POWERS
processors should work.

e Linux (Yellow Dog) and Mac OSX 10.4 are supported.
e SPARC: All UltraSPARC processors running 32-bit user code should work.

e Solaris9is supported. The build requiresagcc that has been configured to use Sun's assembler and linker.
Using the GNU assembler but Sun's linker has been known to cause problems.

e Linux (Aurora) is supported.
e ARM: ARMV5TE (i.e. XScale) processors should work. Both big-endian and little-endian modes are supported.

e Linuxissupported.
HiPE is automatically enabled on the following systems:

e X86 in 32-bit mode: Linux, Solaris, FreeBSD
e X86in 64-bit mode: Linux, Solaris, FreeBSD
e PowerPC: Linux, MacOSX

e SPARC: Linux

e ARM: Linux

On other supported systemsyou needto . / confi gure --enabl e- hi pe.

If you are running on a platform supporting HiPE and if you have not disabled HiPE, you can compile a module into
native code like this from the Erlang shell:

1> c(Mdul e, native).

or

1> c(Modul e, [native| G herOptions]).

Using the erlc program, write like this:

$ erlc +native Mdul e.erl

The native code will be placed into the beam file and automatically loaded when the beam file is loaded.
To add hipe options, write like this from the Erlang shell:

1> c(Mdul e, [native, {hipe, H peOpti ons}| MoreOpti ons]).

Use hi pe: hel p_opti ons/ 0 to print out the available options.

1> hi pe: hel p_options().

1.3.10 Mac OS X (Darwin)
Wetest Mac OS X 10.4.11 (Tiger) and Mac OS X 10.5.x (Leopard) in our daily builds (but only on Intel processors).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

1.3 Building and Installing Erlang/OTP

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et ¢/
host confi g).

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
flat _nanmespace -undefined suppress. Youalsoinclude - f no- conmon in CFLAGS when compiling.
Use. so asthelibrary suffix.

Universal 32bit binaries can be built on an Intel Mac using the- - enabl e- dar wi n- uni ver sal configure option.
There still may occur problems with certain applications using this option, but the base system should run smoothly.

When building universal binaries on a PowerPC Mac (at least on Tiger), you must point out a suitable SDK that
contains universal binaries. For instance, to build universal binaries for Tiger (10.4):

$ CFLAGS="-i sysroot /Devel oper/SDKs/ MacOSX10. 4u. sdk" \
LDFLAGS="-i sysroot [/ Devel oper/ SDKs/ MacOSX10. 4u. sdk" \
./ configure --enabl e-darw n-uni ver sal

Also, if you run Leopard, but want to build for Tiger, you must do by setting the MACOSX DEPLOYMENT _TARGET
environmental variable.

$ export MACOSX_DEPLOYMENT_ TARGET=10. 4

Experimental support for 64bit x86 darwin binaries can be enabled usingthe - - enabl e- dar wi n- 64bi t configure
flag. The 64bit binaries are best built and run on Leopard, but most of the system also works on Tiger (Tiger's 64bit
libraries are, however, limited; thereforee.g. odbc, cr ypt 0, ssl etc. are not supported in Tiger). 64bit PPC binaries
are not supported and we have no plans to add such support (no machines to test on).

Universal binaries and 64bit binaries are mutually exclusive options.

1.3.11 How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to SERL_TOP/ ert s/ emul at or .

In this directory execute:

$ make debug FLAVOR=$FLAVOR

where $FLAVCR is either pl ai n or snp. The flavor options will produce a beam.debug and beam.smp.debug
executable respectively. Thefiles are installed along side with the normal (opt) versionsbeam snp and beam

To start the debug enabled runtime system execute:

$ $ERL_TOP/ bi n/ cer| -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
adeveloper ensure correctness. Some of these features can be enabled on a normal beam using appropriate configure
options.

There are other types of runtime systemsthat can be built as well using the similar steps just described.

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 Cross Compiling Erlang/OTP

$ make $TYPE FLAVOR=$FLAVOR

where $TYPE is opt, gcov, gpr of , debug, val gri nd, or | cnt . These different beam types are useful for
debugging and profiling purposes.

1.3.12 Authors

Authors are mostly listed in the application's AUTHORS files, that is $ERL_TOP/ | i b/ */ AUTHORS and
$ERL_TOP/ er t s/ AUTHORS, not in the individual source files.

1.3.13 Copyright and License
Copyright Ericsson AB 1998-2010. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. Y ou should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the Licenseis distributed on an "ASIS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. Seethe License for the specific language governing rights and limitations under the License.

1.3.14 More Information

More information can be found at http://www.erlang.or g.

1.3.15 Modifying This Document
Before modifying this document you need to have alook at the SERL_TOP/ README. nd. t xt document.

1.4 Cross Compiling Erlang/OTP
Table of Contents

e Introduction
e otp_build Versus configure/make
e Cross Configuration
e What can be Cross Compiled?
e Compatibility
e Patches
e Build and Install Procedure
e Building With configure/make Directly
» Building a Bootstrap System
e CrossBuilding the System
e Ingtalling
* Installing Using Paths Determined by configure
e Installing Manually
e Building With the otp_build Script
e Currently Used Configuration Variables
e Variablesfor otp_build Only
e Cross Compiler and Other Tools
e Dynamic Erlang Driver Linking

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

href

1.4 Cross Compiling Erlang/OTP

e LargeFile Support
e Other Tools
e Cross System Root Locations
e Optional Feature, and Bug Tests
e Copyright and License
e Modifying This Document

1.4.1 Introduction

This document describes how to cross compile Erlang/OTP-R14B02. Note that the support for cross compiling Erlang/
OTP should be considered as experimental. As far as we know, the R14B02 release should cross compile fine, but
since we currently have avery limited set of cross compilation environments to test with we cannot be sure. The cross
compilation support will remain in an experimental state until we get alot more cross compilation environments to
test with.

Y ou are advised to read the whole document before attempting to cross compile Erlang/OTP. However, before reading
thisdocument, you should read the SERL_TOP/INSTALL.md document which describesbuilding and installing Erlang/
OTPin general. $ERL_TOP isthe top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
configure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d
conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c-ssl -1i bisaddedtotheconfi gur e command lineargumentsunless
- -enabl e-dynami c- ssl -1 i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui | d. Thedefaultsused by ot p_bui | d confi gur e may change at any time without prior notice.

Cross Configuration

The SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are also listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. 0-ti | epro. conf file and the $ERL_TOP/ xconp/ er| -
xconp- x86_64-saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset al of these environment variables beforeinvoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except thewx application can be cross compiled. The build of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 Cross Compiling Erlang/OTP

Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks examplefileishighly
dependent on our environment and is here more or less only for internal use.
Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to
$ERL_TOP/ xconp/ er | - xconp. conf . t enpl at e, and useitinconfi gur e. i n. Other files that might need
to be updated are:

« S$ERL_TOP/ xconp/ erl - xconmp-vars. sh
e SERL_TOP/erl-build-tool-vars. sh
e $ERL _TOP/erts/aclocal .

e $ERL_TOP/ xconp/ README. nd

e« S$ERL_TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

1.4.2 Build and Install Procedure
If you are building in Git, you want to read the Building in Git section of $ERL_TOP/INSTALL.md before proceeding.
We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

Building With configure/make Directly

D
Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL_TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build the documentation out of the same source tree as you are cross compiling in, you currently need
afull Erlang/OTP system of the same release as the one being built for the build machine. If thisis the case, build and
install one for the build machine (or use one already built) and add it to the SPATH before cross building, and building
the documentation. See the How to Build the Documentation section in the $ERL_TOP/INSTALL.md document for
information on how to build the documentation.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System
@

$./configure --enabl e-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

href
href

1.4 Cross Compiling Erlang/OTP

the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
make boot st r ap; otherwise, the whole system will be built.

Cross Building the System
(©)

$./configure --host=<HOST> --buil d=<BU LD> [her Config Args]
$ nmake

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by executing $ERL_TOP/ er t s/ aut oconf/ confi g. sub
<HOST>. If conf i g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- CS triplet of the system that you build on. If you execute SERL_TOP/
ert s/ aut oconf/ confi g. guess, it will in most cases print the triplet you want to use for this.

Pass the cross compilation variables as command line argumentsto conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Note:

You can not pass a configuration file using the - - xconp- conf argument when you invoke conf i gur e
directly. The - - xconp- conf argument can only bepassedtoot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. make
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Warning:

Invoking make ERL_XCOMP_FORCE DI FFERENT _OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing
You can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Deter mined by configure

(4)

$ nmeke install DESTDI R=<TEMPORARY_PREFI X>

meke install will instal at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - - exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr/ | ocal . You typically do not want to install your cross build under / usr/
| ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $SDESTDI R. This

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.4 Cross Compiling Erlang/OTP

makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine as it should be executed from on the target machine.

When meke install hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only be working on the target machine at the location determined
by confi gure.

Installing Manually
©)

$ make rel ease RELEASE ROOT=<RELEASE DI R>

make rel ease will copy what you have built for the target machine to <RELEASE DI R>. The | nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ | ocal /1i b/ erl ang.

Thel nst al | script used when installing Erlang/OTP requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$./Install [-cross] [-mnimal|-sasl] <ERL_ROOT>

where:

e« -mni mal Createsan installation that starts up a minimal amount of applications, i.e., only ker nel and
stdl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.

e -cross For cross compilation. Informsthe install script that it is run on the build machine.

e <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

Y ou can now either do:

(6)

« Decide where the installation should be located on the target machine, run the | nst al | script on the build

machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE DI R>
$./Install -cross [-mninal|-sasl] <ABSOLUTE_ | NSTALL_DI R_ON TARGET>

or:

()

« Packagetheinstalation in <RELEASE DI R>, place it wherever you want on your target machine, and run the
I nst al | script onyour target machine:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

1.4 Cross Compiling Erlang/OTP

$ cd <ABSOLUTE_ | NSTALL_DI R_ON TARGET>
$./Install [-mnimal|-sasl] <ABSOLUTE_|I NSTALL_DI R_ON TARGET>

Building With the otp_build Script
®

$ cd $ERL_TOP

(©)

$./otp_build configure --xconmp-conf=<FILE> [her Config Args]

aternatively:

$./otp_build configure --host=<HOST> --buil d=<BUI LD> [&t her Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er| _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUI LD> command line arguments.

ot p_bui I d confi gur e will configureboth for the boostrap system on the build machine and the crosshost system.
(10)

$./otp_build boot -a

otp_build boot -a willfirst build a bootstrap system for the build machine and then do the cross build of the
system.

(11)

$./otp_build rel ease -a <RELEASE DI R>

otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).
1.4.3 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 Cross Compiling Erlang/OTP

Note:

These variables currently have no effect if you configure using the conf i gur e script directly.

« erl _xconp_buil d-Thebuild system used. Thisvalue will be passed as- - bui | d=$er| _xconp_bui Il d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/ confi g. sub
$erl _xconp_build. If set to guess, the build system will be guessed using $ERL_TOP/ ert s/
aut oconf/confi g. guess.

e« erl_xconp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/
config.sub $erl _xconmp_host.

« erl_xconp_configure_fl ags - Extraconfigure flagsto passto theconf i gur e script.

Cross Compiler and Other Tools

If the crosscompilation toolsareprefixed by <HOST>- you probably do not need to set these variables (where<HOST>
iswhat has been passed as - - host =<HOST> argument to conf i gur e).

All variablesin this section can also be used when native compiling.
e CC- Ccompiler.

* CFLAGS - C compiler flags.

e STATI C_CFLAGS - Static C compiler flags.

e CFLAG _RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

* CPP - C pre-processor.

e CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

e CXXFLAGS - C++ compiler flags.

e LD-Linker.

e LDFLAGS - Linker flags.

e LIBS-Libraries.

Dynamic Erlang Driver Linking

Note:
Either set all or none of the DED _LD* variables.

e« DED_LD- Linker for Dynamically loaded Erlang Drivers.
e DED _LDFLAGS - Linker flagsto usewith DED LD.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - This flag should set runtime library search path for shared
libraries when linking with DED_LD.

LargeFile Support

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

1.4 Cross Compiling Erlang/OTP

Note:
Either set al or none of the LFS_* variables.

LFS_ CFLAGS - Largefile support C compiler flags.
LFS_LDFLAGS - Largefile support linker flags.
LFS LI BS- Largefile support libraries.

Other Tools

RANLI B -r anl i b archive index tool.
AR - ar archiving tool.

CGETCONF - get conf system configuration inspection tool. get conf iscurrently used for finding out largefile
support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Cross System Root Locations

erl _xconp_sysr oot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

erl _xconp_i sysroot - The absolute path to the system root for includes of the cross compilation

environment. If not set, this value defaults to $er | _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests

Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set these variabl es.

Warning:

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
conf i gur e issurethat it cannot figure the result out.

Theconf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will beissued.

erl _xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figure this out automatically.

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.5 How to Build Erlang/OTP on Windows

 erl_xconp_clock_gettinme_cpu_tinme-yes|no.Defaultsto no. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

e« erl_xconp_getaddrinfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both 1Pv4 and I1Pv6.

 erl_xconp_gethrvtime_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i nme() implementation and is used with procfsi oct | ().

« erl_xconmp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
workingdl sym(RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack theral | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

« erl_xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have aworking kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect () . If no and the
target system has not got epol | () or/ dev/ pol I , the kernel-poll feature will be disabled.

 erl_xconp_linux_clock _gettine_correction -yes|no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti ne(CLOCK_MONOTONI C, _) on thetarget system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

e erl_xconp_linux_nptl -yes| no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically less than 2.6).

e erl_xconp_linux_usabl e_sigal tstack-yes| no.Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

e« erl_xconp_linux_usabl e_si gusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically lessthan
2.2) used these signals and made them unusable by the ERTS.

* erl_xconp_pol | -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | () .

e erl_xconp_put env_copy - yes| no. Defaults to no. If yes, the target system must have a put env()
implementation that stores a copy of the key/value pair.

e erl_xconmp_reliable fpe-yes|no.Defaultstono. If yes, thetarget system must have reliable floating
point exceptions.

1.4.4 Copyright and License

Copyright Ericsson AB 2009-2010. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. Y ou should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the Licenseisdistributed on an"ASIS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. Seethe License for the specific language governing rights and limitations under the License.

1.4.5 Modifying This Document
Before modifying this document you need to have alook at the $ERL_TOP/ READMVE. nd. t xt document.

1.5 How to Build Erlang/OTP on Windows

Table of Contents

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25

1.5 How to Build Erlang/OTP on Windows

e Introduction

e Frequently Asked Questions

e Toolsyou Need and Their Environment
e The Shell Environment

* Building and Installing

e Development

* Final Words

e Copyright and License

* Modifying This Document

1.5.1 Introduction

This file describes how to build the Erlang emulator and the OTP libraries on Windows. The instructions apply to
versions of Windows supporting the Cygwin emulated gnuish environment for Windows. We've built on the following
platforms: Windows 2000 Professional, Windows 2003 server, Windows X P Home/Professional, and Windows Vista.
Any Windows95'ish platform will surely get you into trouble, what I'm not sure of, but it certainly will...

The procedure described uses Cygwin as a build environment, you run the bash shell in Cygwin and uses gnu make/
configure/autoconf etc to do the build. The emulator C-source code is, however, mostly compiled with Microsoft
Visual C++™ producing anative Windows binary. Thisisthe same procedure aswe useto build the pre-built binaries.
The fact that we use VC++ and not gcc is explained further in the FAQ section.

| describe the build procedure to make it possible for open source customers to build the emulator, given that they
have the needed tools. The binary Windows releases is still a preferred alternative if one does not have Microsoft's
development tools and/or don't want to install Cygwin.

To use Cygwin, one needs basic experience from a Unix environment, if one does not know how to set environment
variables, run programs etc in a Unix environment, one will be quite lost in the Cygwin ditto. | can unfortunately not
teach all the world how to use Cygwin and bash, neither how to install Cygwin nor perform basic tasks on acomputer.
Please refer to other documentation on the net for help, or use the binary release instead if you have problems using
thetools.

However, if you feel comfortable with the environment and build system, and have all the necessary tools, you have a
great opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions and patches
to the appropriate mailing lists to let them find their way into the next version of Erlang. If making changes to the
build system (like makefiles etc) please bear in mind that the same makefiles are used on Unix/VxWorks/OSEDelta,
so that your changes don't break other platforms. That of course goes for C-code too, system specific code resides
inthe$ERL_TOP/ ert s/ enul at or/ sys/w n32 and $ERL_TOP/ er t s/ et ¢/ Wi n32 directoriesmostly. The
$ERL_TOP/ ert s/ emul at or/ beam di r ect ory isfor common code.

Before the R9C release of Erlang/OTP, the Windows release was built partly on a Unix (Solaris) box and partly on a
Windows box, using Perl hacks to communicate and sync between the two machines. R9C was the first rel ease ever
built solely on Windows, where no Unix machine is needed at all. Now we've used this build procedure for a couple
of releases, and it has worked fine for us. Still, there might be all sorts of troubles on different machines and with
different setups. I'll try to give hints wherever I've encountered difficulties, but please share your experiences by using
the erlang-questions mailing list. | cannot of course help everyone with al their problems, please try to solve the
problems and submit solutions/workarounds. Remember, it's all about sharing, not about demanding...

Letsgo then, I'll start with alittle FAQ, based on in house questions and misunderstandings.

1.5.2 Frequently Asked Questions
e Q: So, now | can build Erlang using GCC on Windows?

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.5 How to Build Erlang/OTP on Windows

A: No, unfortunately not. You'll need Microsoft's Visual C++ still, a Bourne-shell script (cc.sh) wraps the Visual
C++ compiler and runs it from within the Cygwin environment. All other tools needed to build Erlang are free-
ware/open source, but not the C compiler.

Q: Why haven't you got rid of VC++ then, you ******?

A: Well, partly becauseit'sagood compiler - really! Actualy it's been possiblein late R11-releases to build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++
build as the performance has been much better in the VC++ versions. The mingw build will be back, but aslong
as VC++ gives better performance, the commercial build will be aVVC++ one.

Q: OK, VC++ you heed, but now you've started to demand a very recent (and expensive) version of Visual studio,
not the old and stable VC++ 6.0 that was used in earlier versions. Why?

A: The SMP version of Erlang needs featuresin the Visual Studio 2005. Can't live without them. Besides the new
compiler givesthe Erlang emulator a~40% performance boost(!). Alternatively you can build Erlang successfully
using the free (proprietary) Visual Studio 2008 Express edition C++ compiler.

Q: Can/will | build a Cygwin binary with the procedure you describe?

A: No, the result will be a pure Windows binary, and as far as| know, it's not possible to make a Cygwin binary
yet. That is of course something desirable, but there are till some problems with the dynamic linking (dynamic
Erlang driver loading) as well as the TCP/IP emulation in Cygwin, which, I'm sure of, will improve, but still has
some problems. Fixing those problems might be easy or might be hard. | suggest you try yourself and share your
experience. No one would be happier if asimple ./ confi gure && nake would produce a fully fledged
Cygwin binary. Ericsson does however not pay me to do a Cygwin port, so such a port would have to happen in
spare time, which is alimited resource...

Q: Hah, | saw you, you used GCC even though you said you didn't!

A: OK, | admit, one of thefilesis compiled using Cygwin's GCC and the resulting object code is then converted
to MS VC++ compatible coff using a small C hack. It's because that particular file, beam enu. ¢ benefits
immensely from being able to use the GCC labels-as-values extension, which boosts emulator performance by
up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled using GCC, that particular
source code does not do anything system specific and actually is adopted to the fact that GCC is used to compile
it on Windows.

Q: So now there'saMS VC++ project file somewhere and | can build OTP using the nifty VC++ GUI?

A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build
from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen, at least | will never make one. Clicking around in super-multi-tab'd dialogs to add a file or
compiler option when it's so much easier in amakefile is simply not my style.

Q: So how doesit all work then?

A: Cygwin is the environment, which closely resembles the environments found on any Unix machine. It's
almost like you had a virtual Unix machine inside Windows. Configure, given certain parameters, then creates
makefiles that are used by the Cygwin gnu-make to built the system. Most of the actual compilers etc are not,
however, Cygwin toals, so |'ve written a couple of wrappers (Bourne-shell scripts), which residein $ERL_TOP/

etc/wi n32/ cygw n_t ool s and they all do conversion of parameters and switches common in the Unix
environment to fit the native Windows tools. Most notableis of course the paths, which in Cygwin are Unix-like
paths with "forward dlashes’ (/) and no drive letters, the Cygwin specific command cygpat h is used for most
of the path conversions. Luckily most compilers accept forward slashesinstead of backslashes as path separators,
one still have to get the drive letters etc right, though. The wrapper scripts are not general in the sense that, for
example, cc.sh would understand and translates every possible gcc option and passes correct options to cl.exe.
The principle is that the scripts are powerful enough to alow building of Erlang/OTP, no more, no less. They
might need extensions to cope with changes during the development of Erlang, that's one of the reasons | made
them into shell-scripts and not Perl-scripts, | believe they are easier to understand and change that way. | might

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

1.5 How to Build Erlang/OTP on Windows

be wrong though, cause another reason | didn't write them in Perl is because I've never liked Perl and my Perl
code is no pleasant reading...

IN$ERL_TOP, thereisascript calledot p_bui | d, that script handlesthe hassle of giving al theright parameters
toconfi gur e/make and aso helpsyou set up the correct environment variablesto work with the Erlang source
under Cygwin.

e Q: You use and need Cygwin, but then you haven't taken the time to port Erlang to the Cygwin environment but
instead focus on your commercial release, isthat really ethical ?

A: No, not really, but seethisasastep in theright direction. I'm aiming at GCC compiled emulators and a Cygwin
version, but | really need to do other things aswell... In time, but don't hold your breath...
e Q: Can| build something that looks exactly asthe commercia release?

A: Yes, we use the exactly same build procedure.
* Q: Which version of Cygwin and other tools do you use then?

A: For Cygwin we try to use the latest releases available when building. What versions you use shouldn't really
matter, | try to include workarounds for the bugs I've found in different Cygwin releases, please help me to add
workarounds for new Cygwin-related bugs as soon as you encounter them. Also please do submit bug reports to
the appropriate Cygwin developers. The Cygwin GCC we used for R14B02 was version 3.4.4. We used VC++
8.0 (i.e. Visua studio 2005 SP1), Sun's JDK 1.5.0_17, NSIS 2.37, and Win32 OpenSSL 0.9.8e. Please read the
next section for details on what you need.

e Q: Canyou help me setup X in Cygwin?
A: No, unfortunately | haven't got time to help with Cygwin related user problems, please read Cygwin related
web sites, newsgroups and mailing lists.

* Q:Why istheinstruction so long? Isit really that complicated?
A: Partly it'slong because | babbletoo much, partly becauseI've described asmuch as| could about theinstallation
of the needed tools. Once the tools are installed, building is quite easy. | also have tried to make this instruction
understandable for people with limited Unix experience. Cygwin is awhole new environment to some Windows
users, why careful explanation of environment variables etc seemed to be in place. The short story, for the
experienced and impatient is:
e Get andinstal complete Cygwin (latest)
* (Buy and) Install Microsoft Visua studio 2005 and SP1 (or higher)

» Alternatively install the free MS Visua Studio 2008 Express [msvc++] and the Windows SDK [32bit-SDK]
or [64bit-SDK] depending on the Windows platform you are running.

 Getandinstal Sun'sJDK 1.4.2
e Getandinstall NSIS 2.01 or higher (up to 2.46 tried and working)
e Getandinstal OpenSSL 0.9.7c or higher (up to 1.0.0atried & working)

» GettheErlang sourcedistribution (from http://www.erlang.or g/download.html) and unpack with Cygwin's
tar.

e Set ERL_TOP to where you unpacked the source distribution
* $ cd $ERL_TOP

e Get (from http://www.erlang.or g/download/tcltk85 win32_bin.tar.gz) and unpack the prebuilt TCL/TK
binaries for windows with cygwin tar, standing in $ERL_TOP

e Modify PATH and other environment variables so that all these tools are runnable from a bash shell. Still
standing in $ERL_ TOP, issue the following commands:

$ eval “./otp_build env_wi n32°
$./otp_build autoconf

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.5 How to Build Erlang/OTP on Windows

$./otp_build configure

$./otp_build boot -a

$./otp_build rel ease -a

$./otp_build installer_w n32

$ rel ease/ wi n32/ ot p_wi n32_R14B02 /S

Voilal St art - >Prograns->Erl ang OTP R14B02- >Er | ang starts the Erlang Windows shell.

1.5.3 Tools you Need and Their Environment

Y ou need some tools to be able to build Erlang/OTP on Windows. Most notably you'll need Cygwin and Microsoft
V C++, but you also might want a Java compiler, the NSIS install system and OpenSSL. Only V C++ costs money, but
then again it costs alot of money, | know... Well' here'sthe list:

Cygwin, thevery latest isusually best. Get al the devel opment toolsand of courseall the basic ditto. Infact getting
the complete package might be a good idea, as you'll start to love Cygwin after a while if you're accustomed to
Unix. Make sureto get jar and also make sure not to install a Cygwin'ish Java... The Cygwin jar command is used
but Sun's Java compiler and virtual machine...

URL: http://www.cygwin.com

Get the installer from the web site and use that to install Cygwin. Be sure to have fair privileges. If you're on a
NT domain you should consider running mkpasswd - d and mkgr oup - d after theinstallation to get the user
databases correct. See their respective manual pages.

When you start you first bash shell, you will get an awful prompt. You might also have a PATH environment
variable that contains backslashes and such. Edit SHOVE/ . pr of i | e and $HOVE/ . bashr ¢ to set fair prompts
andsetacorrect PATH. Alsodoaexport SHELL in. pr of i | e. For somenon-obviousreason the environment
variable $SHELL is not exported in bash. Also note that . profi | e isrun at login time and . bashr ¢ when
sub shells are created. You'll need to explicitly source . bashr ¢ from . pr ofi | e if you want the commands
there to be run at login time (like setting up aliases, shell functions and the like). | personally usually do like this
attheendof . profil e:

ENV=$HOME/ . bashr c
export ENV
. $ENV

Y ou might also, if you're ahard core type of person at least, want to setup X-windows (XFree86), that might be
as easy as running startx from the command prompt and it might be much harder. Use Google to find help...

If you don't use X-windows, you might want to setup the Windows console window by selecting propertiesin
the console system menu (upper left corner of the window, the Cygwin icon in the title bar). Especially setting
alarger screen buffer size (lines) is useful asit gets you a scrollbar so you can see whatever error messages that
might appear...

If you want to use (t)csh instead of bash you're on your own, | haven't tried and know of no one that has. | expect
that you use bash in all shell examples.

Microsoft Visual Studio 2005 SP1. Please don't skip the service pack! Theinstaller might update your environment
so that you can run the cl command from the bash prompt, then again it might not... Thereis always aBAT file
in VCBIin under the installation directory (default C: \ Program Fi |l es\ M crosoft Vi sual Studio
8) called VCVARS32. BAT. Either add the environment settings in that file to the global environment settingsin
Windows or add the corresponding BASH environment settingsto your . pr of i | e/. bashr c. For example, in
my case | could add thefollowingto. profil e

#Vi sual C++ Root directory as Cygwi n style pathnanme

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

href

1.5 How to Build Erlang/OTP on Windows

VCROOT=/ cygdrive/ c/Program Files/Mcrosoft\ Visual\ Studio 8

Visual C++ Root directory as Wndows style pathnanme
W N_VCROOT="C:\\ Program Fi | es\\ M crosoft Visual Studio 8"

The PATH variabl e shoul d be Cygwi n'ish

PATH=$VCROOT/ Common7/ | DE: $VCROOT/ VC/ Bl N: $VCROOT/ Conmon7/ Tool s: \

$VCROOT/ Common7/ Tool s/ bi n: $VCROOT/ VC/ Pl at f or nSDK/ bi n: $VCROOT/ SDK/ v2. 0/ bi n: \
$VCROOT/ VC/ VCPackages: $PATH

Lib and | NCLUDE shoul d be W ndows'ish
Note that semicolon (;) is used to separate Wndows style paths but
colon (:) to separate Cygwin ditto!

LI BPATH=$W N_VCROOT\\ VQ\\ ATLMFC\\ LI B

LI B=$W N_VCROOT\ \ VQ\\ ATLMFQ\\ LI B\ ; $W N_VCROOT\\ VQ\\ LI B\ ; \
$W N_VCROOT\ \ V& \ Pl at f or mSDK\\ | i b\ ; $W N_VCROOT\\ SDK\\ v2. O\\ | i b

| NCLUDE=$W N_VCROOT\ \ VC\ \ ATLMFC\ \ | NCLUDE\ ; $W N_VCROOT\ \ VC\ \ | NCLUDE\ ; \
$W N_VCROOT\ \ VQ\\ Pl at f or n8DK\ \ i ncl ude

export PATH LI B | NCLUDE

Makeasimplehelloworld and try to compileit withthecl command from within bash. If that doesnot work, your
environment needs fixing. Also remember to fix up the PATH environment, especially old Erlang installations
might have inserted quoted paths that Cygwin does not understand. Remove or correct such paths. There should
be no backdashes in your path environment variable in Cygwin bash, but LIB and INCLUDE should contain
Windows style paths with semicolon, drive letters and backslashes.

If you wish to use Visual Studio 2008, a couple things need to be tweaked, namely the fact that some of the SDK
stuff isinstalled in (by default) C: \ Program Fi | es\ M crosoft SDKs\ v6. OA . Just ensure that that C:
\ Program Fil es\ M crosoft SDKs\v6. 0A\Li bisinLI BandC:\ Program Fi | es\ M crosoft
SDKs\ v6. OA\ | ncl ude isin| NCLUDE. A symptom of not doing thisis errors about finding kernel32.1ib and
windows.h.

Additionally, if you encounter errors about mc.exe not being found, you must install the entire Windows SDK
(the partial SDK included in visual studio apparently does not include it). After installing it you'll want to add
something like: / ¢/ cygdri ve/ Program Fil es/ M crosoft\ SDKs/v7.0/bin toyour PATH to
allow the environment to find mc.exe. The next Visual Studio (2010) is expected to include this tool.

Alternatively install the free MS Visua Studio 2008 Express [msvc++] and the Windows SDK [32bit-SDK] or
[64bit-SDK] depending on the Windows platform you are running, which includes the missing mc.exe message
compiler.

e Sun'sJava JDK 1.5.0 or higher. Our Java code (jinterface, ic) is written for JDK 1.5.0. Get it for Windows and
install it, the JRE is not enough. If you don't care about Java, you can skip this step, theresult will bethat jinterface
is not built.

URL: http://java.sun.com
Add javac LAST to your path environment in bash, in my case this means:

PATH="$PATH: / cygdri ve/ c/ Program Fi | es/ Java/j dk1. 5. 0_17/bi n"

No CLASSPATH or anything is needed. Type j avac at the bash prompt and you should get alist of available
Javaoptions. Make sure by typingwhi ch j ava that you usethe Javayou installed. Note however that Cygwin's
j ar. exe isused, that's why the JDK bin-directory should be added last in the PATH.

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.5 How to Build Erlang/OTP on Windows

Nullsoft NSISinstaller system. Y ou need this to build the self installing package. It's a free open source installer
that's much nicer to use than the commercial Wise and Install shield installers. This is the installer we use for
commercial releases as well from R9C an on.

URL: http://www.nullsoft.com/free/nsis

Install the lot, especialy the modern user interface components, asit's definitely needed. Put makensi s inyour
path, in my case:

PATH=/ cygdri ve/ c/ Program Fil es/ NSI S: $PATH

type makensis at the bash prompt and you should get alist of options if everything is OK.

OpenSSL for Windows. Thisisif you want the SSL and crypto applications to compile (and run). Go to http://
www.opensdl.org, click ontheRel at ed link andthenontheBi nar i es link (upper right corner of the pagelast
time | looked), you can then reach the " Shining Lights Productions" Web site for Windows binaries distributions.
Get the latest 32-bit installer, or use 0.9.7c if you get trouble with the latest, and install to C:OpenSSL which is
where the Makefiles are expecting to find it. It's a nifty installer. The rest should be handled by conf i gur e,
you needn't put anything in the path or anything.

If you want to build openssl for windows yourself (which might be possible, as you wouldn't be reading this
if you weren't a compile-it-yourself person), you either have to put the resulting DLL's in your path or in the
windows system directory and either specify where you put the includes etc with the configure-parameter - -
Wi t h-ssl =<cygwin path to the root> or putyour instalation directly under c: \ QpenSSL. The
directory structure under the installation root for OpenSSL is expected to be one with subdirectories named
i ncl ude, binandl i b, possibly with a VC subdirectory of | i b containing the actual . | i b files. Note that
the cygwin distributed OpenSSL cannot be used, it results in cygwin depending binaries and it has unix style
archives(. a, not. | i b).

Building with wxWidgets. Download wxWidgets-2.8.9 or higher patch release (2.9.* isadeveloper release which
currently does not work with wxErlang).

Install or unpack it to DRI VE:/ PATH cygwi n/ opt/ 1 ocal / pgm Open from explorer (i.e. by
double clicking the file) C:\cygwi n\opt\l ocal\pgm wxMsW 2. 8. 11\ bui | d\ msw\ wx. dsw In
Microsoft Visual Studio, click File/Open/File, locate and open: C:\cygwi n\opt\l ocal\pgm
\wxMBW 2. 8. 11\ i ncl ude\ wx\ msw\ set up. h enable wx USE_GLCANVAS, wx USE_POSTSCRI PT and
wxUSE_GRAPHI CS_CONTEXT Build it by clicking Build/Batch Build and select all unicode release (and
unicode debug) packages.

Open C:\cygwi n\opt\l ocal \ pgm wxM5W 2. 8. 11\ contri b/ bui |l d/ stc/stc.dsw and batch
build all unicode packages.

If you are using Visual C++ 9.0 or higher (Visual Studio 2008 onwards) you will also need to convert and re-
create the project dependenciesin the new .sin "Solution” format.

e OpenVSC++ & the project wxMSW 2. 8. 11\ bui | d\ nsw\ wx. dsw;, accepting the automatic conversion
to the newer VC++ format and save as\ wx MBW 2. 8. 11\ bui | d\ nswWA wx. sl n

* right-click on the project, and set up the project dependencies for wx. dswto achieve the below build order
jpeg, png, tiff, zlib, regex, expat, base, net, odbc, core,
gl, htm, nedia, ga, adv, dbgrid, xrc, aui, richtext, xm

Build all unicode release (and unicode debug) packages either from the GUI or alternatively launch anew prompt

from somewhere like Start -> Programs -> Microsoft Visual C++ -> Visual Studio Tools->V S2008 Cmd Prompt
and cd to where you unpacked wxM SW

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

href
href
href

1.5 How to Build Erlang/OTP on Windows

pushd c:\ wxMSW\ bui | d\ msw
vcbuild /useenv /platformWn32 /M4 wx. sl n "Uni code Rel ease| W n32"
vcbuild /useenv /platformWn32 /M4 wx.sln "Uni code Debug| Wn32"

Open VSC++ & convet C\wxMSW2.8.11\contrib\build\stc\stc.dsw to C
\wxMBW 2. 8. 11\ contri b\ build\stc\stc.sln

» build the unicode release (and unicode debug) packages from the GUI or aternatively open aVVS2008 Cmd
Prompt and cd to where you unpacked wxM SW

pushd c:\wxMSW\ contri b\ buil d\stc
vcbuild /useenv /platformWn32 /M stc.sln "Uni code Rel ease| Wn32"
vcbuild /useenv /platformWn32 /M4 stc.sln "Uni code Debug| W n32"

e The Erlang source distribution (from http://www.erlang.or g/download.html). The same as for Unix platforms.
Preferably use tar from within Cygwin to unpack the sourcetar.gz (t ar zxf otp_src_R14B02.tar. gz).

set the environment ERL_ TOP to point to theroot directory of the source distribution. Let'ssay | stood in SHOVE/
src and unpacked ot p_src_R14B02. t ar. gz, | then add the followingto . profi | e:

ERL_TOP=$HOME/ src/ ot p_src_R14B02
export $ERL_TOP

e TheTCL/TK binaries. You could compile Tcl/Tk for windows yourself, but you can get a stripped down version
from our website which is suitable to include in the final binary package. If you want to supply tcl/tk yourself,
read the instructions about how the tcl/tk tar file used in the build is constructed under SERL_TOP/ | i b/ gs/
t cl . The easy way is to download http://www.erlang.or g/download/tcltk85 win32_bin.tar.gz and unpack it
standing inthe $ERL_ TOP directory. Thiswill createthefilewi n32. tar. gz in$ERL_TOP/ li b/ gs/tcl/
bi nari es.

One last dternative isto create afile named SKI Pinthe $ERL_TOP/ | i b/ gs/ after configure isrun, but that
will give you an erlang system without gs (which might be okay as you probably will use wx anyway).

1.5.4 The Shell Environment

So, if you have followed the instructions above, when you start a bash shell, you should have an INCLUDE
environment with a Windows style path, a LIB environment variable also in Windows style, and finally a PATH that
let's you reach cl, makensis, javac etc from the command prompt (usewhi ch cl etc to verify from bash).

Y ou should also have an ERL_TOP environment variable that is Cygwin style, and points to a directory containing,
among other files, the script ot p_bui | d.

A final massage of the environment is needed, and that is done by the script $ERL_TOP/ ot p_bui | d. Start bash
and do the following, note the "back-ticks" (*), can be quite hard to get on some keyboards, but pressing the back-
tick key followed by the space bar might do it...

$ cd $ERL_TOP

$ eval “./otp_build env_wi n32

If you're unable to produce back-ticks on your keyboard, you can use the ksh variant:

32| Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.5 How to Build Erlang/OTP on Windows

$ cd $ERL_TOP
$ eval $(./otp_build env_wi n32)

This should do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_w n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path
is cleaned of spaces if possible (using DOS style short names instead), the variables OVERRI DE_TARGET, CC,
CXX, AR and RANLI B are set to their respective wrappers and the directories SERL_TOP/ er t s/ et ¢/ wi n32/
cygwi n_tool s/vc and$SERL_TOP/ ert s/ et c/wi n32/ cygwi n_t ool areadded firstinthe PATH.

Try now awhi ch erl c. That should result in the erlc wrapper script (which does not have the .sh extension, for
reasons best kept untold...). It should residein $ERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool s. You could also
try whi ch cc. sh, whichar. sh etc.

Now you're ready to build...

1.5.5 Building and Installing
Now it's assumed that you have executed eval ~./otp_build env_w n32" forthisparticular shell...

Building is easiest using the ot p_bui | d script. That script takes care of running configure, bootstrapping etc on
Windowsin asimpleway. Theot p_bui | d script isthe utility we use ourselvesto build on different platforms and
it therefore contains code for all sorts of platforms. The principle is, however, that for non-Unix platforms, one uses
./otp_build env_<target > toset upenvironment and then the script knows how to build on the platform "by
itself". You'veaready run. /ot p_bui | d env_wi n32 inthe step above, so now it's mostly like we build on any
platform. OK, here are then steps; Assuming you will want to build afull installation executable with NSIS, you can
omit<i nstal | ati on direct ory>andthereleasewill becopiedto SERL_TOP/ r el ease/ wi n32: and there
iswhere the packed self installing executable will reside too.

.lotp_build autoconf # Ignore the warning bl ob about versions of autoconf
.lotp_build configure <optional configure options>

./otp_build boot -a

./otp_build release -a <installation directory>

./otp_build installer_w n32 <installation directory> # optional

B BB B

Now you will have a file called ot p_wi n32_R12B. exe in the <installation directory>, i.e
$ERL_TOP/ r el ease/ wi n32.

Lets get into more detail:

* $./otp_build autoconf - This step rebuilds the configure scripts to work correctly in the cygwin
environment. In anideal world, thiswould not be needed, but alas, we have encountered several incompatibilities
between our distributed configure scripts (generated on a Linux platform) and the cygwin environment over the
years. Running autoconf on cygwin ensures that the configure scripts are generated in a cygwin-compatible way
and that they will work well in the next step.

« $./otp_build configure-Thisrunsthenewly generated configure scriptswith optionsmaking configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable also makes the compiler becc. sh, which wrapsMSVC+
+, so al configure tests regarding the C compiler getsto run the right compiler. A lot of the tests are not needed on
Windows, but | thought it best to run the whole configure anyway. The only configure option you might want to
supply is- - wi t h- ssl , which might be needed if you have built your own OpenSSL distribution. The Shining
Lights distribution should be found automatically by conf i gur e, if that fails, add a- - wi t h- ssl =<di r >
that specifies the root directory of your OpenSSL installation.

e« $./otp_ build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
boot st r ap) to build a complete OTP system. It first builds an emulator and sets up a minimal OTP system

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

1.5 How to Build Erlang/OTP on Windows

under $ERL_TOP/ boot st r ap, then starts to compile the different OTP compilers to make the SERL_TOP/

boot st rap system potent enough to be able to compile al Erlang code in OTP. Then, al Erlang and C
code under $ERL_TOP/ | i b is built using the bootstrap system, giving a complete OTP system (although not
installed). When this is done, one can run Erlang from within the source tree, just type SERL_TOP/ bi n/ er |

and you should have a prompt. If you omit the -a flag, you'll get a smaller system, that might be useful during
development. Now exit from Erlang and start making a release of the thing:

*« $./otp_build release -a - Buildsacommercia release tree from the source tree, default is to put
itin $ERL_TOP/ r el ease/ wi n32, you can give any directory as parameter (Cygwin style), but it doesn't
really matter if you're going to build a self extracting installer too. Y ou could of course build release to the final
directory and thenrun. / I nst al | . exe standing in the directory where the release was put, that will create a
fully functional OTP installation. But let's make the nifty installer:

e $./otp_build installer_wi n32 - Create the salf extracting installer executable. The executable
ot p_w n32_R14B02. exe will be placed in the top directory of the release created in the previous step. If
no release directory is specified, the release is expected to have been built to SERL_TOP/ r el ease/ wi n32,
which also will be the place where the installer executable will be placed. If you specified some other directory
fortherelease(i.e.. /ot p_buil d release -a /tnp/erl _rel ease), you're expected to give the same
parameter here, (i.e. . /otp _build installer_win32 /tnp/erl _release). You need to have a
full NSIS ingtallation and makensi s. exe in your path for this to work of course. Once you have created the
installer, you can run it to install Erlang/OTP in the regular way, just run the executable and follow the steps
in the installation wizard. To get all default settings in the installation without any questions asked, you run the
executable with the parameter / S (capita S) likein:

$ cd $ERL_TOP
$ rel ease/ w n32/ ot p_wi n32_R14B02 /S

and after awhile Erlang/OTP-R14B02 will have been installed in C: \ Program Fi | es\ er| 5. 8. 3\, with
shortcuts in the menu etc.

The necessary setup of an Erlang installation is actually done by the program | nst al | . exe, which residesin
thereleasetop. That program creates. i ni -filesand copiesthe correct boot scripts. If one hasthe correct directory
tree(likeaftera. /ot p_bui I d rel ease -a),onlytherunningof | nst al | . exe isnecessary to get afully
functional OTP. What the self extracting installer addsis (of course) the possibility to distribute the binary easily,
together with adding shortcuts to the Windows start menu. There is also some adding of entries in the registry,
to associate . er | and . beamfiles with Erlang and get nifty icons, but that's not something you'll really need
to run Erlang. The registry is also used to store uninstall information, but if one has not used the self extracting
installer, one cannot (need not) do any uninstall, one just scratches the release directory and everything is gone.
Erlang/OTP does not need to put anything in the Windows registry at al, and does not if you don't use the self
extracting installer. In other words the installer is pure cosmetics.

Note:

Beginning with R9C, the Windows installer does not add Erlang to the system wide path. If one wants to have
Erlang in the path, one hasto add it by hand.

1.5.6 Development

Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you also can run Erlang from within the sourcetree. Thetarget | ocal _set up, makesthe program $ERL_TOP/
bi n/ erl . exe usableand it also uses all the OTP librariesin the source tree.

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.5 How to Build Erlang/OTP on Windows

If you hack the emulator, you can then build the emulator executable by standingin $ERL_TOP/ ert s/ enul at or
and doasimple

$ nake opt

Note that you need to haverun (cd $ERL_TOP && eval ~./otp_build env_wi n32") intheparticular
shell before building anything on Windows. After doing a make opt you can test your result by running $ERL_ TOP/
bi n/ erl . If you want to copy the result to a release directory (say / t np/ er| _r el ease), you do this (still in
$ERL_TOP/ ert s/ emul at or)

$ make TESTROOT=/tnp/erl _rel ease rel ease

That will copy the emulator executables.

To make a debug build of the emulator, you need to recompile both beam dlI | (the actual runtime system) and
erl exec. dl | . Dolikethis

cd $ERL_TOP

rm bi n/ wi n32/ erl exec. dl
cd erts/emul at or

make debug

cd ../etc

make debug

R A T O

and sometimes

$ cd $ERL_TOP
$ nmake | ocal _setup

So now when you run $ERL_TOP/ er | . exe, you should have a debug compiled emulator, which you will see if
you do a

1> erl ang: system i nf o(system versi on)
in the erlang shell. If the returned string contains [debug] , you got a debug compiled emulator.

To hack the erlang libraries, you simply do anake opt inthe specific "applications’ directory, like:

$ cd $ERL_TOP/lib/stdlib
$ nmake opt

or even in the source directory...

$ cd $ERL_TOP/lib/stdlib/src
$ nake opt

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

1.5 How to Build Erlang/OTP on Windows

Note that you're expected o have a fresh Erlang in your path when doing this, preferably the plain R14B02 you
have built in the previous steps. Y ou could also add $ERL_TOP/ boot st r ap/ bi n to your PATH before rebuilding
specific libraries, that would give you a good enough Erlang system to compile any OTP erlang code. Setting up the
path correctly is a little bit tricky, you still need to have $ERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool s/ vc
and $ERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool s before the actual emulator in the path. A typical setting of
the path for using the bootstrap compiler would be:

$ export PATH=$ERL_TOP/ erts/etc/w n32/cygw n_t ool s/ vc\
:$ERL_TOP/ erts/etc/w n32/cygw n_tool s: $ERL_TOP/ boot st r ap/ bi n: $PATH

That should make it possible to rebuild any library without hassle...
If you want to copy alibrary (an application) newly built, to arelease area, you do like with the emulator:

$ cd $ERL_TOP/Ilib/stdlib
$ make TESTROOT=/tnp/erlang_rel ease rel ease

Remember that:

* Windows specific C-code goes in the $ERL_TOP/ ert s/ emul at or/ sys/ w n32, $ERL_TOP/ ert s/
emul ator/drivers/w n32 or $ERL_TOP/ ert s/ et ¢/ wi n32.

* Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

case os:type() of

{wi n32, } ->
do_wi ndows_speci fic();
O her ->

do_fall back_or_exit()
end,

That's basically all you need to get going.

1.5.7 Final Words

The first build system for Erlang using Cygwin on Windows was created by Per Bergkvist. | haven't used his build
system, but it's rumored to be good. The idea to do this came from his work, so credit iswell deserved.

Of course this would have been completely impossible without the excellent Cygwin package. The guys at Cygnus
solutions and Redhat deserves a huge THANKS! as well as all the other people in the free software community who
have helped in creating the magnificent software that constitutes Cygwin.

Good luck and Happy Hacking, Patrik, OTP

1.5.8 Copyright and License
Copyright Ericsson AB 2003-2010. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. Y ou should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the Licenseis distributed on an "ASIS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. Seethe License for the specific language governing rights and limitations under the License.

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.5 How to Build Erlang/OTP on Windows

1.5.9 Modifying This Document
Before modifying this document you need to have alook at the $ERL_TOP/ READMVE. nd. t xt document.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

2.1 System Principles

2 User's Guide

2.1 System Principles
2.1.1 Starting the System

An Erlang runtime system is started with the command er | :

% erl
Erl ang (BEAM enul ator version 5.2.3.5 [hipe] [threads: 0]

Eshell V5.2.3.5 (abort with ~"Q
1>

er | understands a number of command line arguments, seeer | (1) . A number of them are also described in this
chapter.

Application programs can access the values of the command line arguments by calling one of the functions
init:get_argunment (Key),orinit:get_argunments().Seeinit(3).

2.1.2 Restarting and Stopping the System

The runtime system can be halted by callinghal t/ 0, 1. Seeer | ang(3) .

Themodulei ni t contains function for restarting, rebooting and stopping the runtime system. Seei ni t (3) .

init:restart()
init:reboot ()
init:stop()

Also, the runtime system will terminate if the Erlang shell isterminated.

2.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applicationsto start.

A boot script file has the extension . scri pt . The runtime system uses a binary version of the script. This binary
boot script file has the extension . boot .

Which boot script to use is specified by the command line flag - boot . The extension . boot should be omitted.
Example, using the boot script st art _al | . boot :

% erl -boot start_all

If no boot script is specified, it defaultsto ROOT/ bi n/ st ar t , see Default Boot Scripts below.

38| Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.1 System Principles

The command lineflag -i ni t _debug makesthei ni t process write some debug information while interpreting
the boot script:

%erl -init_debug

{progress, prel oaded}

{progress, kernel _| oad_conpl et ed}
{progress, nodul es_| oaded}
{start, heart}

{start,error_| ogger}

Seescri pt (4) for adetailed description of the syntax and contents of the boot script.

Default Boot Scripts
Erlang/OTP comes with two boot scripts:
start _cl ean. boot
L oads the code for and starts the applications Kernel and STDLIB.
start _sasl . boot
Loads the code for and starts the applications Kernel, STDLIB and SASL.

Which of start _cl ean and st art _sasl| to use as default is decided by the user when installing Erlang/OTP
using | nst al | . The user isasked "Do you want to use aminimal system startup instead of the SASL startup”. If the
answer isyes, thenst art _cl ean isused, otherwise st art _sasl| isused. A copy of the selected boot script is
made, named st art . boot and placed in the ROOT/ bi n directory.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. Thisis true especially when running Erlang
in embedded mode, see Code Loading Strategy.

It is possible to write a boot script manualy. The recommended way to create a boot script, however, is to generate
the boot script from arelease resource file Name. r el , using the function syst ool s: make_scri pt/ 1, 2. This
requires that the source code is structured as applications according to the OTP design principles. (The program does
not have to be started in terms of OTP applications but can be plain Erlang).

Read more about . r el filesin OTP Design Principlesandr el (4) .

The binary boot script file Name. boot is generated from the boot script file Nane. scri pt using the function
syst ool s: scri pt 2boot (Fil e).

2.1.4 Code Loading Strategy

The runtime system can be started in either embedded or interactive mode. Which one is decided by the command
lineflag - node.

% erl -nmode enbedded

Default modeisi nt er acti ve.

« Inembedded mode, al code isloaded during system start-up according to the boot script. (Code can also be
loaded later by explicitly ordering the code server to do so).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

2.2 Error Logging

e Ininteractive mode, code is dynamically loaded when first referenced. When a call to afunction in amodule
is made, and the module is not loaded, the code server searches the code path and |oads the module into the

system.

Initially, the code path consists of the current working directory and all object code directories under ROOT/ | i b,
where ROOT istheinstallation directory of Erlang/OTP. Directories can be named Nane[- Vsn] and the code server,
by default, chooses the directory with the highest version number among those which have the same Nane. The -

Vsn suffix is optional. If an ebi n directory exists under the Nane[- Vsn] directory, it is this directory which is

added to the code path.

The code path can be extended by using the command line flags-pa Directories and-pz Directories.

Thesewill add Di r ect or i es tothe head or end of the code path, respectively. Example

% erl -pa /home/arne/ mycode

The code server module code contains a number of functions for modifying and checking the search path, see

code(3).

2.1.5 File Types
The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

module .erl Erlang Reference Manual
includefile . hrl Erlang Reference Manual
release resource file .rel rel (4)

application resource file .app app(4)

boot script .script script(4)

binary boot script . boot -

configuration file .config config(4)

application upgrade file . appup appup(4)

release upgrade file relup relup(4)

Table 1.1: File Types

2.2 Error Logging

2.2.1 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process terminating due to an uncaught error

exception, is by default written to terminal (tty):

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Error Logging

=ERROR REPORT==== 9- Dec-2003::13: 25: 02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,3]},[{mf, 1}, {shell, eval _| oop, 2}]}

The error information is handled by the error logger, a system process registered aser r or _| ogger . This process
receivesall error messages from the Erlang runtime system and al so from the standard behaviours and different Erlang/
OTP applications.

The exit reasons (such as badar g above) used by the runtime system are described in Errors and Error Handling
in the Erlang Reference Manual.

The process er r or _| ogger and its user interface (with the same name) are described in error_logger(3). It is
possible to configure the system so that error information is written to file instead/as well as tty. Also, it is possible
for user defined applications to send and format error information using er r or _I ogger .

2.2.2 SASL Error Logging

The standard behaviors (supervi sor, gen_server, etc) sends progress and error information to
error _| ogger.Ifthe SASL applicationisstarted, thisinformation iswrittento tty aswell. See SASL Error Logging
in the SASL User's Guide for further information.

% erl -boot start_sasl
Erl ang (BEAM enul ator version 5.4.13 [hipe] [threads: 0] [kernel-poll]

=PROGRESS REPORT==== 31- Mar- 2006: : 12: 45: 58 ===
supervi sor: {local, sasl_safe_sup}
started: [{pid, <0.33.0>},
{nane, al arm handl er},
{nfa, {alarm handl er,start _link,[]1}},
{restart_type, permanent},
{'shut down, 2000},
{child_type, worker}]

=PROGRESS REPORT==== 31- Mar- 2006: : 12: 45: 58 ===
supervi sor: {local, sasl_safe_sup}
started: [{pid, <0.34.0>},

{nane, overl oad},
{nfa, {overload,start_link,[]1}},
{restart _type, permanent},
{'shut down, 2000},
{child_type, worker}]

=PROGRESS REPORT==== 31- Mar- 2006: : 12: 45: 58 ===
supervi sor: {local, sasl _sup}
started: [{pid, <0.32.0>},
{nane, sasl _safe_sup},
{nf a, {supervi sor,
start _link,
[{l ocal , sasl _safe_sup}, sasl,safe]}},
{restart_type, permanent},
{shut down, i nfi ni ty},
{chil d_type, supervisor}]

=PROGRESS REPORT==== 31- Mar- 2006: : 12: 45: 58 ===
supervi sor: {local, sasl_sup}
started: [{pid, <0.35.0>},

{nane, rel ease_handl er},
{nfa, {rel ease_handler,start_link,[]1}},
{restart_type, permanent},
{'shut down, 2000},
{child_type, worker}]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

2.3 Creating a First Target System

=PROGRESS REPORT==== 31- Mar - 2006: : 12: 45: 58 ===
appl i cation: sasl
started_at: nonode@ohost
Eshel| V5.4.13 (abort with ~Q
1>

2.3 Creating a First Target System

2.3.1 Introduction

When creating a system using Erlang/OTP, the most simple way is to install Erlang/OTP somewhere, install the
application specific code somewhere el se, and then start the Erlang runtime system, making sure the code path includes
the application specific code.

Often it is not desirable to use an Erlang/OTP system as is. A developer may create new Erlang/OTP compliant
applications for a particular purpose, and several original Erlang/OTP applications may be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensable applicationsare removed, and aset of new applicationsthat areincludedin the new system. Documentation
and source codeisirrelevant and is therefore not included in the new system.

This chapter is about creating such a system, which we call atarget system.
In the following sections we consider creating target systems with different requirements of functionality:
» abasictarget systemthat can be started by calling the ordinary er | script,

* asimpletarget system where also code replacement in run-time can be performed, and

« an embedded target system where thereis also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

We only consider the case when Erlang/OTP is running on a UNIX system.

Thereisan example Erlang modulet ar get _syst em er | that containsfunctionsfor creating and installing atarget
system. That module is used in the examples below. The source code of the module islisted at the end of this chapter.

2.3.2 Creating a Target System
It is assumed that you have aworking Erlang/OTP system structured according to the OTP Design Principles.

Sep 1. First createa. r el file(seer el (4)) that specifiestheer t s version and lists all applications that should be
included in the new basic target system. An example isthe following mysystem r el file:

%6 nysystem rel

{rel ease,

{" MYSYSTEM', "FI RST"},
{erts, "5.1"},
[{kernel, "2.7"},
{stdlib, "1.10"},
{sasl, "1.9.3"},
{pea, "1.0"}1}.

The listed applications are not only original Erlang/OTP applications but possibly also new applications that you have
written yourself (here examplified by the application pea).
Sep 2. From the directory wherethenysyst em r el filereside, start the Erlang/OTP system:

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating a First Target System

os> erl -pa /hone/user/target_systenm nmyapps/ pea-1. 0/ ebin

where also the path to the pea- 1. 0 ebin directory is provided.

Sep 3. Now create the target system:

1> target_system create("nysysteni).

Thet arget _system creat e/ 1 function does the following:

Readsthemmysyst em rel file and createsanew filepl ai n. r el whichisidentical to former, except that it
only liststhe ker nel and st dl i b applications.

Fromthenmysystem rel andpl ai n. rel filescreatesthefilesnmysyst em scri pt, mysyst em boot,
pl ai n. scri pt,andpl ai n. boot throughacall tosyst ool s: make_scri pt/ 2.

Creates the file nysystem tar. gz by acal to syst ool s: make_t ar/ 2. That file has the following
contents:

erts-5. 1/ bin/

rel eases/ FI RST/ start . boot
rel eases/ mysystemrel

l'i b/ kernel-2.7/
lib/stdlib-1.10/
lib/sasl-1.9.3/

i b/ pea-1. 0/

Thefiler el eases/ FI RST/ st art . boot isacopy of our nysyst em boot, and a copy of the original
mysyst em rel hasbeenputinther el eases directory.

Creates the temporary directory t np and extractsthe tar filemysyst em t ar . gz into that directory.
Deletestheer| andst art filesfromt np/ erts-5. 1/ bi n. XXX Why.

Creates the directory t np/ bi n.

Copiesthe previoudly createsfile pl ai n. boot tot np/ bi n/ start. boot .
Copiesthefilesepnd,run_erl ,andt o_er| fromthedirectoryt np/ ert s-5. 1/ bi n tothe directory
t np/ bi n.

Createsthefilet np/ r el eases/ start _er| . dat a with the contents"5.1 FIRST".
Recreatesthefilemysyst em t ar . gz from the directoriesin the directory t np, and removest np.

2.3.3 Installing a Target System
Sep 4. Install the created target system in a suitable directory.

2> target_systeminstall ("mysysten, "/usr/local/erl-target").

Thefunctiont ar get _system i nstal | / 2 doesthefollowing:

Extractsthetar filenysyst em t ar . gz into thetarget directory / usr/ | ocal / erl -t arget .

In thetarget directory readsthefiler el eases/ start _erl . dat a inorder to find the Erlang runtime
system version ("5.1").

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

2.3 Creating a First Target System

e Substitutes %I NAL_ROOTDI R%and ¥&EMJ%for / usr/ | ocal / er| -t ar get and beam respectively, in
thefileser|.src,start.src,andstart _erl.src of thetargetert s-5. 1/ bi n directory, and puts
theresulting fileser | ,start,andrun_er| inthetarget bi n directory.

* Finaly thetargetr el eases/ RELEASES fileis created from datain ther el eases/ nysystem rel file.

2.3.4 Starting a Target System
Now we have atarget system that can be started in various ways.
We start it as a basic target system by invoking

os> /usr/local/erl-target/bin/erl

where only the ker nel and st dl i b applications are started, i.e. the system is started as an ordinary development
system. There are only two files needed for all this to work: bi n/ erl file (obtained from erts-5. 1/ bi n/
erl.src)andthebi n/start. boot file(acopy of pl ai n. boot).

We can also start a distributed system (requires bi n/ epnd).
To start all applications specified inthe origina nysyst em r el file, usethe- boot flag asfollows:

os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/rel eases/FlI RST/start

We start a simple target system as above. The only difference isthat also thefiler el eases/ RELEASES is present
for code replacement in run-time to work.

To start an embedded target systemthe shell script bi n/ st art isused. That shell script callsbi n/ run_er | ,which
inturncalsbi n/ start _er!| (roughly,start _erl isanembedded variant of er |).

The shell script st art isonly an example. You should edit it to suite your needs. Typically it is executed when the
UNIX system boots.

run_erl isawrapper that provides logging of output from the run-time system to file. It also provides a simple
mechanism for attaching to the Erlang shell (t o_er).

start_erl requires the root directory (“/usr/local/erl-target"), the releases directory ("/usr/
| ocal /erl -target/rel eases"),andthelocation of thest art _er| . dat afile. It readsthe run-time system
version (" 5. 1") andreleaseversion (" FI RST") fromthest art _er | . dat a file, startsthe run-time system of the
version found, and provides - boot flag specifying the boot file of therelease version found (" r el eases/ FI RST/
start. boot™).

start _erl aso assumes that there is sys. confi g in release version directory ("rel eases/ Fl RST/
sys. confi g). That isthe topic of the next section (see below).

Thest art _er| shell script should normally not be atered by the user.

2.3.5 System Configuration Parameters

As was pointed out above st art_er| requiresasys. confi g in the release version directory ("r el eases/
FI RST/ sys. confi g"). If thereisno such afile, the system start will fail. Hence such afile hasto added as well.

If you have system configuration data that are neither file location dependent nor site dependent, it may be
convenient to create the sys. confi g early, so that it becomes a part of the target system tar file created by
target _system create/ 1. Infact, if you create, in the current directory, not only the mysyst em r el file,
but also asys. confi g file, that latter file will be tacitly put in the apropriate directory.

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating a First Target System

2.3.6 Differences from the Install Script

The above i nstal | / 2 procedure differs somewhat from that of the ordinary | nst al | shell script. In fact,
cr eat e/ 1 makesthe release package as complete as possible, and leave to thei nst al | / 2 procedure to finish by
only considering location dependent files.

2.3.7 Listing of target_system.erl

-nmodul e(target_system.
-include_lib("kernel/include/file.hrl").
-export([create/1, install/2]).

-defi ne(BUFSI ZE, 8192).

%%b Not e: Rel Fil eName below is the *stent without trailing .rel,
%hb . script etc.
%%

%% creat e(Rel Fi | eNane)
%%
create(Rel Fil eNanme) ->
Rel File = Rel Fil eNane ++ ".rel",

io:fwite("Reading file: \"~s\" ...~n", [RelFile]),
{ok, [Rel Spec]} = file:consult(RelFile),
io:fwite("Creating file: \"~s\" from\"~s\" ...~n",

["plain.rel", RelFile]),
{rel ease,
{Rel Nane, Rel Vsn},
{erts, ErtsVsn},
AppVsns} = Rel Spec,
Pl ai nRel Spec = {rel ease,
{Rel Nane, Rel Vsn},
{erts, ErtsVsn},

lists:filter(fun({kernel, _}) ->
true;
({stdlib, _}) ->
true;
(0 ->
fal se

end, AppVsns)
Jie
{ok, Fd} = file:open("plain.rel", [wite]),
io:fwite(Fd, "~p.~n", [PlainRel Spec]),
file:close(Fd),

io:fwite("Making \"plain.script\" and \"plain.boot\" files ...~n"),
make_script ("plain"),

io:fwite("Making \"~s.script\" and \"~s.boot\" files ...~n",
[Rel Fi | eNane, Rel Fi |l eNane]),

make_scri pt (Rel Fi | eNane) ,

TarFileName = io_lib:fwite("~s.tar.gz", [Rel FileNane]),

io:fwite("Creating tar file \"~s\" ...~n", [TarFileNane]),

make_t ar (Rel Fi | eNane) ,

io:fwite("Creating directory \"tmp\" ...~n"),
file:make_dir("tnp"),

io:fwite("Extracting \"~s\" into directory \"tnmp\" ...~n", [TarFileNane]),
extract _tar(TarFil eName, "tmp"),

TmpBinDir = filenanme:join(["tmp", "bin"]),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

2.3 Creating a First Target System

ErtsBinDir = filenane:join(["tmp", "erts-" ++ ErtsVsn, "bin"]),

io:fwite("Deleting \"erl\" and \"start\" in directory \"~s\" ...~n",
[ErtsBinDir]),

file:delete(filenanme:join([ErtsBinDir, "erl"])),

file:delete(filenanme:join([ErtsBinDir, "start"])),

io:fwite("Creating tenporary directory \"~s\" ...~n", [TnpBinDir]),
file:make_dir(TnpBinDir),

io:fwite("Copying file \"plain.boot\" to \"~s\" ...~n",
[filename:join([TnpBinDir, "start.boot"])]),
copy_file("plain.boot", filename:join([TnpBinDir, "start.boot"])),

io:fwite("Copying files \"epnd\", \"run_erl\" and \"to_erl\" from\n"
"\"~s\" to \"~s\" ...~n",
[ErtsBinDir, TnmpBinDir]),
copy_file(filenane:join([ErtsBinDir, "epnd"]),
filenane:join([TmpBinDir, "epnd"]), [preserve]),
copy_file(filenane:join([ErtsBinDir, “run_erl"]),
filenane:join([TmpBinDir, “"run_erl™"]), [preserve]),
copy_file(filenane:join([ErtsBinDir, “to_erl"]),
filenane:join([TmpBinDir, “to_erl"]), [preserve]),

StartErl DataFile = filenane:join(["tnp", "rel eases", "start_erl.data"]),
io:fwite("Creating \"~s\" ...~n", [StartErl DataFile]),

StartErlData = io_lib:fwite("~s ~s~n", [ErtsVsn, RelVsn]),

wite file(StartErl DataFile, StartErlData),

io:fwite("Recreating tar file \"~s\" fromcontents in directory "
“\"tmp\" ...~n", [TarFileNane]),

{ok, Tar} = erl _tar:open(TarFileName, [wite, conpressed]),

{ok, Owmd} = file:get_cwd(),

file:set_cwd("tmp"),

erl _tar:add(Tar, "bin", []),

er|l _tar:add(Tar, "erts-" ++ ErtsVsn, []),

erl _tar:add(Tar, "rel eases", []),

er|l _tar:add(Tar, "lib", []),

erl _tar:close(Tar),

file:set_cwd(Ond),

io:fwite("Removing directory \"tnmp\" ...~n"),

remove_dir_tree("tnp"),

ok.

install (Rel Fil eNane, RootDir) ->
TarFile = Rel Fil eName ++ ".tar.gz",

io:fwite("Extracting ~s ...~n", [TarFile]),
extract_tar(TarFile, RootDir),
StartErl DataFile = filenane:join([RootDir, "releases", "start_erl.data"]),

{ok, StartErlData} = read_txt_file(StartErl DataFile),
[ErlVsn, RelVsn| _] = string:tokens(StartErlData, " \n"),
ErtsBinDir = filenane:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
BinDir = filenanme:join([RootDir, "bin"]),
io:fwite("Substituting in erl.src, start.src and start_erl.src to\n"
“formerl, start and start_erl ...\n"),

subst_src_scripts(["erl™, "start", "start_erl"], ErtsBinDir, BinDr,

[{"FINAL_ROOTDI R', RootDir}, {"EMJ', "beani'}],

[preserve]),
io:fwite("Creating the RELEASES file ...\n"),
creat e RELEASES(Root Di r,

filenane:join([RootDir, “"releases", Rel FileNange])).

9% LOCALS

%% make_scri pt (Rel Fi | eNane)

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating a First Target System

9o
make_scri pt (Rel Fi | eNanme) ->
Opts = [no_nodul e_tests],
syst ool s: nake_scri pt (Rel Fi | eName, Opts).

%6 make_t ar (Rel Fi | eNane)
9%
make_t ar (Rel Fi | eNane) ->
RootDir = code:root_dir(),
syst ool s: make_tar (Rel Fi |l eNane, [{erts, RootDir}]).

%o extract _tar(TarFile, DestDir)
9%
extract_tar(TarFile, DestDir) ->
erl _tar:extract(TarFile, [{cwd, DestDir}, conpressed]).

create_RELEASES(DestDir, Rel Fil eNane) ->
rel ease_handl er: creat e_ RELEASES(DestDir, Rel FileNane ++ ".rel").

subst _src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
lists:foreach(fun(Script) ->
subst _src_script(Script, SrcDir, DestDir,
Vars, Opts)
end, Scripts).

subst _src_script(Script, SrcDir, DestDir, Vars, Opts) ->
subst _file(filename:join([SrcDir, Script ++ ".src"]),
filenane:join([DestDir, Script]),
Vars, Opts).

subst _file(Src, Dest, Vars, Opts) ->
{ok, Conts} = read_txt_file(Src),
NConts = subst (Conts, Vars),
wite file(Dest, NConts),
case |ists: menber (preserve, Opts) of
true ->
{ok, Filelnfo} = file:read_file_info(Src),
file:wite file_info(Dest, Filelnfo);
fal se ->
ok
end.

%6 subst (Str, Vars)
%6 Vars = [{Var, Val}]
%6 Var = Val = string()
%6 Substitute all occurrences of %War% for Val in Str, using the |ist
%% of variables in Vars.
9%
subst (Str, Vars) ->
subst (Str, Vars, []).

subst ([$% C| Rest], Vars, Result) when $A =< C, C =< $Z ->
subst _var([C Rest], Vars, Result, []);

subst ([$% C| Rest], Vars, Result) when $a =< C, C =< $z ->
subst _var([C Rest], Vars, Result, []);

subst ([$% C| Rest], Vars, Result) when C==$_ ->
subst _var([C Rest], Vars, Result, []);

subst ([C|] Rest], Vars, Result) ->
subst (Rest, Vars, [C| Result]);

subst ([], _Vars, Result) ->
lists:reverse(Result).

subst _var ([$% Rest], Vars, Result, VarAcc) ->

Key = lists:reverse(VarAcc),
case |ists: keysearch(Key, 1, Vars) of

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

2.3 Creating a First Target System

{val ue, {Key, Value}} ->
subst (Rest, Vars, lists:reverse(Value, Result));
fal se ->
subst (Rest, Vars, [$% VarAcc ++ [$% Result]])
end;
subst _var([C Rest], Vars, Result, VarAcc) ->
subst _var (Rest, Vars, Result, [C VarAcc]);
subst _var([], Vars, Result, VarAcc) ->
subst ([], Vars, [VarAcc ++ [$% Result]]).

copy_file(Src, Dest) ->
copy_file(Src, Dest, []).

copy_file(Src, Dest, Opts) ->
{ok, InFd} = file:open(Src, [raw, binary, read]),
{ok, QutFd} = file:open(Dest, [raw, binary, wite]),
do_copy_file(lnFd, CutFd),
file:close(lnFd),
file:close(CutFd),
case |ists: menber (preserve, Opts) of
true ->
{ok, Filelnfo} = file:read_file_info(Src),
file:wite file_info(Dest, Filelnfo);
fal se ->
ok
end.

do_copy_file(lnFd, QutFd) ->
case file:read(lnFd, ?BUFSIZE) of
{ok, Bin} ->
file:wite(QutFd, Bin),
do_copy_file(lnFd, CutFd);
eof ->
ok
end.

wite file(FNane, Conts) ->
{ok, Fd} = file:open(FName, [wite]),
file:wite(Fd, Conts),
file:close(Fd).

read_txt_file(File) ->
{ok, Bin} =file:read_file(File),
{ok, binary_to_list(Bin)}.

remove_dir_tree(Dir) ->
remove_al |l _files(".", [Dir]).

remove_al | _files(Dir, Files) ->
lists:foreach(fun(File) ->
FilePath = filename:join([Dir, File]),
{ok, Filelnfo} = file:read_file_info(FilePath),
case Filelnfo#file_info.type of
directory ->
{ok, DirFiles} = file:list_dir(FilePath),
remove_al | _files(FilePath, DirFiles),
file:del _dir(FilePath);
->
file:del ete(FilePath)
end
end, Files).

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

3 User's Guide

This manual describes the issues that are specific for running Erlang on an embedded system. It describes the
differencesin installing and starting Erlang compared to how it is done for a non-embedded system.

Note that thisis a supplementary document. Y ou still need to read the Installation Guide.
Thereis aso target architecture specific information in the top level README file of the Erlang distribution.

3.1 Embedded Solaris

This chapter describes the OS specific parts of OTP which relate to Solaris.

3.1.1 Memory Usage

Solaris takes about 17 Mbyte of RAM on a system with 64 Mbyte of total RAM. This leaves about 47 Mbyte for the
applications. If the system utilizes swapping, these figures cannot be improved because unnecessary daemon processes
are swapped out. However, if swapping isdisabled, or if the swap spaceisof limited resourceinthe system, it becomes
necessary to kill off unnecessary daemon processes.

3.1.2 Disk Space Usage

The disk space required by Solaris can be minimized by using the Core User support installation. It requires about 80
Mbyte of disk space. Thisinstalls only the minimum software required to boot and run Solaris. The disk space can be
further reduced by deleting unnecessary individual files. However, unless disk space is a critical resource the effort
required and the risks involved may not be justified.

3.1.3 Installation
This section is about installing an embedded system. The following topics are considered,

e Creation of user and installation directory,
« Instalation of embedded system,

e Configuration for automatic start at reboot,
* Making a hardware watchdog available,

e Changing permission for reboot,

e Patches,

» Configuration of the OS_Mon application.

Several of the procedures described below require expert knowledge of the Solaris 2 operating system. For most of
them super user privilege is needed.

Creation of User and Installation Directory

It is recommended that the Embedded Environment is run by an ordinary user, i.e. a user who does not have super
user privileges.

Throughout this section we assume that the user nameis ot puser , and that the home directory of that user is,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

3.1 Embedded Solaris

/ export/ home/ ot puser

Furthermore, we assume that in the home directory of ot puser , there is a directory named ot p, the full path of
whichis,

[export/ hone/ ot puser/ ot p

This directory isthe installation directory of the Embedded Environment.

Installation of an Embedded System

The procedure for installation of an embedded system does not differ from that of an ordinary system (see the
Installation Guide), except for the following:

» the (compressed) tape archive file should be extracted in the installation directory as defined above, and,
» thereisno need to link the start script to a standard directory like/ usr/ | ocal / bi n.
Configuration for Automatic Start at Boot

A true embedded system has to start when the system boots. This section accounts for the necessary configurations
needed to achieve that.

The embedded system and all the applications will start automatically if the script file shown below is added to the /
et ¢/ rc3. d directory. The file must be owned and readable by r oot , and its name cannot be arbitrarily assigned.
The following name is recommended,

S750t p. system

For further details on initialization (and termination) scripts, and naming thereof, see the Solaris documentation.

#! / bi n/ sh
#
File name: S75o0tp.system
Purpose: Automatically starts Erlang and applications when the
system starts
Aut hor: j anne@r | ang. eri csson. se
Resides in: /etc/rc3.d
#
if [! -d/usr/bin]
t hen # /usr not nounted
exit
f
killproc() { # kill the naned process(es)

pi d="/usr/bin/ps -e
/usr/bin/grep -w $1 |
/usr/bin/sed -e 's/* */[[' -e 's/ .*[['"
["$pid* '=""1 & kill $pid
}

Start/stop processes required for Erlang
case "$1" in

"start')
Start the Erlang enul ator

50 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

#
su - otpuser -c "/export/hone/otpuser/otp/bin/start" &

‘stop')
kil |l proc beam

*)
echo "Usage: $0 { start | stop }"

esac
The file / export/ hone/ ot puser/ ot p/ bi n/ start referred to in the above script, is precisely the script

start described in the section Sarting Erlang below. The script variable OTP_ROOT in that st art script
corresponds to the example path

[export/ home/ ot puser/ ot p

used in this section. The st ar t script should be edited accordingly.
Useof theki | | pr oc procedure in the above script could be combined withacal toer| _cal |, eg.

$SOMVE_PATH erl _call -n Node init stop

In order to take Erlang down gracefully seetheer| _cal | (1) reference manual page for further details on the use
of erl _cal | . That however requires that Erlang runs as a distributed node which is not always the case.

Theki | | pr oc procedure should not be removed: the purpose is here to move from run level 3 (multi-user mode
with networking resources) to run level 2 (multi-user mode without such resources), in which Erlang should not run.

Hardware Watchdog

For Solaris running on VME boards from Force Computers, there is a possibility to activate the onboard hardware
watchdog, provided aVME bus driver is added to the operating system (see also Installation Problems below).

Seeasotheheart (3) reference manual page in Kernel.

Changing Permissions for Reboot

If the HEART _COMVAND environment variableisto be setinthest ar t script in the section, Sarting Erlang, and if
the value shall be set to the path of the Solarisr eboot command, i.e.

HEART _COMMAND=/ usr / shi n/ r eboot

the ownership and file permissionsfor / usr/ sbi n/ r eboot must be changed as follows,
chown 0 /usr/sbin/reboot

chnmod 4755 /usr/sbin/reboot

Seedsotheheart (3) reference manua pagein Kerndl.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 51

3.1 Embedded Solaris

The TERM Environment Variable

When the Erlang runtime system is automatically started from the S750t p. syst emscript the TERMenvironment
variable has to be set. The following isaminimal setting,

TERM=sun

which should be added to the st ar t script described in the section.

Patches

For proper functioning of flushing file system data to disk on Solaris 2.5.1, the version specific patch with number
103640-02 must be added to the operating system. There may be other patches needed, see the release README file
<ERL_I NSTALL_DI R>/ README.

Installation of Module os_sup in Application OS_Mon
The following four installation procedures require super user privilege.

Installation
e Makea copy the Solaris standard configuration file for syslogd.
» Make acopy the Solaris standard configuration file for syslogd. Thisfileis usualy named sysl og. conf
and found inthe/ et ¢ directory.
» Thefile name of the copy must be sysl og. conf . ORI Gbut the directory location is optional. Usualy it
is/etc.

A simple way to do thisisto issue the command

cp /etc/syslog.conf /etc/syslog.conf.ORI G

» Make an Erlang specific configuration file for syslogd.

* Make an edited copy of the back-up copy previously made.
» Thefilename must besysl og. conf . OTP and the path must be the same as the back-up copy.

* The format of the configuration file is found in the man page for sysl og. conf (5), by issuing the
command man sysl og. conf.

» Usudly alineisadded which should state:

» which types of information that will be supervised by Erlang,
» thename of thefile (actually anamed pipe) that should receive the information.

* If eg. only information originating from the unix-kernel should be supervised, the line should begin with
ker n. LEVEL (for the possible values of LEVEL seesysl og. conf (5)).

« After at least one tab-character, the line added should contain the full name of the named pipe where
syslogd writes its information. The path must be the same as for the sysl og. conf. ORI G and
sysl og. conf . OTPfiles. Thefile name must besysl og. ot p.

e If the directory for the sysl og. conf. ORI G and sysl og. conf. OTP files is / et ¢ the line in
sysl og. conf . OTP will look like:

ker n. LEVEL /etc/sysl og. otp

» Check thefile privileges of the configuration files.

52 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

e Theconfiguration files should haver w-r - - r - - file privileges and be owned by root.
e A simpleway to do thisisto issue the commands

chnod 644 /etc/sysl og. conf
chnod 644 /etc/syslog.conf. ORI G
chnod 644 /etc/syslog. conf. QTP

* Note: If thesysl og. conf. ORI Gand sysl og. conf. OTP filesare not in the / et ¢ directory, thefile
path in the second and third command must be modified.

Modify file privileges and ownership of the mod_syslog utility.
e Thefile privileges and ownership of the nod_sysl og utility must be modified.

« Thefull name of the binary executable fileis derived from the position of the os__rron application if thefile
system by adding / pri v/ bi n/ nod_sysl og. The generic full name of the binary executable fileisthus

<OTP_ROOT>/ | i b/ os_non- <REV>/ pri v/ bi n/ nod_sysl og

Example: If the path to the otp-root is/ usr / ot p, thusthe path to the os_non applicationis/ usr/ ot p/
i b/ os_non-1. 0 (assuming revision 1.0) and the full name of the binary executablefileis/ usr/ ot p/
i b/os_non-1.0/priv/bin/nod_sysl og.

* Thehbinary executable file must be owned by root, haver wsr - xr - x file privileges, in particular the setuid
bit of user must be set.

* A simpleway to do thisis to issue the commands

cd <OTP_ROOT>/ | i b/ os_non- <REV>/ pri v/ bi n/ nod_sysl og
chnod 4755 nod_sysl og
chown root nod_sysl og

Testing the Application Configuration File

The following procedure does not require root privilege.

Ensure that the configuration parameters for the os_sup moduleinthe os_non application are correct.
Browse the application configuration file (do not edit it). The full name of the application configuration file is
derived from the position of the OS_Mon application if the file system by adding / ebi n/ os_non. app.

The generic full name of thefileisthus

<OTP_ROOT>/ | i b/ os_non- <REV>/ ebi n/ os_non. app.

Example: If the path to the otp-rootis/ usr / ot p, thusthe pathtotheos_non applicationis/ usr/ ot p/ | i b/
os_rnon-1. 0 (assuming revision 1.0) and the full name of the binary executable fileis/ usr/ ot p/1i b/
os_non- 1. 0/ ebi n/ os_non. app.

Ensure that the following configuration parameters are bound to the correct values.

Parameter Function Sandard value

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 53

3.1 Embedded Solaris

t r uefor thefirst instance on the
hardware; f al sefor the other
instances.

Specifiesif os_sup will be started or

start_os _sup ot

The directory for (1)the back-
0S_Sup_own up copy, (2) the Erlang specific "letc"
configuration file for syslogd.

The full name for the Solaris

0s_sup_syslogconf standard configuration file for "/ etc/sysl og. conf"
syslogd
The tag for the messages that are

error_tag sent to the error logger inthe Erlang | st d_error

runtime system.

Table 1.1: Configuration Parameters

If the values listed in the os_non. app do not suit your needs, you should not edit that file. Instead you should
override valuesin a system configuration file, the full pathname of which is given on the command linetoer | .

Example: The following is an example of the contents of an application configuration file.

[{os_non, [{start_os sup, true}, {os_sup_own, "/etc"},
{os_sup_sysl ogconf, "/etc/syslog.conf"}, {os_sup errortag, std error}]}].

Related Documents
Seedsotheos_non(3),application(3) anderl (1) reference manua pages.

Installation Problems

The hardware watchdog timer whichiscontrolled by thehear t port program requiresthe FORCEV e package, which
contains the VME bus driver, to be installed. This driver, however, may clash with the Sun ntp driver and cause the
system to completely refuse to boot. To cure this problem, the following lines should be added to / et ¢/ syst em

e exclude: drv/ntp
e exclude: drv/ntpzsa
e exclude: drv/ncpp

Warning:

It isrecommended that these lines be added to avoid the clash described, which may makeit compl etely impossible
to boot the system.

3.1.4 Starting Erlang

This section describes how an embedded system is started. There are four programs involved, and they all normally
reside in the directory <ERL_I NSTALL_DI R>/ bi n. The only exception is the program st ar t , which may be
located anywhere, and also is the only program that must be modified by the user.

54 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

In an embedded system there usually is no interactive shell. However, it is possible for an operator to attach to the
Erlang system by giving the command t o_er | . He is then connected to the Erlang shell, and may give ordinary
Erlang commands. All interaction with the system through this shell islogged in a special directory.

Basically, the procedureis as follows. The program st ar t is called when the machineis started. It callsrun_er |,
which sets things up so the operator can attach to the system. It callsst art _er | which calls the correct version of
erl exec (whichislocated in <ERL | NSTALL_ DI R>/ ert s- EVsn/ bi n) with the correct boot and confi g
files.

3.1.5 Programs

start

This program is called when the machine is started. It may be modified or re-written to suit a special system. By
default, it must becalled st art andresidein <ERL_| NSTALL_DI R>/ bi n. Another start program can be used, by
using the configuration parameter st art _pr g inthe application sasl| .

The start program must call run_er | as shown below. It must also take an optional parameter which defaults to
<ERL I NSTALL DI R>/rel eases/start_erl . data.

This program should set static parameters and environment variables such as- snane Nane and HEART _COMVAND
to reboot the machine.

The <RELDI R> directory iswhere new release packets areinstalled, and where the release handler keepsinformation
about releases. Seer el ease_handl er (3) intheapplication sas! for further information.

The following script illustrates the default behaviour of the program.

#! / bi n/ sh

Usage: start [DataFile]
#

ROOTDI R=/ usr/ | ocal / ot p

if [-z "$RELDIR"]
t hen

RELDI R=$ROOTDI R/ r el eases
fi

START_ERL_DATA=${1: - $RELDI R/ start _er| . dat a}

$ROOTDI R/ bi n/run_erl /tnp/ $ROOTDI R/ | og "exec $ROOTDI R/ bin/start_erl \
$ROOTDI R $RELDI R $START_ERL_DATA" > /dev/null 2>&1 &

The following script illustrates a modification where the node is given the name cp1, and the environment variables
HEART _COVMAND and TERMhave been added to the above script.

#! / bi n/ sh

Usage: start [DataFile]

#

HEART _COMMAND=/ usr / shi n/ r eboot
TERMESUN

export HEART _COMVAND TERM
ROOTDI R=/ usr/ | ocal / ot p
if [-z "$RELDIR"]

t hen
RELDI R=$ROCTDI R/ r el eases

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 55

3.1 Embedded Solaris

f
START_ERL_DATA=${1: - $RELDI R/ start _er| . dat a}

$ROOTDI R/ bi n/run_erl /tnmp/ $ROOTDI R/ | og "exec $ROOTDI R/ bin/start_erl \
$ROOTDI R $RELDI R $START_ERL_DATA -heart -snanme cpl" > /dev/null 2>&1 &

If adiskless and/or read-only client nodeisabout to start thest art _er | . dat a fileislocated in the client directory
at the master node. Thus, the START_ERL_DATA line should look like:

CLI ENTDI R=$ROOTDI R/ cl i ent s/ cl i ent nane
START_ERL_DATA=${1: - $CLI ENTDI R/ bi n/ start _er| . dat a}

run_erl

This program is used to start the emulator, but you will not be connected to the shell. t o_er | is used to connect
to the Erlang shell.

Usage: run_erl pipe_dir/ log_dir "exec command [paraneters ...]"

Where pi pe_di r/ should be/tnp/ (to_erl| uses this name by default) and | og_di r is where the log files
are written. command [par anet er s] is executed, and everything written to stdin and stdout is logged in the
log_dir.

Inthel og_di r, log filesare written. Each logfile has a name of theform: er | ang. | og. Nwhere N isageneration
number, ranging from 1 to 5. Each logfile holds up to 100kB text. Astime goes by the following logfileswill be found
in the logfile directory

erl ang. | og.
erl ang. | og.
erl ang. | og.
erl ang. | og.
erl ang. | og.
erl ang. | og.

erl ang. | og.
erl ang. | og.
erl ang. | og.
erl ang. | og.
erl ang. | og.

erlang. | og. 3

erlang.log.3, erlang.log.4
erlang.log. 4, erlang.log.5
erlang.log.5, erlang.log.1

WNPERPER
ENESENESEN

with the most recent logfile being the right most in each row of the above list. That is, the most recent file is the one
with the highest number, or if there are already four files, the one before the skip.

When alodfile is opened (for appending or created) atime stamp is written to the file. If nothing has been written to
thelog filesfor 15 minutes, arecord is inserted that says that we're till aive.

to_erl

This program is used to attach to a running Erlang runtime system, started withr un_er | .

Usage: to_erl [pipe_nanme | pipe_dir]

Where pi pe_nane defaultsto/ t np/ er | ang. pi pe. N.
To disconnect from the shell without exiting the Erlang system, typeCt r | - D.

56 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.2 Windows NT

start_erl

Thisprogram startsthe Erlang emul ator with parameters- boot and- conf i g set. It readsdataabout wherethesefiles
arelocated from afilecalled st art _er| . dat a whichislocated in the <RELDI R>. Each new release introduces a
new datafile. Thisfileis automatically generated by the release handler in Erlang.

The following script illustrates the behaviour of the program.

#!'/ bi n/ sh

This programis called by run_erl. It starts

the Erlang enul ator and sets -boot and -config paraneters.
It should only be used at an enbedded target system

Usage: start_erl RootDir RelDir DataFile [Erl Flags ...]

HoH o HHHH

ROOTDI R=%$1
shift

RELDI R=$1
shift

Dat aFi | e=$1
shift

ERTS VSN="awk '{print $1}' $DataFile’
VSN="awk '{print $2}' $DataFile’

Bl NDI R=$ROOTDI K/ ert s- $ERTS_VSN bi n
EMJ=beam

PROGNAME="echo $0 | sed 's/.*\///'"
export EMJ

export ROOTDI R

export BIND R

export PROGNAME

export RELDI R

exec $BI NDI R/ erl exec -boot $RELDI R/ $VSN start -config $RELDI R/ $VSN sys $*

If adisklessand/or read-only client nodewiththesas! configuration parameter st ati ¢c_erul at or settotrueis
about tostartthe- boot and- conf i g flagsmust bechanged. Assuchaclient cannotreadanewst art _er| . dat a
file (thefileis not possible to change dynamically) the boot and config files are always fetched from the same place

(but with new contents if a new release has been installed). Ther el ease_handl er copies this files to the bi n
directory in the client directory at the master nodes whenever anew release is made permanent.

Assuming the same CLI ENTDI R as above the last line should look like:

exec $BINDI R/ erl exec -boot $CLIENTDI R/ bin/start \
-confi g $CLI ENTDI R/ bi n/ sys $*

3.2 Windows NT

This chapter describes the OS specific parts of OTP which relate to Windows NT.

3.2.1 Introduction
A normal installation of NT 4.0, with service pack 4 or later, isrequired for an embedded Windows NT running OTP.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 57

3.3 VxWorks

3.2.2 Memory Usage

RAM memory of 96 MBytes is recommended to run OTP on NT. A system with less than 64 Mbytes of RAM is
not recommended.

3.2.3 Disk Space Usage

A minimum NT installation with networking needs 250 MB, and an additional 130 MB for the swap file.

3.2.4 Installation

Normal NT installation is performed. No additional application programs are needed, such as I nternet explorer or web
server. Networking with TCP/IP isrequired.
Service pack 4 or later must beinstalled.

Hardware Watchdog

For Windows NT running on standard PCs with ISA and/or PCI bus there is a possibility to install an extension card
with a hardware watchdog.

Seealsotheheart (3) reference manual pagein Kernel.

3.2.5 Starting Erlang

On an embedded system, the er | srv module should be used, to install the erlang process as a Windows system
service. This service can start after NT has booted. See documentation for er | srv.

3.3 VxWorks

This chapter describes the OS specific parts of OTP which relate to VxWorks.

3.3.1 Introduction

The Erlang/OTP distribution for VxWorks s limited to what Switchboard requires (Switchboard is a general purpose
switching hardware developed by Ericsson).

Please consult the README file, included at root level in the installation, for latest information on the distribution.

3.3.2 Memory Usage
Memory required is 32 Mbyte.

3.3.3 Disk Usage
The disk space required is 22 Mbyte, the documentation included.

3.3.4 Installation

OTP/VxWorksissuppliedinadistribution file named <PREFI X>. t ar . gz; i.e. atar archivethat iscompressed with
gzip. <PREFI X> represents the name of the release, e.g. ot p_LXA12345_vxwor ks_cpu32_R42A. Assuming
you are installing to a Solaris file system, the installation is performed by following these steps: <

» Changeto the directory where you want to install OTP/VxWorks (<ROOTDI R>): cd <ROOTDI R>
* Makeadirectory to put OTP/VxWorksin: nkdi r ot p_vxwor ks_cpu32 (or whatever you want to cal it)
e Changedirectory to the newly created one: cd ot p_vxwor ks_cpu32

58 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 VxWorks

Copy the distribution file there from where it is located (<RELDI R>): cp <RELDI R>/
<PREFI X>.tar.gz .

Unzip the distribution file: gunzi p <PREFI X>.tar. gz

Untar <PREFI X>. tar:tar xvf <PREFI X>.tar

Create abin directory: nkdi r bi n

Copy the VxWorks Erlang/OTP start-up script to the bin directory: cp erts-Vsn/ bin/erl bin/.
Copy the example start scriptsto the bin directory: cp rel eases/ RA2A/ *. boot bin/.

If you use VxWorks nfs mounting facility to mount the Solaris file system, thisinstallation may be directly used. An
other possibility isto copy the installation to alocal VxWorks DOS file system, from where it is used.

3.3.5 OS Specific Functionality/Information

There are a couple of filesthat are unique to the VxWorks distribution of Erlang/OTP, these files are described here.

README - thisfiles has some information on VxWorks specifics that you are advised to consult. Thisincludes
the latest information on what parts of OTP are included in the VxWorks distribution of Erlang/OTP. If you
want us to include more parts, please contact us to discuss this.

erts-Vsn/bin/resolv.conf - A resolver configuration EXAMPLE file. Y ou have to edit thisfile.
erts-Vsn/bin/erl - Thisisan EXAMPLE start script for VxWorks. Y ou have to edit thisfile to suit your needs.

erts-Vsn/bin/erl_io - One possible solution to the problem of competing Erlang and VxWorks shell. Contains
the function 'start_erl’ called by the erl script. Also contains the function 'to_erl' to be used when connecting to
the Erlang shell from VxWorks' shell.

erts-Vsn/bin/erl_exec - Rearranges command line arguments and starts Erlang.

erts-Vsn/bin/vxcall - Allows spawning of standard VxWorks shell functions (which isjust about any function in
the system...) from open_port/2. E.g. open_port({ spawn, 'vxcall func argl arg2'}, []) will cause the output that
‘func argl, arg2' would have given in the shell to be received from the port.

erts-Vsn/bin/rdate - Set the time from a networked host, like the SUunOS command. Nothing Erlang-specific, but
nice if you want date/O and time/0 to give meaningful values (you also need a TIMEZONE environment setting
if GMT isn't acceptable). For example: put env " TI MEZONE=CET: : - 60: 033002: 102603" setscentral

european time.

erts-Vsn/src - Contains source for the above files, and additionally config.c, driver.h, preload.c and reclaim.h.
Reclaim.h defines the interface to a simple mechanism for "resource reclamation” that is part of the Erlang
runtime system - may be useful to "port program” writers (and possibly others). Take careful note of the caveats
listed in thefile!

3.3.6 Starting Erlang

Start (and restart) of the system depends on what file system isused. To be able to start the system from a nfs mounted
file system you can use VxWorks start script facility to run a start script similar to the example below. Note that the
Erlang/OTP start-up script is run at the end of this script.

H O HHHH

H* #

start.script vl1.0 1997/09/08 patrik
File nane: start.script
Pur pose: Starting the VxWorks/cpu32 erl ang/ OTP

Aut hor : patri k@ri x. eri csson. se
Resi des in: ~tornado/w nd/target/config/ads360/

Set shell pronpt

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 59

3.3 VxWorks

shel | Pronpt Set (" sauron-> ")

#

Set default gateway

#

host Add "router-20", "150. 236. 20. 251"
rout eAdd "0", "router-20"

#

Mount /home from gandal f

#

host Add "gandal f", " 150. 236. 20. 16"

user group=10

nf sAut hUni xSet (" gandal f", 452, 10, 1, &usergroup)
nf sMount (" gandal f*, "/export/hone", "/home")

#

Load and run rdate.o to set correct date on the target

#

Id < /hone/ gandal f/t ornado/ w nd/target/confi g/ ads360/rdate. o
rdat e("gandal f")

#

Setup tinmezone information (Central European tine)
#

put env " TI MEZONE=CET: : - 60: 033002: 102603"

#

Run the Erlang/ OTP start script

#

cd "/ home/ gandal f/tornado/ wi nd/target/erl ang_cpu32_R42A/ bi n"
<er|

60 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Introduction

4 User's Guide

4.1 Introduction

4.1.1 Introduction

Thisis a"kick start" tutorial to get you started with Erlang. Everything here is true, but only part of the truth. For
example, I'll only tell you the ssimplest form of the syntax, not all esoteric forms. Where I've greatly oversimplified
things I'll write *manual* which means there islots more information to be found in the Erlang book or in the Erlang
Reference Manual.

| also assume that thisisn't the first time you have touched a computer and you have a basic idea about how they are
programmed. Don't worry, | won't assume you're awizard programmer.

4.1.2 Things Left Out

In particular the following has been omitted:

e References

e Local error handling (catch/throw)

e Singledirection links (monitor)

» Handling of binary data (binaries/ bit syntax)
e List comprehensions

* How to communicate with the outside world and/or software written in other languages (ports). Thereis
however a separate tutorial for this, Interoperability Tutorial

e Very few of the Erlang libraries have been touched on (for example file handling)

e OTP hasbeen totally skipped and in consequence the M nesia database has been skipped.
e Hashtablesfor Erlang terms (ETS)

e Changing code in running systems

4.2 Sequential Programming

4.2.1 The Erlang Shell

Most operating systems have acommand interpreter or shell, Unix and Linux have many, Windows has the Command
Prompt. Erlang hasits own shell where you can directly write bits of Erlang code and evaluate (run) them to see what
happens (see shell(3)). Start the Erlang shell (in Linux or UNIX) by starting a shell or command interpreter in your
operating system and typing er | , you will see something like this.

% er |
Erl ang (BEAM enul ator version 5.2 [source] [hipe]

Eshell V5.2 (abort with ~"Q
1>

Now typein "2 + 5." as shown below.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 61

4.2 Sequential Programming

1> 2 + 5.
7
2>

In Windows, the shell is started by double-clicking on the Erlang shell icon.

You'll notice that the Erlang shell has humbered the lines that can be entered, (as 1> 2>) and that it has correctly told
you that 2 + 5 is 7! Also notice that you have to tell it you are done entering code by finishing with a full stop "."
and a carriage return. If you make mistakes writing things in the shell, you can delete things by using the backspace
key as in most shells. There are many more editing commands in the shell (See the chapter "tty - A command line
interface" in ERTS User's Guide).

(Note: you will find alot of line numbers given by the shell out of sequence in this tutorial as it was written and the
code tested in several sessions).

Now let's try a more complex calculation.

2> (42 + 77) * 66 / 3.
2618.0

Here you can see the use of brackets and the multiplication operator "*" and division operator "/*, just as in normal
arithmetic (see the chapter "Arithmetic Expressions’ in the Erlang Reference Manual).

To shutdown the Erlang system and the Erlang shell type Control-C. Y ou will see the following output:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (I)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

a

%

Type"a' to leave the Erlang system.
Another way to shutdown the Erlang system isby enteringhal t () :

3> hal t().
%

4.2.2 Modules and Functions

A programming language isn't much use if you can just run code from the shell. So here is a small Erlang program.
Enteritintoafilecaledt ut . er | (thefilenamet ut . er| isimportant, also make surethat it isin the same directory
as the one where you started er |) using a suitable text editor. If you are lucky your editor will have an Erlang mode
which will make it easier for you to enter and format your code nicely (see the chapter " The Erlang mode for Emacs’
in Tools User's Guide), but you can manage perfectly well without. Here's the code to enter:

-nmodul e(tut).
-export ([double/1]).

doubl e(X) ->
2 * X

62 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

It's not hard to guess that this "program” doubles the value of numbers. I'll get back to the first two lines later. Let's
compile the program. This can be done in your Erlang shell as shown below:

3> c(tut).
{ok, tut}

The{ ok, t ut} tellsyou that the compilation was OK. If it said "error" instead, you have made some mistake in the
text you entered and there will also be error messages to give you some idea as to what has gone wrong so you can
change what you have written and try again.

Now lets run the program.

4> tut:doubl e(10).
20

As expected double of 10 is 20.

Now let's get back to thefirst two lines. Erlang programs are written in files. Each file contains what we call an Erlang
module. Thefirst line of code in the module tells us the name of the module (see the chapter "Modules” in the Erlang
Reference Manual).

-nmodul e(tut).

Thistellsusthat the moduleiscalled tut. Notethe"." at the end of theline. Thefileswhich are used to store the module
must have the same name as the module but with the extension ".erl". In our case the file nameist ut . er | . When
we use afunction in another module, we use the syntax, modul e_nane: f uncti on_nane(ar gunent s). So

4> tut: doubl e(10).

means call function doubl e in modulet ut with argument "10".
The second line;

-export ([double/1]).

says that the module t ut contains a function called doubl e which takes one argument (X in our example) and that
thisfunction can be called from outside the modulet ut . More about thislater. Again notethe"." at the end of theline.

Now for amore complicated example, the factorial of anumber (e.g. factorial of 4is4* 3* 2* 1). Enter thefollowing
codeinafilecaledtut 1. erl .

-nmodul e(tutl).
-export([fac/1]).

fac(1) ->
1;
fac(N) ->
N * fac(N - 1).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 63

4.2 Sequential Programming

Compilethefile
5> c(tutl).
{ok, tut1}

And now calculate the factorial of 4.

6> tutl:fac(4).

24
Thefirst part:
fac(1) ->
1;

says that the factorial of 1is 1. Note that we end this part with a";" which indicates that there is more of this function
to come. The second part:

fac(N ->
N * fac(N - 1).

saysthat the factorial of N isN multiplied by the factorial of N - 1. Note that this part endswith a"." saying that there
are no more parts of this function.

A function can have many arguments. Let's expand the module t ut 1 with the rather stupid function to multiply two
numbers:

-nmodul e(tutl).
-export([fac/1, mult/2]).

fac(1) ->
1;
fac(N ->

N * fac(N - 1).

milt(X, Y) ->
X * Y.

Note that we have also had to expand the - export line with the information that there is another function nmul t
with two arguments.

Compile:
7> c(tutl).

{ok, tut1}

and try it out:

64 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

8> tutl:nult(3,4).
12

In the example above the numbers are integers and the arguments in the functions in the code, N, X, Y are called
variables. Variables must start with a capital letter (see the chapter "Variables' in the Erlang Reference Manual).
Examples of variable could be Nurrber , ShoeSi ze, Age etc.

4.2.3 Atoms

Atoms are another datatypein Erlang. Atoms start with asmall letter ((seethe chapter "Atom" in the Erlang Reference
Manual)), for example: char | es, centi net er, i nch. Atoms are simply names, nothing else. They are not like
variables which can have avalue.

Enter the next program (file: t ut 2. er |) which could be useful for converting from inches to centimeters and vice
versa

-nmodul e(tut?2).
-export([convert/2]).

convert(M inch) ->
M/ 2.54;

convert (N, centineter) ->
N * 2.54.

Compile and test:

9> c(tut2).

{ ok, tut2}

10> tut 2: convert (3, inch).
1.1811023622047243

11> tut 2: convert (7, centineter).
17.78

Notice that | have introduced decimals (floating point numbers) without any explanation, but | guess you can cope
with that.

See what happensif | enter something other than centimeter or inch in the convert function:

12> tut 2: convert (3, mles).
** exception error: no function clause matching tut2:convert(3,niles)

The two parts of the convert function are called its clauses. Here we see that "miles’ is not part of either of the
clauses. The Erlang system can't match either of the clauses so we get an error message f unct i on_cl ause. The
shell formats the error message nicely, but the error tuple is saved in the shell's history list and can be output by the
shell command v/ 1:

13> v(12).

{"EXIT ,{function_cl ause, [{tut2,convert,[3, mles]},
{erl _eval, do_apply, 5},
{shel | , exprs, 6},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 65

4.2 Sequential Programming

{shel | , eval _exprs, 6},
{shel |, eval _| oop, 3}]1}}

4.2.4 Tuples

Now thet ut 2 program is hardly good programming style. Consider:

tut2: convert (3, inch).

Doesthismean that 3isininches? or that 3isin centimeters and we want to convert it to inches? So Erlang hasaway to
group thingstogether to make things more understandable. We call these tuples. Tuplesare surrounded by "{" and "}".

So we can write{i nch, 3} todenote 3inchesand { centi net er, 5} to denote 5 centimeters. Now let's write a
new program which converts centimeters to inches and vice versa. (filet ut 3. er |).

-nmodul e(tut3).
-export([convert_length/1]).

convert_l ength({centinmeter, X}) ->
{inch, X/ 2.54};

convert_l ength({inch, Y}) ->
{centineter, Y * 2.54}.

Compile and test:

14> c(tut3).

{ ok, tut 3}

15> tut 3: convert _l ength({inch, 5}).

{centineter, 12. 7}

16> tut 3: convert_| ength(tut 3: convert_| ength({inch, 5})).
{inch, 5. 0}

Note on line 16 we convert 5 inches to centimeters and back again and reassuringly get back to the original value.
|.e the argument to a function can be the result of another function. Pause for a moment and consider how line 16
(above) works. The argument we have given the function { i nch, 5} isfirst matched against the first head clause of
convert lengthi.econvert | ength({centineter, X}) whereitcanbeseenthat{centi neter, X}
doesnot match { i nch, 5} (the head isthe bit before the "->"). This having failed, we try the head of the next clause
i.e.convert | ength({inch, Y}),thismatchesandY get thevalue5.

We have shown tuples with two parts above, but tuples can have as many parts as we want and contain any valid
Erlang term. For example, to represent the temperature of various cities of the world we could write

{nobscow, {c, -10}}
{cape_town, {f, 70}}
{paris, {f, 28}}

Tuples have afixed number of thingsin them. We call each thing in atuple an element. So in the tuple { nroscow,
{c,-10}},element lisnoscowand element 2is{ c, - 10} . | have chosen ¢ meaning Centigrade (or Celsius) and
f meaning Fahrenheit.

66 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

4.25 Lists

Whereastuples group thingstogether, we al so want to be ableto represent lists of things. Listsin Erlang are surrounded
by "[" and "]". For example alist of the temperatures of various cities in the world could be:

[{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm {c, -4}},
{paris, {f, 28}}, {london, {f, 36}}]

Note that thislist was so long that it didn't fit on one line. This doesn't matter, Erlang allowsline breaks at al "sensible
places’ but not, for example, in the middle of atoms, integers etc.

A very useful way of looking at parts of lists, ishy using "|". Thisis best explained by an example using the shell.

17> [First | TheRest] =1[1,2,3,4,5].
[1,2,3,4,5]

18> First.

1

19> TheRest .

[2,3,4,5]

We use | to separate the first elements of the list from the rest of the list. (Fi r st has got value 1 and TheRest
vaue[2,3,4,9]).

Another example:

20> [El, E2 | Rl =[1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]

21> E1.

1

22> E2.

2

23> R

[3,4,5,6,7]

Here we see the use of | to get the first two elements from the list. Of course if we try to get more elements from the
list than there are elementsin the list we will get an error. Note also the specia case of the list with no elements[].

24> [A B| C =1[1, 2].
[1,2]

25> A

1

26> B.

2

27> C.

[

In al the examples above, | have been using new variable names, not reusing the old ones: Fi r st , TheRest , E1,
E2, R A B, C. Thereason for thisisthat a variable can only be given avalue oncein its context (scope). I'll get back
to thislater, it isn't so peculiar asit sounds!

The following example shows how we find the length of alist:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 67

4.2 Sequential Programming

-modul e(tut4).
-export([list_length/1]).
list_length([]) ->

0;

list_length([First | Rest]) ->
1 + list_length(Rest).

Compile (filet ut 4. er |) and test:

28> c(tut4).

{ok, tut4}

29> tut4d:list_length([1,2,3,4,5,6,7]).
7

Explanation:
list_length([]) ->
0;
The length of an empty list is obviously O.

list_length([First | Rest]) ->
1 + list_length(Rest).

The length of alist with the first element Fi r st and the remaining elements Rest is1 + the length of Rest .
(Advanced readers only: Thisis not tail recursive, there is abetter way to write this function).

In general we can say we use tuples where we would use "records’ or "structs’ in other languages and we use lists
when we want to represent things which have varying sizes, (i.e. where we would use linked listsin other languages).

Erlang does not have a string date type, instead strings can be represented by lists of ASCII characters. So the list
[97, 98, 99] isequivalentto"abc". The Erlang shell is"clever" and guessesthe what sort of list we mean and outputs
it in what it thinks is the most appropriate form, for example:

30> [97, 98, 99] .
"abc"

4.2.6 Standard Modules and Manual Pages

Erlang has a lot of standard modules to help you do things. For example, the module i o contains a lot of functions
to help you do formatted input/output. To look up information about standard modules, the command er| - nan
can be used at the operating shell or command prompt (i.e. at the same place as that where you started er |). Try the
operating system shell command:

%erl -man io
ERLANG MODULE DEFI NI TI ON io(3)

MODUL E

68 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

io - Standard I/ O Server |nterface Functions

DESCRI PTI ON
This nmodul e provides an interface to standard Erlang 10O
servers. The output functions all return ok if they are suc-

If this doesn't work on your system, the documentation is included as HTML in the Erlang/OTP release, or you can
read the documentation asHTML or download it as PDF from either of the sites www.erlang.se (commercia Erlang)
or www.erlang.org (open source), for example for release R9B:

http://ww. erl ang. or g/ doc/ r 9b/ doc/ i ndex. ht m

4.2.7 Writing Output to a Terminal

It's nice to be able to do formatted output in these example, so the next example shows a simple way to use to use
thei o: f or mat function. Of course, just like all other exported functions, you can test thei o: f or mat function
in the shell:

31> io:format("hello world~n", []).

hello world

ok

32> jo:format("this outputs one Erlang term ~w-n", [hello]).

this outputs one Erlang term hello

ok

33> jo:format("this outputs two Erlang terns: ~w-w-n", [hello, world]).
this outputs two Erlang terns: helloworld

ok

34> jo:format("this outputs two Erlang terns: ~w ~w-n", [hello, world]).
this outputs two Erlang terns: hello world

ok

Thefunctionf or mat / 2 (i.e.f or mat with two arguments) takestwo lists. Thefirst oneisnearly alwaysalist written
between " ". This list is printed out as it stands, except that each ~w is replaced by a term taken in order from the
second list. Each ~nisreplaced by anew line. Thei o: f or mat / 2 function itself returns the atom ok if everything
goes as planned. Like other functions in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it isa
deliberate policy. Erlang has sophisticated mechanisms to handle errors which we will show later. As an exercise,
try to makei o: f or mat crash, it shouldn't be difficult. But notice that although i o: f or mat crashes, the Erlang
shell itself does not crash.

4.2.8 A Larger Example

Now for alarger example to consolidate what we have learnt so far. Assume we have a list of temperature readings
from a number of cities in the world. Some of them are in Celsius (Centigrade) and some in Fahrenheit (as in the
previous list). First let's convert them all to Celsius, then let's print out the data neatly.

%6 This nmodule is in file tut5.erl

-modul e(tutb).
-export([format _tenps/1]).

%o Only this function is exported
format _temps([])-> % No output for an enpty |ist

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 69

4.2 Sequential Programming

ok;

format _temps([City | Rest]) ->
print_tenp(convert_to_celsius(Gty)),
format _tenps(Rest).

convert_to_cel sius({Nane, {c, Tenp}}) -> % No conversi on needed
{Narme, {c, Tenp}};

convert_to_cel sius({Nane, {f, Tenp}}) -> % Do the conversion
{Name, {c, (Tenp - 32) * 5/ 9}}.

print_tenp({Nanme, {c, Tenp}}) ->
io:format("~-15w ~w c~n", [Nanme, Tenp]).

35> c(tuth).

{ ok, tut 5}

36> tut5: format _tenmps([{nmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow -10 ¢

cape_t own 21.11111111111111 ¢
st ockhol m -4 ¢

paris -2.2222222222222223 ¢
| ondon 2.2222222222222223 ¢
ok

Before we look at how this program works, notice that we have added afew comments to the code. A comment starts
with a % character and goes on to the end of the line. Note as well that the - export ([format _tenps/1]).
line only includes the function f or mat _t enps/ 1, the other functions are local functions, i.e. they are not visible
from outside the module t ut 5.

Note as well that when testing the program from the shell, | had to spread the input over two lines as the line was
too long.

When we call f or mat _t enps thefirst time, G t y gets the value { moscow, { ¢, - 10} } and Rest istherest of
thelist. So we call thefunction pri nt _t enp(convert _to_cel sius({moscow, {c,-10}})).

Here we see afunction call asconvert _to_cel si us({noscow, {c, - 10}}) asthe argument to the function
print_tenp. When we nest function calls like this we execute (evaluate) them from the inside out. l.e. we
first evaluateconvert to_cel si us({noscow, {c, - 10}}) whichgivesthevaue{ noscow, {c, - 10} } as
the temperature is already in Celsius and then we evaluate pri nt _t enp({noscow, {c, - 10}}) . The function
convert _to_cel si us worksinasimilar way totheconvert _| engt h function in the previous example.

print _tenpsimplycdlsi o: f or mat inasimilar way to what has been described above. Note that ~-15w saysto
print the "term" with afield length (width) of 15 and left justify it. (io(3)).

Now we call fornat _tenps(Rest) with the rest of the list as an argument. This way of doing things is
similar to the loop constructs in other languages. (Yes, this is recursion, but don't let that worry you). So the same
format _t enps function is called again, thistime Ci t y getsthe value{cape_t own, {f, 70} } and we repeat
the same procedure as before. We go on doing this until the list becomes empty, i.e. [], which causes the first clause
format _tenps([]) tomatch. Thissimply returns (resultsin) the atom ok, so the program ends.

4.2.9 Matching, Guards and Scope of Variables

It could be useful to find the maximum and minimum temperature in lists like this. Before extending the program to
do this, let'slook at functions for finding the maximum value of the elementsin alist:

- modul e(tut6) .
-export ([list_max/1]).

70 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

l'i st_max([Head| Rest]) ->
l'i st_max(Rest, Head).

list_max([], Res) ->
Res;

l'i st_max([Head| Rest], Result_so_far) when Head > Result_so_far ->
l'i st_max(Rest, Head);

l'i st_max([Head| Rest], Result_so_far) ->
list_max(Rest, Result_so_far).

37> c(tutb).

{ ok, tut 6}

38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
7

First note that we have two functions here with the same name | i st _nmax. However each of these takes a different
number of arguments (parameters). In Erlang these are regarded as completely different functions. Where we need to
distinguish between these functions we write nare/ ar i t y, where name isthe name of the functionandari ty is
the number of arguments, inthiscasel i st _max/ 1l andl i st_nmax/ 2.

This is an example where we walk through a list "carrying” a vaue with us, in this case Result _so_far.
I'i st_max/ 1 simply assumesthat the max value of thelististhehead of thelistand callsl i st _nax/ 2 withtherest
of thelist and thevalue of the head of thelist, intheabovethiswouldbel i st _max([2, 3,4,5,7,4,3,2,1],1).
If wetriedtousel i st _nmax/ 1 with an empty list or tried to use it with something whichisn't alist at all, we would
cause an error. Note that the Erlang philosophy is not to handle errors of this type in the function they occur, but to
do so elsewhere. More about this later.

In list_max/2 we wak down the list and use Head instead of Result so far when Head >
Resul t _so_f ar.when isaspecia word we use before the -> in the function to say that we should only use this
part of the function if the test which follows is true. We call tests of this type a guard. If the guard isn't true (we say
the guard fails), we try the next part of the function. In this caseif Head isn't greater than Resul t _so_f ar then it
must be smaller or equal to is, so we don't need a guard on the next part of the function.

Some useful operatorsin guards are, < less than, > greater than, == equal, >= greater or equal, =< less or equal, /= not
equal. (see the chapter "Guard Sequences’ in the Erlang Reference Manual).

To change the above program to one which works out the minimum value of the element in alit, all we would need
to doistowrite < instead of >. (But it would be wise to change the name of the functionto | i st _m n:-).

Remember that | mentioned earlier that avariable could only be given avalue onceinits scope? |nthe above we see, for
example, that Resul t _so_f ar hasbeen given severa values. Thisis OK since every timewecal | i st _nax/ 2
we create a new scope and one can regard the Resul t _so_f ar asacompletely different variable in each scope.

Another way of creating and giving a variable a value is by using the match operator = . So if | writeM = 5, a
variable called Mwill be created and given the value 5. If, in the same scope | then write M = 6, I'll get an error.
Try this out in the shell:

39> M = 5.
5
40> M = 6.

** exception error: no match of right hand side val ue 6
41> M= M + 1.

** exception error: no match of right hand side val ue 6
42> N =M+ 1.

6

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 71

4.2 Sequential Programming

The use of the match operator is particularly useful for pulling apart Erlang terms and creating new ones.

43> {X, Y} = {paris, {f, 28}}.
{paris, {f, 28}}

44> X.

paris

45> Y.

{f, 28}

Here we see that X getsthevaluepari s and Y{f, 28}.
Of courseif we try to do the same again with another city, we get an error:

46> {X, Y} = {london, {f, 36}}.
** exception error: no match of right hand side val ue {london, {f, 36}}

Variables can a so be used to improve the readability of programs, for example, inthel i st _nmax/ 2 function above,
we could write:

l'i st_max([Head| Rest], Result_so_far) when Head > Result_so _far ->
New result_far = Head,
list_max(Rest, New result_far);

which is possibly alittle clearer.

4.2.10 More About Lists
Remember that the | operator can be used to get the head of alist:

47> [ML| T1] = [paris, |ondon, rone].
[paris, | ondon, r orme]

48> ML.

paris

49> T1.

[ondon, r one]

The | operator can also be used to add ahead to alist:

50> L1 = [nmadrid | T1].
[madri d, | ondon, r one]
51> L1.

[madri d, | ondon, r one]

Now an example of this when working with lists - reversing the order of alist:

-nmodul e(tut8).
-export([reverse/1]).

reverse(List) ->

72 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

reverse(List, []).

reverse([Head | Rest], Reversed_List) ->
reverse(Rest, [Head | Reversed_List]);
reverse([], Reversed_List) ->
Rever sed_Li st .

52> c(tut8).

{ ok, tut8}

53> tut8:reverse([1,2,3]).
[3,2,1]

Consider how Rever sed_Li st isbuilt. It startsas[], wethen successively take of f the heads of thelist to bereversed
and add them to thethe Rever sed_Li st , as shown in the following:

reverse([1]2,3], []) =>
reverse([2,3], [1][]])

reverse([2]3], [1]) =>
reverse([3], [2][1])

reverse([3|[]], [2,1]) =>
reverse([], [3][2 1]1])

reverse([], [3,2,1]) =>
[3,2,1]

Themodulel i st s containsalot of functions for manipulating lists, for example for reversing them, so before you
write alist manipulating function it is agood idea to check that one isn't already written for you. (see lists(3)).

Now lets get back to the cities and temperatures, but take a more structured approach thistime. First let's convert the
whole list to Celsius as follows and test the function:

-nmodul e(tut?).
-export([format _tenps/1]).

format _tenps(List_of cities) ->
convert_list_to_c(List_of _cities).

convert_list_to_c([{Nane, {f, F}} | Rest]) ->
Converted_City = {Name, {c, (F -32)* 5/ 9}},
[Converted_City | convert list_to c(Rest)];

convert _list_to c([City | Rest]) ->
[Cty | convert_list to_c(Rest)];

convert _list_to_c([]) ->

[1.

54> c(tut7).

{ok, tut7}.

55> tut7: format _tenps([{nmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]1).
[{noscow, {c, -10}},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 73

4.2 Sequential Programming

{cape_town, {c,21.11111111111111}},
{stockhol m{c, -4}},
{paris,{c,-2.2222222222222223}},
{l ondon, {c, 2. 2222222222222223} }]

Looking at this bit by bit:

format _tenps(List_of _cities) ->
convert _list_to_c(List_of_cities).

Here we see that f or mat _tenps/ 1 callsconvert list _to c/1.convert |ist _to c/1 takes off the
head of theLi st _of _ci ti es, convertsit to Celsiusif needed. The | operator is used to add the (maybe) converted
to the converted rest of the list:

[Converted_City | convert_list_to c(Rest)];

or

[Cty | convert_list_to_c(Rest)];

We go on doing this until we get to the end of thelist (i.e. thelist is empty:

convert _list_to c([]) ->

(1.

Now we have converted the list, we add a function to print it:

-nmodul e(tut?7).
-export([format _tenps/1]).

format _tenps(List_of cities) ->
Converted List = convert list to c(List_of cities),
print_tenp(Converted List).

convert_list_to_c([{Narme, {f, F}} | Rest]) ->
Converted City = {Name, {c, (F -32)* 5/ 9}},
[Converted_City | convert_|list_to c(Rest)];

convert_list_to c([Cty | Rest]) ->
[City | convert_list_to c(Rest)];

convert _list _to c([]) ->

(1.

print_tenp([{Nanme, {c, Tenp}} | Rest]) ->
io:format("~-15w ~w c~n", [Nanme, Tenp]),
print_tenp(Rest);

print_tenp([]) ->
ok.

74 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

56> c(tut7).
{ok, tut7}

57> tut7: format _tenps([{nmscow, {c, -10}}, {cape_town, {f, 70}},

{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
noscow -10 ¢

cape_t own 21.11111111111111 ¢
st ockhol m -4 ¢

paris - 2.2222222222222223 ¢
| ondon 2.2222222222222223 ¢
ok

We now have to add a function to find the cities with the maximum and minimum temperatures. The program below
isn't the most efficient way of doing this as we walk through the list of cities four times. But it is better to first strive

for clarity and correctness and to make programs efficient only if really needed.

-nmodul e(tut7).
-export([format _tenps/1]).

format _tenps(List_of _cities) ->
Converted_List = convert _list_to_c(List_of_cities),
print_tenp(Converted_List),
{Max_city, Mn_city} = find_max_and_m n(Converted_List),
print_max_and_m n(Max_city, Mn_city).

convert _list_to_c([{Nane, {f, Tenp}} | Rest]) ->
Converted_City = {Nanme, {c, (Tenp -32)* 5/ 9}},
[Converted_City | convert list_to_c(Rest)];

convert _list_to c([City | Rest]) ->
[Cty | convert_list _to_c(Rest)];

convert _list_to c([]) ->

(1.

print_tenmp([{Name, {c, Tenp}} | Rest]) ->
io:format("~-15w ~w c~n", [Nane, Tenp]),
print_tenp(Rest);

print_temp([]) ->
ok.

find_max_and_mn([Cty | Rest]) ->
find_max_and_mn(Rest, City, Cty).

find_max_and_m n([{Nanme, {c, Tenp}} | Rest],
{Max_Nane, {c, Max_Tenp}},
{M n_Nane, {c, Mn_Tenp}}) ->
i f
Tenp > Max_Tenp ->

Max_City = {Nane, {c, Tenp}}; % Change
true ->
Max_City = {Max_Nane, {c, Max_Tenp}} % Unchanged
end,
if
Tenp < M n_Tenp ->
Mn_Cty = {Nane, {c, Tenp}}; % Change
true ->
Mn_Cty = {Mn_Nane, {c, Mn_Tenp}} % Unchanged
end,

find_max_and_m n(Rest, Max_Cty, Mn_Cty);

find_max_and_min([], Max_Cty, Mn_City) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 75

4.2 Sequential Programming

{Max_City, Mn_City}.

print_max_and_m n({Max_nane, {c, Max_temp}}, {Mn_name, {c, Mn_tenp}}) ->
io:format (" Max tenperature was ~w ¢ in ~w-n", [Max_tenp, Max_nane]),
io:format ("M n tenperature was ~w ¢ in ~wn", [Mn_tenp, Mn_nane]).

58> c(tut7).

{ok, tut7}

59> tut7: format _tenmps([{nmoscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow -10 ¢

cape_t own 21.11111111111111 ¢
st ockhol m -4 ¢

paris -2.2222222222222223 ¢
| ondon 2.2222222222222223 ¢

Max tenperature was 21.11111111111111 c in cape_t own
Mn tenperature was -10 ¢ in nobscow
ok

4.2.11 If and Case

Thefunctionf i nd_rmax_and_m n works out the maximum and minimum temperature. We have introduced a new
construct herei f . If works asfollows:

Condition 1 ->
Action 1;
Condition 2 ->
Action 2;
Condition 3 ->
Action 3;
Condition 4 ->
Action 4
end

Notethereisno™;" before end! Conditions are the same as guards, tests which succeed or fail. Erlang starts at the top
until it finds acondition which succeeds and then it eval uates (performs) the action following the condition and ignores
all other conditions and action before the end. If no condition matches, there will be arun-time failure. A condition
which always is succeeds isthe atom, t r ue and thisis often used last in ani f meaning do the action following the
t r ue if al other conditions have failed.

The following is a short program to show the workings of i f .

-nmodul e(tut9).
-export([test_if/2]).

test_if(A B) ->
if
A==5 ->
io:format ("A == 5~n", []),
a_equal s_5;

B==6 ->
io:format ("B == 6~n", []),
b_equal s_6;
A=2 B=3-> % .e. Aequals 2 and B equals 3

io:format("A == 2, B == 3~n", []),

76 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

a_equal s_2_b_equal s_3;
A==1,; B=17 -> % .e. Aequals 1 or B equals 7
io:format("A==1; B==7~n", []),
a_equals_1 or_b_equal s_7
end.

Testing this program gives:

60> c(tut9).

{ ok, tut 9}

61> tut9:test _if(5,33).

A ==

a_equal s_5

62> tut9:test _if(33,6).

B ==

b_equal s_6

63> tut9:test _if(2, 3).

A==2 B ==

a_equal s_2 b _equal s_3

64> tut9:test _if(1l, 33).

A == . B ==

a_equal s_1_or_b_equal s_7

65> tut9:test _if(33, 7).

A == . B ==

a_equal s_1_or_b_equal s_7

66> tut9:test if(33, 33).

** exception error: no true branch found when evaluating an if expression
in function tut9:test_if/2

Notice that tut 9: test i f (33, 33) did not cause any condition to succeed so we got the run time error
i f_cl ause, here nicely formatted by the shell. See the chapter "Guard Sequences' in the Erlang Reference
Manual for details of the many guard tests available. case is another construct in Erlang. Recall that we wrote the
convert | engt h function as:

convert _length({centineter, X}) ->
{inch, X/ 2.54};

convert_l ength({inch, Y}) ->
{centineter, Y * 2.54}.

We could also write the same program as:

- modul e(tut 10) .
-export([convert_length/1]).

convert _| ength(Length) ->
case Length of
{centineter, X} ->
{inch, X/ 2.54};
{inch, Y} ->
{centineter, Y * 2.54}
end.

67> c(tutl10).
{ ok, tut 10}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 77

4.2 Sequential Programming

68> tut10: convert _| engt h({inch, 6}).
{centineter, 15. 24}

69> tut 10: convert _| ength({centimeter, 2.5}).
{inch, 0.984251968503937}

Noticethat bothcase andi f havereturnvalues, i.e. inthe above example case returned either { i nch, X/ 2. 54}
or{centineter, Y*2. 54} . The behaviour of case can aso be modified by using guards. An example should
hopefully clarify this. The following example tells us the length of amonth, given the year. We need to know the year
of course, since February has 29 daysin aleap year.

-modul e(tut 11).
-export ([nonth_length/2]).

mont h_| engt h(Year, Month) ->
%6 All years divisible by 400 are | eap
%% Years divisible by 100 are not |eap (except the 400 rul e above)
%6 Years divisible by 4 are | eap (except the 100 rul e above)
Leap = if
trunc(Year / 400) * 400 == Year ->
| eap;
trunc(Year / 100) * 100 == Year ->
not _| eap;
trunc(Year / 4) * 4 == Year ->
| eap;
true ->
not _| eap
end,
case Month of
sep -> 30;
apr -> 30;
jun -> 30;
nov -> 30;
feb when Leap == leap -> 29;
feb -> 28;
jan -> 31;
mar -> 31;
may -> 31,
jul -> 31;
aug -> 31;
oct -> 31;
dec -> 31
end.

70> c(tutll).

{ok, tut 11}

71> tut 11: nont h_| engt h(2004, feb).
29

72> tut11: nont h_| engt h(2003, feb).
28

73> tut11: nont h_| engt h(1947, aug) .
31

4.2.12 Built In Functions (BIFs)

Built in functions BIFs are functions which for some reason is built in to the Erlang virtua machine. BIFs often
implement functionality that is impossible to implement in Erlang or is to inefficient to implement in Erlang. Some

78 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

BIFs can be called by use of the function name only but they are by default belonging to the erlang module so for
examplethe call tothe BIF t r unc below is equivalent withacall toer | ang: t runc.

As you can see, we first find out if ayear isleap or not. If ayear is divisible by 400, it is aleap year. To find this
out we first divide the year by 400 and use the built in function t r unc (more later) to cut off any decimals. We then
multiply by 400 again and see if we get back the same value. For example, year 2004:

2004 / 400 = 5.01
trunc(5.01) =5
5 * 400 = 2000

and we can see that we got back 2000 which is not the same as 2004, so 2004 isn't divisible by 400. Y ear 2000:

2000 / 400 = 5.0
trunc(5.0) =5
5 * 400 = 2000

so we have aleap year. The next two tests if the year is divisible by 100 or 4 are done in the same way. The first i f
returns| eap or not _| eap which lands up in the variable Leap. We use this variable in the guard for f eb in the
following case which tells us how long the month is.

This example showed the use of t r unc, an easier way would be to use the Erlang operator r emwhich gives the
remainder after division. For example:

74> 2004 rem 400.
4

S0 instead of writing

trunc(Year / 400) * 400 == Year ->
| eap;

we could write

Year rem 400 == ->
| eap;

There are many other built in functions (BIF) such ast r unc. Only afew built in functions can be used in guards,
and you cannot use functions you have defined yourself in guards. (see the chapter "Guard Sequences' in the Erlang
Reference Manual) (Aside for advanced readers: Thisisto ensure that guards don't have side effects). Let's play with
afew of these functionsin the shell:

75> trunc(5.6).

5

76> round(5. 6) .

6

77> length([a,b,c,d]).
4

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 79

4.2 Sequential Programming

78> fl oat (5)

5.0

79> i s_aton(hell o)

true

80> is_atom("hello")

fal se

81> is_tuple({paris, {c, 30}})
true

82> is_tuple([paris, {c, 30}])
fal se

All the above can be used in guards. Now for some which can't be used in guards:

83> atomto_list(hello).

"hel | 0"

84> |ist_to_aton("goodbye").
goodbye

85> integer_to_list(22).
woon

The 3 BIFs above do conversions which would be difficult (or impossible) to do in Erlang.

4.2.13 Higher Order Functions (Funs)

Erlang, like most modern functional programming languages, has higher order functions. We start with an example
using the shell:

86> Xf = fun(X) -> X * 2 end
#Fun<er| _eval . 5. 123085357>
87> Xf(5).

10

What we have done here is to define a function which doubles the value of number and assign this function to a
variable. Thus Xf (5) returned the value 10. Two useful functions when working with lists are f or each and nap,
which are defined as follows:

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);
foreach(Fun, []) ->
ok.

map(Fun, [First|Rest]) ->

[Fun(First) | map(Fun, Rest)];
map(Fun, []) ->

(1.

These two functions are provided in the standard module | i st s. f or each takes alist and applies a fun to every
element inthelist, map createsanew list by applying afun to every element in alist. Going back to the shell, we start
by using map and afun to add 3 to every element of alist:

88> Add_3 = fun(X) -> X + 3 end
#Fun<er| _eval . 5. 123085357>

80 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

89> |ists:map(Add_3, [1,2, 3]).
[4,5, 6]

Now lets print out the temperaturesin alist of cities (yet again):

90> Print_City = fun({Gty, {X Tenp}}) -> io:format("~- 15w ~w ~w~n",
[Cty, X, Tenp]) end.

#Fun<er| _eval . 5. 123085357>

91> lists:foreach(Print_City, [{nmpbscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

nmoscow c -10
cape_t own f 70
st ockhol m c -4
paris f 28
| ondon f 36
ok

We will now define a fun which can be used to go through alist of cities and temperatures and transform them all
to Celsius.

-nmodul e(tut13).
-export([convert_list_to_c/1]).

convert_to_c({Nane, {f, Tenp}}) ->

{Nane, {c, trunc((Tenp - 32) * 5/ 9)}};
convert_to_c({Nane, {c, Tenp}}) ->

{Narme, {c, Tenp}}.

convert list to c(List) ->
lists: map(fun convert_to c/1, List).

92> tutl13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow, {c, -10}},

{cape_town, {c, 21}},

{stockhol m{c, -4}},

{paris,{c,-2}},
{l ondon, {c, 2}}]

Theconvert _to_c functionisthe same as before, but we use it asafun:

lists: map(fun convert_to_c/1, List)

When we use a function defined elsewhere asafun we canrefer toitasFuncti on/ Ari ty (rememberthat Ari ty
= number of arguments). So in the map call wewritel i st s: map(fun convert to _c/1, List).Asyou
canseeconvert |ist_to_c becomesmuch shorter and easier to understand.

The standard modulel i st s also containsafunctionsor t (Fun, Li st) whereFun isafunwith two arguments.
Thisfun should returnt r ue if the thefirst argument isless than the second argument, or elsef al se. We add sorting
totheconvert list to c:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 81

4.3 Concurrent Programming

-modul e(tut 13).
-export([convert |ist_to_c/1]).

convert_to_c({Nane, {f, Tenp}}) ->

{Name, {c, trunc((Tenp - 32) * 5/ 9)}};
convert_to_c({Nane, {c, Tenp}}) ->

{Name, {c, Tenp}}.

convert_list_to_c(List) ->
New | ist = lists:map(fun convert_to_c/1, List),
lists:sort(fun({_, {c, Tenpl}}, {_, {c, Tenp2}}) ->
Tenpl < Tenp2 end, New_ |ist).

93> c(tut13).

{ok, tut 13}

94> tut13:convert _list_to_c([{nmscow, {c, -10}}, {cape_town, {f, 70}},
{stockholm {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{rmoscow, {c, -10}},

{stockhol m{c, -4}},

{paris,{c,-2}},
{l ondon, {c, 2}},
{cape_town, {c, 21}}]

Insort we usethe fun:

fun({_, {c, Tenpl}}, {_, {c, Tenp2}}) -> Tenpl < Tenp2 end,

Here we introduce the concept of an anonymous variable " ". Thisis simply shorthand for a variable which is going
to get avalue, but we will ignore the value. This can be used anywhere suitable, not just in fun's. Tenpl < Tenp2
returnst r ue if Tenpl islessthan Tenp2.

4.3 Concurrent Programming

4.3.1 Processes

One of themain reasonsfor using Erlang instead of other functional languagesis Erlang's ability to handle concurrency
and distributed programming. By concurrency we mean programs which can handle several threads of execution at
the same time. For example, modern operating systems would allow you to use a word processor, a spreadsheet, a
mail client and aprint job al running at the same time. Of course each processor (CPU) in the system is probably only
handling one thread (or job) at atime, but it swaps between the jobs a such arate that it gives the illusion of running
them all at the sametime. It is easy to create parallel threads of execution in an Erlang program and it is easy to alow
these threads to communicate with each other. In Erlang we call each thread of execution a process.

(Aside: the term "process’ is usually used when the threads of execution share no data with each other and the term
"thread" when they share data in some way. Threads of execution in Erlang share no data, that's why we call them
processes).

The Erlang BIF spawn is used to create a new process. spawn(Modul e, Exported_Function, List of
Ar gunent s) . Consider the following module:

-nmodul e(tut 14).

82 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

-export([start/0, say_sonething/2])

say_sonet hi ng(Wat, 0) ->
done

say_sonet hi ng(What, Tines) ->
io:format("~p~n", [Wat])
say_sonet hi ng(What, Tines - 1)

start() ->
spawn(tut 14, say_sonething, [hello, 3])
spawn(tut 14, say_sonet hi ng, [goodbye, 3])

5> c(tutl4).

{ ok, tut 14}

6> tut 14: say_sonet hi ng(hel l o, 3)
hel | o

hel | o

hel | o

done

We can see that function say_somet hi ng writes its first argument the number of times specified by second
argument. Now look at the function st ar t . It starts two Erlang processes, one which writes "hello" three times and
one which writes "goodbye" three times. Both of these processes use the function say_sonet hi ng. Note that a
function used in this way by spawn to start a process must be exported from the module (i.e. in the - export at
the start of the module).

9> tutld:start().
hel | o

goodbye

<0. 63. 0>

hel | o

goodbye

hel | o

goodbye

Noticethat it didn't write "hello" three times and then "goodbye" three times, but the first process wrote a"hello", the
second a"goodbye’, the first another "hello" and so forth. But where did the <0.63.0> come from? The return value
of afunction is of course the return value of the last "thing" in the function. The last thing inthe functionst art is

spawn(tut 14, say_sonet hi ng, [goodbye, 3]).

spawn returns a process identifier, or pid, which uniquely identifies the process. So <0.63.0> isthe pid of the spawn
function call above. We will see how to use pids in the next example.

Note as well that we have used ~p instead of ~w ini o: f or mat . To quote the manual: "~p Writes the data with
standard syntax in the same way as ~w, but breaks termswhose printed representation islonger than onelineinto many
lines and indents each line sensibly. It also tries to detect lists of printable characters and to output these as strings”.

4.3.2 Message Passing

In the following example we create two processes which send messages to each other a number of times.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 83

4.3 Concurrent Programming

- modul e(tut 15).
-export([start/0, ping/2, pong/0])

pi ng(0, Pong_PID) ->
Pong_PID ! finished
io:format ("ping finished~n", []);

pi ng(N, Pong_PID) ->
Pong_PID ! {ping, self()},
recei ve
pong - >
io:format ("Ping received pong~n", [])
end
ping(N - 1, Pong_PID).

pong() ->
recei ve
finished ->
io:format ("Pong finished~n", []);
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
end

start() ->
Pong_PI D = spawn(tut 15, pong, []

).
spawn(tut 15, ping, [3, Pong_PID])

1> c(tut15).

{ ok, tut 15}

2> tutl5: start()
<0. 36. 0>

Pong recei ved pi ng
Pi ng recei ved pong
Pong recei ved ping
Pi ng recei ved pong
Pong recei ved pi ng
Pi ng recei ved pong
ping finished

Pong fi ni shed

Thefunction st ar t first creates a process, let's cal it "pong":

Pong_PI D = spawn(tut 15, pong, [])

This process executes t ut 15: pong() . Pong_PI D is the process identity of the "pong" process. The function
st art now creates another process "ping".

spawn(tut 15, ping, [3, Pong_PID),

this process executes

84 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

tut 15: pi ng(3, Pong_PI D)

<0.36.0> isthereturn value from the st ar t function.

The process "pong" now does:

receive
finished ->
io:format ("Pong finished~n", []);
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
end

Ther ecei ve construct is used to allow processes to wait for messages from other processes. It has the format:

receive
patternl ->
actionsl
pattern2 ->
actions2

patternN
actionsN
end

Note: no ";" beforethe end.

M essages between Erlang processes are simply valid Erlang terms. |.e. they can be lists, tuples, integers, atoms, pids
etc.

Each process has its own input queue for messages it receives. New messages received are put at the end of the
gueue. When a process executesar ecei ve, the first message in the queue is matched against the first pattern in the
recei ve, if this matches, the message is removed from the queue and the actions corresponding to the the pattern
are executed.

However, if the first pattern does not match, the second pattern istested, if this matches the message is removed from
the queue and the actions corresponding to the second pattern are executed. If the second pattern does not match the
third is tried and so on until there are no more pattern to test. If there are no more patterns to test, the first message
is kept in the queue and we try the second message instead. If this matches any pattern, the appropriate actions are
executed and the second message is removed from the queue (keeping the first message and any other messages in
the queue). If the second message does not match we try the third message and so on until we reach the end of the
gueue. If wereach the end of the queue, the process blocks (stops execution) and waits until anew messageisreceived
and this procedure is repeated.

Of course the Erlang implementation is "clever" and minimizes the number of times each message is tested against
the patternsin eachr ecei ve.

Now back to the ping pong example.

"Pong" iswaiting for messages. If theatom f i ni shed isreceived, "pong" writes "Pong finished" to the output and
asit has nothing more to do, terminates. If it receives a message with the format:

{pi ng, Ping_PI D}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 85

4.3 Concurrent Programming

it writes "Pong received ping" to the output and sends the atom pong to the process "ping":

Ping_PID ! pong

Note how the operator "!" is used to send messages. The syntax of "I" is:

Pid ! Message

|.e. Message (any Erlang term) is sent to the process with identity Pi d.

After sending the message pong, to the process "ping", "pong" callsthe pong function again, which causes it to get
back to the r ecei ve again and wait for another message. Now let's look at the process "ping". Recall that it was
started by executing:

tut 15: pi ng(3, Pong_PI D)

Looking at the function pi ng/ 2 we see that the second clause of pi ng/ 2 is executed since the value of the first
argument is 3 (not 0) (first clause head is pi ng(0, Pong_PI D), second clause head is pi ng(N, Pong_PI D) , so
N becomes 3).

The second clause sends a message to "pong":

Pong_PID ! {ping, self()},

sel f () returnsthe pid of the process which executes sel f (), in this case the pid of "ping". (Recall the code for
"pong", thiswill land up in the variable Pi ng_PI Dinther ecei ve previously explained).

"Ping" now waits for areply from "pong":

receive
pong ->
io:format ("Ping recei ved pong~n", [])
end,

and writes "Ping received pong" when thisreply arrives, after which "ping" callsthe pi ng function again.

pi ng(N - 1, Pong_PI D)

N 1 causes the first argument to be decremented until it becomes 0. When this occurs, the first clause of pi ng/ 2
will be executed:

pi ng(0, Pong_PID) ->
Pong_PID ! finished,
io:format ("ping finished~n", []);

86 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

Theatomfi ni shed issent to "pong" (causing it to terminate as described above) and "ping finished" is written to
the output. "Ping" then itself terminates as it has nothing left to do.

4.3.3 Registered Process Names

In the above example, wefirst created "pong" so asto be ableto givetheidentity of "pong" when we started "ping"”. |.e.
in someway "ping" must be able to know the identity of "pong" in order to be able to send a message to it. Sometimes
processes which need to know each others identities are started completely independently of each other. Erlang thus
provides a mechanism for processes to be given names so that these names can be used as identities instead of pids.
Thisisdone by using ther egi st er BIF:

regi ster(sone_atom Pid)

We will now re-write the ping pong example using this and giving the name pong to the "pong" process:

- modul e(tut 16)
-export([start/0, ping/1l, pong/0]).

ping(0) ->
pong ! finished
io:format ("ping finished~n", []);

pi ng(N) ->
pong ! {ping, self()},
receive
pong ->
io:format ("Ping recei ved pong~n", [])
end
ping(N - 1).

pong() ->
recei ve
finished ->
io:format ("Pong finished~n", []);
{ping, Ping PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
end

start() ->
regi ster(pong, spawn(tut16, pong, [])),
spawn(tut16, ping, [3]).

2> c(tut16).

{ok, tut16}

3> tutl6:start().
<0. 38. 0>

Pong recei ved ping
Pi ng recei ved pong
Pong recei ved ping
Pi ng recei ved pong
Pong recei ved ping
Pi ng recei ved pong
ping finished

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 87

4.3 Concurrent Programming

Pong fi ni shed

Inthest art/ 0O function,

regi ster(pong, spawn(tut16, pong, [])),

both spawns the "pong" process and gives it the name pong. In the "ping" process we can how send messages to
pong by:

pong ! {ping, self()},
so that pi ng/ 2 now becomes pi ng/ 1 aswe don't have to use the argument Pong_PI D.

4.3.4 Distributed Programming

Now let's re-write the ping pong program with "ping" and "pong" on different computers. Before we do this, there are
afew things we need to set up to get this to work. The distributed Erlang implementation provides a basic security
mechanism to prevent unauthorized access to an Erlang system on another computer (*manua*). Erlang systems
which talk to each other must have the same magic cookie. The easiest way to achieve thisis by having afile called
. erl ang. cooki e in your home directory on all machines which on which you are going to run Erlang systems
communicating with each other (on Windows systems the home directory is the directory where pointed to by the
$HOME environment variable - you may need to set this. On Linux or Unix you can safely ignorethisand simply create
afilecalled. er | ang. cooki e inthedirectory you get to after executing the command cd without any argument).
The. er| ang. cooki e fileshould contain on line with the same atom. For example on Linux or Unix inthe OS shell:

$ cd

$ cat > .erlang. cookie
this_is very secret

$ chnod 400 . erl ang. cooki e

The chnod above makethe. er | ang. cooki e file accessible only by the owner of thefile. Thisis arequirement.
When you start an Erlang system which is going to talk to other Erlang systems, you must give it a name, eg:

$ erl -sname ny_nane

Wewill see more details of thislater (*manual*). If you want to experiment with distributed Erlang, but you only have
one computer to work on, you can start two separate Erlang systems on the same computer but give them different
names. Each Erlang system running on a computer is called an Erlang node.

(Note: er | - sname assumes that all nodes are in the same IP domain and we can use only the first component of
the IP address, if we want to use nodes in different domains we use - nane instead, but then all 1P address must be
givenin full (*manua*).

Hereis the ping pong example modified to run on two separate nodes:

-nmodul e(tutl7).

-export([start_ping/1, start_pong/0, ping/2, pong/0])

88 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

pi ng(0, Pong_Node) ->
{pong, Pong_Node} ! fi nished,
io:format ("ping finished~n", []);

pi ng(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
receive
pong - >
io:format ("Ping received pong~n", [])
end
ping(N - 1, Pong_Node)

pong() ->
recei ve
finished ->
io:format ("Pong finished~n", []);
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
end

start_pong() ->
regi ster(pong, spawn(tutl17, pong, []))

start_pi ng(Pong_Node) ->
spawn(tut 17, ping, [3, Pong_Node])

L et us assume we have two computers called gollum and kosken. We will start a node on kosken called ping and then

anode on gollum called pong.
On kosken (on a Linux/Unix system):

kosken> erl| -sname ping
Erl ang (BEAM emul ator version 5.2.3.7 [hipe] [threads: 0]

Eshell V5.2.3.7 (abort with ~"Q
(pi ng@osken) 1>

On gollum:

gol lum> erl -sname pong
Erl ang (BEAM enul ator version 5.2.3.7 [hipe] [threads: 0]

Eshell V5.2.3.7 (abort with "G
(pong@ol | um 1>

Now we start the "pong” process on gollum:

(pong@ol | um) 1> tut17: start_pong()
true

and start the "ping" process on kosken (from the code above you will see that a parameter of the st art _pi ng

function is the node name of the Erlang system where "pong" is running):

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 89

4.3 Concurrent Programming

(pi ng@osken) 1> tut 17: start _pi ng(pong@ol | unj .
<0. 37. 0>

Pi ng recei ved pong

Pi ng recei ved pong

Pi ng recei ved pong

ping finished

Here we see that the ping pong program has run, on the "pong" side we see:

(pong@ol | unm 2>
Pong recei ved pi ng
Pong received pi ng
Pong recei ved pi ng
Pong fi ni shed
(pong@ol | unm 2>

Looking at thet ut 17 code we see that the pong function itself is unchanged, the lines:

{ping, Ping PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong

work in the same way irrespective of on which node the "ping" process is executing. Thus Erlang pids contain
information about where the process executes so if you know the pid of a process, the"!" operator can be used to send
it amessageif the processis on the same node or on a different node.

A difference is how we send messages to a registered process on another node;

{pong, Pong_Node} ! {ping, self()},

Weuseatuple{regi st ered_nane, node_nane} instead of just ther egi st er ed_nane.

In the previous example, we started "ping” and "pong" from the shells of two separate Erlang nodes. spawn can also
be used to start processes in other nodes. The next example is the ping pong program, yet again, but this time we will
start "ping" in another node:

- modul e(tut 18).
-export([start/1, ping/2, pong/0])

pi ng(0, Pong_Node) ->
{pong, Pong_Node} ! fi nished,
io:format ("ping finished~n", []);

pi ng(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
recei ve
pong - >
io:format ("Ping received pong~n", [])
end
ping(N - 1, Pong_Node)

pong() ->

90 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

receive
finished ->
io:format ("Pong finished~n", []);
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong,

pong()
end.

start (Pi ng_Node) ->
regi ster(pong, spawn(tut18, pong, [])),
spawn(Pi ng_Node, tut18, ping, [3, node()]).

Assuming an Erlang system called ping (but not the "ping" process) has already been started on kosken, then on gollum
we do:

(pong@ol | un) 1> tut 18: st art (pi ng@osken).
<3934. 39. 0>

Pong recei ved pi ng

Pi ng recei ved pong

Pong recei ved pi ng

Pi ng recei ved pong

Pong recei ved pi ng

Pi ng recei ved pong

Pong fi ni shed

ping finished

Notice we get all the output on gollum. This is because the io system finds out where the process is spawned from
and sends all output there.

4.3.5 A Larger Example

Now for alarger example. We will make an extremely simple "messenger”. The messenger isaprogram which allows
usersto log in on different nodes and send simple messages to each other.

Before we start, let's note the following:

» Thisexamplewill just show the message passing logic no attempt at al has been made to provide a nice graphical
user interface - this can of course also be donein Erlang - but that's another tutorial.

e Thissort of problem can be solved more easily if you use the facilitiesin OTP, which will also provide methods
for updating code on the fly etc. But again, that's another tutorial.

e Thefirst program we write will contain some inadequacies as regards handling of nodes which disappear, we will
correct these in alater version of the program.

We will set up the messenger by allowing "clients' to connect to a central server and say who and wherethey are. |.e.
auser won't need to know the name of the Erlang node where another user is located to send a message.

Filemessenger. erl :

9% Message passing utility.
%86 User interface:
%806 | ogon(Nane)

9% One user at a time can log in fromeach Erlang node in the
%80 system nessenger: and choose a suitable Nane. If the Nane
%80 is already | ogged in at another node or if sonmeone else is
%80 al ready | ogged in at the sane node, login will be rejected
%80 with a suitable error nessage.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 91

4.3 Concurrent Programming

%806 | ogof f ()

%806 Logs of f anybody at at node

%86 message(ToNane, Message)

%806 sends Message to ToNane. Error nmessages if the user of this
%806 function is not |ogged on or if ToNanme is not |ogged on at
%86 any node.

9886

%806 One node in the network of Erlang nodes runs a server which maintains

%®0 dat a about the | ogged on users. The server is registered as "messenger"
%806 Each node where there is a user |logged on runs a client process registered
%086 as "mess_client”

9886

%®06 Prot ocol between the client processes and the server

986

%m0 To server: {dientPid, |ogon, UserNane}

%m®06 Repl y {messenger, stop, user_exists_at_other_node} stops the client
%m0 Repl y {messenger, |ogged_on} | ogon was successful

986

%m®06 To server: {CientPid, |ogoff}

%m0 Repl y: {messenger, |ogged_off}

986

%m®06 To server: {CientPid, |ogoff}

%80 Repl y: no reply

986

%m®6 To server: {CientPid, nessage_to, ToNanme, Message} send a nmessage
%0 Repl y: {messenger, stop, you_are_not_| ogged_on} stops the client
%m0 Repl y: {messenger, receiver_not_found} no user with this nanme | ogged on
%m®0 Repl y: {messenger, sent} Message has been sent (but no guarantee)
9986

%®86 To client: {nessage_from Nanme, Message},

986

%®% Pr ot ocol between the "commands" and the client

9986

%m®06 St art ed: messenger: client(Server_Node, Nane)

%m®6 To client: |ogoff

%m®6 To client: {nessage_to, ToNanme, Message}

9986

%6 Confi guration: change the server_node() function to return the
%80 name of the node where the nmessenger server runs

- modul e(messenger) .
-export([start_server/0, server/1, logon/1l, |ogoff/0, nessage/2, client/2]).

%86 Change the function below to return the name of the node where the
%86 nmessenger server runs
server_node() ->

messenger @i | | .

%m®6 This is the server process for the "messenger"
%Bothe user list has the format [{CdientPidl, Namel}, {ClientPid22, Nanme2},...
server (User _List) ->
receive
{From |ogon, Nane} ->
New_User _List = server_l ogon(From Nanme, User_List),
server (New_User _List);
{From |ogoff} ->
New_User _Li st = server_| ogoff(From User_List),
server (New_User _List);
{From nessage_to, To, Message} ->
server_transfer(From To, Message, User_List),
io:format("list is now -~p~n", [User_List]),
server (User _Li st)
end.

92 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

9%B%6 Start the server
start_server() ->
regi ster (messenger, spawn(nmessenger, server, [[]])).

%M®% Server adds a new user to the user |ist
server_| ogon(From Nane, User_List) ->

%% check if | ogged on anywhere el se

case |ists: keynmenber (Nane, 2, User_List) of

true ->
From ! {messenger, stop, user_exists_at_other_node}, % eject |ogon
User _Li st;
fal se ->
From ! {messenger, |ogged_on},
[{From Nane} | User_List] %dd user to the |ist

end.

%80 Server del etes a user fromthe user |ist
server_| ogof f (From User_List) ->
l'ists: keydel ete(From 1, User_List).

%M®0 Server transfers a nessage between user
server_transfer(From To, Message, User_List) ->
%6 check that the user is |ogged on and who he is
case |ists: keysearch(From 1, User_List) of
fal se ->
From! {messenger, stop, you_are_not_| ogged_on};
{value, {From Nane}} ->
server_transfer(From Name, To, Message, User_Li st)
end.
%801 f the user exists, send the nmessage
server_transfer(From Name, To, Message, User_List) ->
%% Fi nd the receiver and send the nessage
case |ists: keysearch(To, 2, User_List) of
fal se ->
From ! {messenger, receiver_not_found};
{val ue, {ToPid, To}} ->
ToPid ! {nessage_from Nanme, Message},
From! {nmessenger, sent}
end.

%86 User Commands
| ogon(Nane) ->
case wherei s(mess_client) of
undefined ->
regi ster(mess_client,
spawn(messenger, client, [server_node(), Nane]));
_ -> already_| ogged_on
end.

logoff() ->
mess_client ! |ogoff.

message(ToNane, Message) ->
case whereis(mess_client) of % Test if the client is running
undefined ->
not _| ogged_on;
_ ->ness_client | {message_to, ToNane, Message},
ok
end.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 93

4.3 Concurrent Programming

%m®0 The client process which runs on each server node
client(Server_Node, Nane) ->
{messenger, Server_Node} ! {self(), |ogon, Nane}
await_result()
client (Server_Node)

client(Server_Node) ->
recei ve
| ogof f ->
{nmessenger, Server_Node} ! {self(), |ogoff}
exit(normal);
{nmessage_to, ToNanme, Message} ->
{nmessenger, Server_Node} ! {self(), nmessage_to, ToNane, Message}
await_result()
{nmessage_from FromNane, Message} ->
io:format (" Message from~p: ~p~n", [FromNane, Message])
end
cl i ent (Server_Node)

%Bowait for a response fromthe server
await_result() ->
recei ve
{nmessenger, stop, Wiy} -> % Stop the client
io:format("~p~n", [Wy])
exit(normal);
{nmessenger, Wat} -> % Nornmal response
io:format ("~p~n", [Wat])
end

To use this program you need to:

» configuretheser ver _node() function
» copy the compiled code (messenger . bean) to the directory on each computer where you start Erlang.

In the following example of use of thisprogram, | have started nodes on four different computers, but if you don't have
that many machines available on your network, you could start up several nodes on the same machine.

We start up four Erlang nodes, messenger@super, c1@bilbo, c2@kosken, c3@gollum.

First we start up athe server at messenger@super:

(messenger @uper) 1> messenger:start_server().
true

Now Peter logs on at c1@bilbo:

(cl1@il bo) 1> messenger: | ogon(peter).
true
| ogged_on

James logs on at c2@kosken:

(c2@osken) 1> nessenger : | ogon(j anmes) .
true
| ogged_on

and Fred logs on at c3@gollum:

94 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

(c3@ol | um 1> nmessenger : | ogon(fred)
true
| ogged_on

Now Peter sends Fred a message:

(cl1@il bo) 2> nmessenger: nessage(fred, "hello").
ok
sent

And Fred receives the message and sends a message to Peter and logs off:

Message from peter: "hello"

(c3@ol | um 2> nessenger: nessage(peter, "go away, |'m busy").
ok

sent

(c3@ol | um 3> nessenger: | ogof f ()

| ogof f

James now tries to send a message to Fred:

(c2@osken) 2> nmessenger: nessage(fred, "peter doesn't |ike you").
ok
recei ver _not _found

But thisfails as Fred has aready logged off.
First let'slook at some of the new concepts we have introduced.

There are two versions of the ser ver _t r ansf er function, one with four arguments (ser ver _t ransfer/ 4)
and one with five (ser ver _t r ansf er/ 5). These are regarded by Erlang as two separate functions.

Note how we writethe ser ver function so that it callsitself, ser ver (User _Li st) and thus createsaloop. The
Erlang compiler is "clever" and optimizes the code so that this really is a sort of loop and not a proper function call.
But this only works if there is no code after the call, otherwise the compiler will expect the call to return and make a
proper function call. Thiswould result in the process getting bigger and bigger for every loop.

Weusefunctionsinthel i st s module. Thisisavery useful module and a study of the manual page is recommended
(erl -man lists).lists: keynmenber (Key, Position, Li sts) looksthrough alist of tuples and looks
at Posi tionineachtupleto seeif itisthesame asKey. Thefirst element is position 1. If it finds a tuple where the
element at Posi ti on isthesameasKey, it returnst r ue, otherwisef al se.

3> |ists: keynenber (a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
true
4> |ists: keynmenber (p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
fal se

lists: keydel et e worksin the same way but deletes the first tuple found (if any) and returns the remaining list:

5> |ists: keydel ete(a, 2, [{x,y,z},{b,b,b},{b,ac},{q,r,s}])

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 95

4.3 Concurrent Programming

[{x,y.z},{b,b, b}, {q,r,s}]

lists: keysearchislikel i sts: keynmenber, butit returns{val ue, Tupl e_Found} ortheatomf al se.
There are alot more very useful functionsinthel i st s module.

An Erlang processwill (conceptualy) run until it doesar ecei ve and thereisno messagewhichit wantsto receivein
the message queue. | say "conceptually" because the Erlang system shares the CPU time between the active processes
in the system.

A process terminates when there is nothing more for it to do, i.e. the last function it calls simply returns and doesn't
call another function. Another way for a processto terminateisfor it to call exi t/ 1. Theargumenttoexi t/ 1 has
aspecial meaning which we will look at later. In this example we will do exi t (nor mal) which hasthe same effect
as a process running out of functionsto call.

The BIF wher ei s(Regi st er edNane) checks if aregistered process of name Regi st er edNane exists and
return the pid of the processiif it does exist or the atom undef i ned if it does not.

Y ou should by now be able to understand most of the code above so I'll just go through one case: a message is sent
from one user to another.

Thefirst user "sends" the message in the example above by:

messenger : nessage(fred, "hello")

After testing that the client process exists:

wher ei s(ness_client)

and amessageissenttoness_client:

mess_client ! {message_to, fred, "hello"}

The client sends the message to the server by:

{nmessenger, nessenger @uper} ! {self(), nessage_to, fred, "hello"},

and waits for areply from the server.
The server receives this message and calls:

server_transfer(From fred, "hello", User_List),

which checks that the pid Fr omisintheUser _Li st :

lists: keysearch(From 1, User_List)

If keysear ch returnsthe atom f al se, some sort of error has occurred and the server sends back the message:

96 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

From ! {messenger, stop, you_are_not_| ogged_on}

whichisreceived by theclient whichinturndoesexi t (nor mal) andterminates. If keysear chreturns{ val ue,
{ From Nane}} weknow that the user islogged on and is his name (peter) isin variable Narre. We now call:

server_transfer(From peter, fred, "hello", User_List)

Notethat asthisisser ver _t ransf er/ 5 itisnot the same asthe previousfunctionser ver _transfer/ 4. We
do another keysear ch onUser _Li st tofind the pid of the client corresponding to fred:

lists: keysearch(fred, 2, User_List)

This time we use argument 2 which is the second element in the tuple. If this returns the atom f al se we know that
fred is not logged on and we send the message:

From ! {messenger, receiver_not_found};

which isreceived by the client, if keysear ch returns:

{value, {ToPid, fred}}

we send the message:

ToPid ! {nessage from peter, "hello"},

to fred's client and the message:

From ! {nessenger, sent}
to peter's client.

Fred's client receives the message and printsit:

{nmessage_from peter, "hello"} ->
io:format (" Message from ~p: ~p~n", [peter, "hello"])

and peter's client receives the messageintheawai t _r esul t function.
4.4 Robustness

There are severa things which are wrong with the messenger example from the previous chapter. For example if a
node where a user is logged on goes down without doing a log off, the user will remain in the server'sUser _Li st

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 97

4.4 Robustness

but the client will disappear thus making it impossible for the user to log on again as the server thinks the user already
logged on.

Or what happens if the server goes down in the middle of sending a message leaving the sending client hanging for
ever intheawai t _resul t function?

4.4.1 Timeouts

Before improving the messenger program we will look into some general principles, using the ping pong program as
an example. Recall that when "ping" finishes, it tells "pong" that it has done so by sending the atom f i ni shed as
amessage to "pong" so that "pong" could aso finish. Another way to let "pong" finish, is to make "pong" exit if it
does not receive a message from ping within a certain time, this can be done by adding a timeout to pong as shown
in the following example:

- modul e(tut 19).
-export([start_ping/1, start_pong/0, ping/2, pong/0]).

pi ng(0, Pong_Node) ->
io:format ("ping finished~n", []);

pi ng(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
recei ve
pong ->
io:format ("Ping recei ved pong~n", [])
end
ping(N - 1, Pong_Node).

pong() ->
receive
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong
pong()
after 5000 ->
io:format ("Pong tined out~n", [])
end

start_pong() ->
regi ster(pong, spawn(tutl19, pong, [])).

start_pi ng(Pong_Node) ->
spawn(tut 19, ping, [3, Pong_Node]).

After we have compiled this and copied thet ut 19. beamfileto the necessary directories:
On (pong@kosken):

(pong@osken) 1> tut 19: start_pong() .
true

Pong recei ved pi ng

Pong recei ved pi ng

Pong recei ved pi ng

Pong tined out

On (ping@gollum):

98 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

(pi ng@ol | un) 1> tut 19: start _pi ng(pong@osken)
<0. 36. 0>

Pi ng recei ved pong

Pi ng recei ved pong

Pi ng recei ved pong

ping finished

(The timeout is set in:

pong() ->
recei ve
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong

pong()
after 5000 ->

io:format ("Pong timed out~n", [])
end

We start the timeout (af t er 5000) when we enter r ecei ve. The timeout is canceled if { pi ng, Pi ng_PI D}
is received. If { pi ng, Pi ng_PI D} is not received, the actions following the timeout will be done after 5000
milliseconds. af t er must belastinther ecei ve, i.e. preceded by al other message reception specificationsin the
r ecei ve. Of course we could also call afunction which returned an integer for the timeout:

after pong tinmeout() ->

In general, there are better ways than using timeouts to supervise parts of a distributed Erlang system. Timeouts are
usually appropriate to supervise external events, for example if you have expected a message from some external
system within a specified time. For example, we could use atimeout to log a user out of the messenger system if they
have not accessed it, for example, in ten minutes.

4.4.2 Error Handling

Before we go into details of the supervision and error handling in an Erlang system, we need see how Erlang processes
terminate, or in Erlang terminology, exit.

A process which executesexi t (nor mal) or simply runs out of things to do has a normal exit.

A process which encounters a runtime error (e.g. divide by zero, bad match, trying to call a function which doesn't
exist etc) exits with an error, i.e. has an abnormal exit. A process which executes exit(Reason) where Reason isany
Erlang term except the atom nor mal , also has an abnormal exit.

An Erlang process can set up linksto other Erlang processes. If aprocess callslink(Other_Pid) it setsup abidirectional
link between itself and the process called O her _Pi d. When a process terminates, it sends something called asignal
to al the processesit has links to.

The signal carries information about the pid it was sent from and the exit reason.
The default behaviour of a process which receives anormal exit isto ignore the signal.

The default behaviour in the two other cases (i.e. abnormal exit) above is to bypass all messages to the receiving
process and to kill it and to propagate the same error signal to the killed process' links. In this way you can connect
all processesin atransaction together using links and if one of the processes exits abnormally, all the processesin the
transaction will be killed. As we often want to create a process and link to it at the same time, there is a specia BIF,
spawn_link which does the same as s pawn, but also creates a link to the spawned process.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 99

4.4 Robustness

Now an example of the ping pong example using links to terminate "pong":

- modul e(tut 20).
-export([start/1, ping/2, pong/0]).

pi ng(N, Pong_Pid) ->
I'i nk(Pong_Pi d),
pi ng1(N, Pong_Pid).

pi ng1(0, _) ->
exit(ping);

pi ng1(N, Pong_Pid) ->
Pong Pid ! {ping, self()}
recei ve
pong ->
io:format ("Ping recei ved pong~n", [])
end
pi ngl(N - 1, Pong_Pid).

pong() i
recei ve
{ping, Ping PID} ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong

pong()
end

start (Pi ng_Node) ->
PongPl D = spawn(tut20, pong, []),
spawn(Pi ng_Node, tut20, ping, [3, PongPID]).

(s1@ill)3> tut20:start(s2@osken).
Pong recei ved ping

<3820. 41. 0>

Pi ng recei ved pong

Pong recei ved ping

Pi ng recei ved pong

Pong recei ved ping

Pi ng recei ved pong

Thisis a dlight modification of the ping pong program where both processes are spawned from the samestart/ 1
function, where the "ping" process can be spawned on a separate node. Note the use of the | i nk BIF. "Ping" calls
exi t (pi ng) whenit finishes and thiswill cause an exit signal to be sent to "pong" which will also terminate.

It is possible to modify the default behaviour of a process so that it does not get killed when it receives abnormal exit
signals, but all signalswill be turned into normal messagesontheformat {" EXI T , Fr onPl D, Reason} and added
to the end of the receiving processes message queue. This behaviour is set by:

process_flag(trap_exit, true)

There are several other process flags, see erlang(3). Changing the default behaviour of aprocessin thisway isusually
not donein standard user programs, but isleft to the supervisory programsin OTP (but that's another tutorial). However
we will modify the ping pong program to illustrate exit trapping.

100 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

- modul e(tut 21).
-export([start/1, ping/2, pong/0]).

pi ng(N, Pong_Pid) ->
I'i nk(Pong_Pi d),
pi ngl(N, Pong_Pid).

pi ngl(0, _) ->
exit (ping);

pi ngl(N, Pong_Pid) ->
Pong_Pid ! {ping, self()},
receive
pong - >
io:format ("Ping received pong~n", [])
end,
pi ngl(N - 1, Pong_Pid).

pong() ->
process_flag(trap_exit, true),

pongl().

pongl() ->
receive
{ping, Ping_PID ->
i o:format ("Pong received ping~n", []),
Ping_PID ! pong,
pongl();
{"EXIT', From Reason} ->
io:format("pong exiting, got ~p~n", [{'EXIT', From Reason}])
end.

start (Pi ng_Node) ->
PongPI D = spawn(tut21, pong, [
spawn(Pi ng_Node, tut21, ping,

)
3, PongPI D).

—_——

(s1@ill)1> tut2l:start(s2@ol | um.
<3820. 39. 0>

Pong recei ved pi ng

Pi ng recei ved pong

Pong recei ved pi ng

Pi ng recei ved pong

Pong recei ved pi ng

Pi ng recei ved pong

pong exiting, got {'EXIT ,<3820.39.0>, ping}

4.4.3 The Larger Example with Robustness Added

Now we return to the messenger program and add changes which make it more robust:

%86 Message passing utility.
%86 User interface:
%806 | ogi n(Nane)

9% One user at a time can log in fromeach Erlang node in the
%80 system nessenger: and choose a suitable Nane. If the Nane
%80 is already | ogged in at another node or if someone else is
%80 al ready | ogged in at the sane node, login will be rejected
%80 with a suitable error nessage.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 101

4.4 Robustness

%806 | ogof f ()

%806 Logs of f anybody at at node

%86 message(ToNane, Message)

%806 sends Message to ToNane. Error nmessages if the user of this
%806 function is not |ogged on or if ToNanme is not |ogged on at
%86 any node.

9886

%806 One node in the network of Erlang nodes runs a server which maintains

%®0 dat a about the | ogged on users. The server is registered as "messenger"
%806 Each node where there is a user |logged on runs a client process registered
%086 as "mess_client”

9886

%®06 Prot ocol between the client processes and the server

986

%m0 To server: {dientPid, |ogon, UserNane}

%m®06 Repl y {messenger, stop, user_exists_at_other_node} stops the client
%m0 Repl y {messenger, |ogged_on} | ogon was successful

986

%86 When the client term nates for some reason

%®6 To server: {'EXIT', CientPid, Reason}

986

%6 To server: {CientPid, nessage_to, ToNanme, Message} send a message
%m®0 Repl y: {messenger, stop, you_are_not_| ogged_on} stops the client
%m0 Repl y: {messenger, receiver_not_found} no user with this nanme | ogged on
%m0 Repl y: {messenger, sent} Message has been sent (but no guarantee)
986

%m®6 To client: {nessage_from Nanme, Message},

9986

%®% Pr ot ocol between the "commands" and the client

986

%M®06 St art ed: messenger: client(Server_Node, Nane)

%m®6 To client: |ogoff

%m®0 To client: {nessage_to, ToNanme, Message}

986

%M®06 Confi guration: change the server_node() function to return the
%80 name of the node where the nmessenger server runs

- modul e(messenger) .
-export([start_server/0, server/O,
I ogon/ 1, |ogoff/0, message/2, client/2]).

%M®86 Change the function below to return the name of the node where the
%86 nessenger server runs
server_node() ->

messenger @uper .

%M®6 This is the server process for the "messenger"
%Bothe user list has the format [{dientPidl, Nanel},{dientPid22, Nanme2?},...]
server() ->

process_flag(trap_exit, true),

server([]).

server (User_List) ->
receive

{From |ogon, Nane} ->
New_User _List = server_l ogon(From Nanme, User_List),
server (New_User _List);

{"EXIT", From _} ->
New_User _Li st = server_| ogoff(From User_List),
server (New_User _List);

{From nessage_to, To, Message} ->
server_transfer(From To, Message, User_List),
io:format("list is now -~p~n", [User_List]),

102 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

server (User _Li st)
end.

%B%6 Start the server
start_server() ->
regi ster (messenger, spawn(nmessenger, server, [])).

%B% Server adds a new user to the user |ist
server_| ogon(From Nane, User_List) ->

%6 check if | ogged on anywhere el se

case |ists: keynmenber (Nane, 2, User_List) of

true ->
From ! {messenger, stop, user_exists_at_other_node}, % eject |ogon
User _Li st;
fal se ->
From! {messenger, |ogged_on},
I'i nk(From,
[{From Nane} | User_List] %dd user to the |ist

end.

%806 Server del etes a user fromthe user |ist
server_| ogof f (From User_List) ->
l'ists: keydel ete(From 1, User_List).

%M®0 Server transfers a nessage between user
server_transfer(From To, Message, User_List) ->
%6 check that the user is |ogged on and who he is
case |ists: keysearch(From 1, User_List) of
fal se ->
From! {messenger, stop, you_are_not_| ogged_on};
{value, {_, Nane}} ->
server_transfer(From Name, To, Message, User_Li st)
end.

%801 f the user exists, send the nmessage
server_transfer(From Name, To, Message, User_List) ->
%% Fi nd the receiver and send the nessage
case |ists: keysearch(To, 2, User_List) of
fal se ->
From ! {messenger, receiver_not_found};
{val ue, {ToPid, To}} ->
ToPid ! {nessage_from Nanme, Message},
From ! {nmessenger, sent}
end.

%8 User Commands
| ogon(Nane) ->
case wherei s(mess_client) of
undefined ->
regi ster(mess_client,
spawn(messenger, client, [server_node(), Nane]));
_ -> already_| ogged_on
end.

logoff() ->
mess_client ! |ogoff.

message(ToNane, Message) ->
case whereis(mess_client) of % Test if the client is running
undefined ->
not _| ogged_on;
_ ->ness_client | {message_to, ToNane, Message},
ok
end.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 103

4.5 Records and Macros

%m0 The client process which runs on each user node
client(Server_Node, Nane) ->
{messenger, Server_Node} ! {self(), |ogon, Nane},
await_result(),
client(Server_Node).

client(Server_Node) ->
receive
| ogof f ->
exit(normal);
{nmessage_to, ToNanme, Message} ->
{messenger, Server_Node} ! {self(), message_to, ToNane, Message},
await_result();
{nmessage_from FromNane, Message} ->
io:format (" Message from~p: ~p~n", [FromNane, Message])
end,
client(Server_Node).

%Bowait for a response fromthe server
await_result() ->
recei ve
{nmessenger, stop, Wiy} -> % Stop the client
io:format("~p~n", [Wy]),
exit(normal);
{nmessenger, Wat} -> % Nornmal response
io:format ("~p~n", [Wat])
after 5000 ->
io:format ("No response from server~n", []),
exit(timeout)
end.

We have added the following changes:

The messenger server traps exits. If it receives an exit signal, {' EXI T' , Fr om Reason} this means that a client
process has terminated or is unreachable because:

» theuser haslogged off (we have removed the "logoff" message),

» the network connection to the client is broken,

« the node on which the client process resides has gone down, or

» theclient processes has done someillegal operation.

If we receive an exit signal as above, we delete the tuple, { Fr om Nane} from the servers User _Li st using the
server _| ogof f function. If the node on which the server runs goes down, an exit signal (automatically generated

by the system), will be sent to all of the client processes: {' EXI T' , Messenger PI D, noconnect i on} causing
all the client processesto terminate.

We have also introduced a timeout of five secondsintheawai t _r esul t function. I.e. if the server does not reply
within five seconds (5000 ms), the client terminates. Thisis really only needed in the logon sequence before the client
and server are linked.

An interesting case is if the client was to terminate before the server linksto it. Thisis taken care of because linking
to anon-existent process causes an exit signal, {' EXI T' , Fr om nopr oc}, to be automatically generated as if the
process terminated immediately after the link operation.

4.5 Records and Macros

Larger programs are usually written as a collection of fileswith awell defined interface between the various parts.

104 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

4.5.1 The Larger Example Divided into Several Files

Toillustrate this, we will divide the messenger example from the previous chapter into five files.

mess_config. hrl

header file for configuration data
nmess_i nterface. hrl

interface definitions between the client and the messenger
user _interface. erl

functions for the user interface
mess_client.erl

functions for the client side of the messenger
mess_server. erl

functions for the server side of the messenger

While doing this we will also clean up the message passing interface between the shell, the client and the server and

defineit using records, we will aso introduce macros.

9%®% - - - Fl LE mess_config. hrl----

%806 Configure the location of the server node,
-defi ne(server_node, nessenger @uper) .

%86 - - - END FI LE- - - -

%MB6 - --FI LE nmess_interface. hrl----

%86 Message interface between client and server and client shell for
%86 nessenger program

%B8dvkessages fromClient to server received in server/1 function.
-record(l ogon, {client_pid, usernane}).

-record(nessage, {client_pid, to_nane, nessage}).

%Weo{' EXIT', CdientPid, Reason} (client termnmi nated or unreachable.

%86 Messages from Server to Client, received in await_result/0 function
-record(abort_client, {nessage}).

%86 Messages are: user_exi sts_at_ot her_node,

%80 you_are_not | ogged_on

-record(server_reply, {nessage}).

%806 Messages are: | ogged _on

%80 recei ver _not _found

%80 sent (Message has been sent (no guarantee)

%806 Messages from Server to Cient received in client/1 function
-record(nessage_from {from nane, nessage}).

%86 Messages fromshell to Cient received in client/1 function
%86 spawn(ness_client, client, [server_node(), Nane])
-record(nessage_to, {to_nanme, nessage}).

9%88% | ogof f

%86 - - - END FI LE- - - -

%M®6 - --FI LE user _interface.erl----

%80 User interface to the messenger program

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 105

4.5 Records and Macros

%®06 | ogi n(Nane)

%806 One user at a tine can log in fromeach Erlang node in the
%806 system messenger: and choose a suitable Nane. I|f the Nane
%806 is already |ogged in at another node or if someone else is
%806 al ready | ogged in at the sane node, login will be rejected
%86 with a suitable error nmessage.

%80 | ogof f ()

%806 Logs of f anybody at at node

%86 message(ToNane, Message)

%806 sends Message to ToNane. Error nmessages if the user of this
%806 function is not |ogged on or if ToNanme is not |ogged on at
%806 any node.

-modul e(user _i nterface).
-export([logon/1, |ogoff/0, nessagel/2]).
-include("ness_interface. hrl").
-include("ness_config.hrl").

| ogon(Nane) ->
case wherei s(nmess_client) of
undefined ->
regi ster(mess_client,
spawn(nmess_client, client, [?server_node, Nane]));
_ -> already_| ogged_on
end.

logoff() ->
mess_client ! |ogoff.

message(ToNane, Message) ->
case whereis(nmess_client) of % Test if the client is running
undefined ->
not _| ogged_on;
_ ->ness_client | #message_t o{to_nanme=ToNane, nmessage=Message},
ok
end.

%6 - - - END FI LE-- - -

%A% ---FILE nmess_client.erl----
%m®06 The client process which runs on each user node

-modul e(ness_client).
-export([client/2]).
-include("ness_interface. hrl").

client(Server_Node, Nane) ->
{nmessenger, Server_Node} ! #l ogon{client_pid=self(), usernane=Nane},
await_result(),
client(Server_Node).

client(Server_Node) ->
receive

| ogof f ->
exit(normal);

#message_t o{ t o_nanme=ToNanme, nessage=Message} ->
{nmessenger, Server_Node} !

#message{client _pid=self(), to_nane=ToNane, nessage=Message},

await_result();

{nmessage_from FromNane, Message} ->

106 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

io:format (" Message from~p: ~p~n", [FromNane, Message])
end,
client(Server_Node).

%Bowait for a response fromthe server
await_result() ->
receive
#abort _cl i ent { nessage=Wy} ->
io:format("~p~n", [Wy]),
exit(normal);
#server _repl y{nessage=\Wat} ->
io:format("~p~n", [Wat])
after 5000 ->
io:format ("No response from server~n", []),
exit(timeout)
end.

%86 - - - END FI LE-- -

%®% - - - FI LE nmess_server.erl----
%M®80 This is the server process of the nmessenger service

- modul e(mess_server).
-export([start_server/0, server/0]).
-include("ness_interface. hrl").

server() ->
process_flag(trap_exit, true),
server([]).

%B8othe user list has the format [{CdientPidl, Nanel},{dientPid22, Nanme2?},...]
server (User_List) ->
io:format("User list = ~p~n", [User_List]),
receive
#l ogon{cl i ent _pi d=From user nanme=Nane} ->
New_User _List = server_l ogon(From Nane, User_List),
server (New_User _List);
{"EXIT", From _} ->
New_User _Li st = server_| ogoff(From User_List),
server (New_User _List);
#message{client _pi d=From to_nanme=To, nessage=Message} ->
server_transfer(From To, Message, User_List),
server (User _Li st)
end.

9%Bb Start the server
start_server() ->
regi ster (messenger, spawn(?MODULE, server, [])).

%B% Server adds a new user to the user |ist
server_| ogon(From Nane, User_List) ->

%6 check if | ogged on anywhere el se

case |ists: keymenber (Nane, 2, User_List) of

true ->
From ! #abort _client{message=user_exi sts_at_ot her _node},
User _Li st;
fal se ->
From ! #server_repl y{message=Il ogged_on},
I'i nk(From,
[{From Nane} | User_List] %dd user to the |ist

end.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 107

4.5 Records and Macros

%06 Server del etes a user fromthe user |ist
server _| ogoff (From User_List) ->
l'ists: keydel ete(From 1, User_List).

%m0 Server transfers a nessage between user
server_transfer(From To, Message, User_List) ->
%6 check that the user is |ogged on and who he is
case |ists: keysearch(From 1, User_List) of
fal se ->
From ! #abort_client{message=you_are_not _| ogged_on};
{value, {_, Nane}} ->
server_transfer(From Name, To, Message, User_Li st)
end.
%B860 | f the user exists, send the message
server_transfer(From Nanme, To, Message, User_List) ->
%% Fi nd the receiver and send the nessage
case |ists: keysearch(To, 2, User_List) of
fal se ->
From ! #server_repl y{message=recei ver_not _f ound};
{val ue, {ToPid, To}} ->
ToPid ! #nessage_fronm{from nane=Nane, nmessage=Message},
From ! #server_repl y{ message=sent}
end.

%86 - - - END FI LE-- -

4.5.2 Header Files
You will see some files above with extension . hr | . These are header fileswhich areincluded inthe. er | filesby:
-incl ude("File_Name").

for example:

-include("ness_interface. hrl").

In our case abovethefileisfetched from the same directory asall the other filesin the messenger example. (* manual*).
.hrl files can contain any valid Erlang code but are most often used for record and macro definitions.

4.5.3 Records
A record is defined as:

-record(nanme_of _record, {field_nanmel, field_nanme2, field_name3, 1)

For example:

-record(nessage_to, {to_name, nessage}).

Thisis exactly equivalent to:

108 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

{nmessage_to, To_Name, Message}

Creating record, is best illustrated by an example:

#nmessage_t o{ nessage="hel | 0", to_nanme=fred)

Thiswill create:

{nessage _to, fred, "hello"}

Note that you don't have to worry about the order you assign values to the various parts of the records when you
createit. The advantage of using recordsisthat by placing their definitionsin header files you can conveniently define
interfaces which are easy to change. For example, if you want to add a new field to the record, you will only have to
change the code where the new field is used and not at every place the record is referred to. If you leave out afield
when creating arecord, it will get the value of the atom undefined. (* manual*)

Pattern matching with recordsis very similar to creating records. For exampleinsideacase orr ecei ve:

#message_t o{t o_nane=ToNane, nessage=Message} ->

isthe same as:

{nmessage_t o, ToNanme, Message}

4.5.4 Macros

The other thing we have added to the messenger isamacro. Thefilemess_confi g. hr| containsthe definition:

%®%6 Configure the | ocation of the server node,
-define(server_node, nessenger @uper).

Weincludethisfilein mess_server.erl:

-include("nmess_config.hrl").

Every occurrence of ?ser ver _node inness_server . er| will now be replaced by nessenger @uper .
The other place amacro is used is when we spawn the server process:

spawn(?MODULE, server, [])

Thisisastandard macro (i.e. defined by the system, not the user). ? MODULE is always replaced by the name of current
module (i.e. the - nodul e definition near the start of the file). There are more advanced ways of using macros with,
for example parameters (* manual*).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 109

4.5 Records and Macros

Thethree Erlang (. er |) filesin the messenger example are individually compiled into object codefile (. bean). The
Erlang system loads and links these files into the system when they are referred to during execution of the code. In
our case we simply have put them in the same directory which is our current working directory (i.e. the place we have
done "cd" to). There are ways of putting the . beamfilesin other directories.

In the messenger example, no assumptions have been made about what the message being sent is. It could be any
valid Erlang term.

110 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.1 Introduction

5 User's Guide

5.1 Introduction

5.1.1 Purpose

This reference manual describes the Erlang programming language. The focus is on the language itself, not the
implementation. The language constructs are described in text and with examples rather than formally specified, with
the intention to make the manual more readable. The manual is not intended as a tutorial.

Information about thisimplementation of Erlang can befound, for example, in System Principles (starting and stopping,
boot scripts, code loading, error logging, creating target systems), Efficiency Guide (memory consumption, system
limits) and ERTS User's Guide (crash dumps, drivers).

5.1.2 Prerequisites

It is assumed that the reader has done some programming and is familiar with concepts such as data types and
programming language syntax.

5.1.3 Document Conventions

In the document, the following terminology is used:

e A sequenceisone or more items. For example, a clause body consists of a sequence of expressions. This means
that there must be at least one expression.

« Alistisany number of items. For example, an argument list can consist of zero, one or more arguments.
If afeature has been added recently, in Erlang 5.0/0TP R7 or later, thisis mentioned in the text.

5.1.4 Complete List of BIFs

For acomplete list of BIFs, their arguments and return values, refer toer | ang(3) .

5.1.5 Reserved Words

The following are reserved words in Erlang:

after and andalso band begin bnot bor bsl bsr bxor case catch cond div end fun if let not of or orelse query receive
rem try when xor

5.1.6 Character Set

In Erlang 4.8/0TP R5A the syntax of Erlang tokens was extended to alow the use of the full 1SO-8859-1 (Latin-1)
character set. Thisis noticeable in the following ways:

e All the Latin-1 printable characters can be used and are shown without the escape backslash convention.
e Atomsand variables can use all Latin-1 |etters.

Octal Decimal Class

200 - 237 128 - 159 Control characters

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 111

5.2 Data Types

240 - 277 160- 191 - ¢ | Punctuation characters
300- 326 192 - 214 A-0 Uppercase |etters

327 215 x Punctuation character
330- 336 216 - 222 g-p Uppercase letters
337 - 366 223 - 246 R-06 Lowercase letters

367 247 + Punctuation character
370- 377 248 - 255 a-y Lowercase letters

Table 1.1: Character Classes.

5.2 Data Types

5.2.1 Terms
Erlang providesanumber of datatypeswhich arelisted in thischapter. A piece of dataof any datatypeiscalled aterm.

5.2.2 Number

There are two types of numeric literals, integers and floats. Besides the conventional notation, there are two Erlang-
specific notations:

e S$char
ASCII value of the character char .

* Dbase#val ue
Integer with the base base, which must be an integer in the range 2..36.
In Erlang 5.2/0OTP R9B and earlier versions, the allowed rangeis 2..16.

Examples:

1> 42.
42

2> $A.

65

3> $\n.
10

4> 2#101.

5> 16#1f .
31

6> 2. 3.
2.3

7> 2.3e3.
2. 3e3

8> 2. 3e-3.
0.0023

112 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Data Types

5.2.3 Atom

An atom isaliteral, a constant with name. An atom should be enclosed in single quotes () if it does not begin with a
lower-case letter or if it contains other characters than alphanumeric characters, underscore (), or @.

Examples:

hel | o
phone_nunber

' Monday'

' phone nunber’

5.2.4 Bit Strings and Binaries

A bit string is used to store an area of untyped memory.

Bit Strings are expressed using the bit syntax.

Bit Strings which consists of a number of bitswhich is evenly divisible by eight are called Binaries
Examples:

1> <<10, 20>>.
<<10, 20>>

2> <<" ABC'>>.
<<" ABC' >>

1> <<1:1, 0: 1>>.
<<2: 2>>

More examples can be found in Programming Examples.

5.2.5 Reference

A reference is aterm which isuniquein an Erlang runtime system, created by calling make_r ef / 0.

5.2.6 Fun

A funisafunctional object. Funs make it possible to create an anonymous function and pass the function itself -- not
its name -- as argument to other functions.

Example:

1> Funl = fun (X) -> X+1 end.
#Fun<er| _eval . 6. 39074546>

2> Funl(2).

3

Read more about funsin Fun Expressions. More examples can be found in Programming Examples.

5.2.7 Port Identifier
A portidentifier identifiesan Erlang port. open_por t / 2, whichisusedto create ports, will return avalue of thistype.
Read more about portsin Ports and Port Drivers.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 113

5.2 Data Types

5.2.8 Pid

A process identifier, pid, identifies a process. spawn/ 1, 2, 3, 4, spawn_Il i nk/ 1, 2, 3, 4 and spawn_opt/ 4,
which are used to create processes, return values of thistype. Example:

1> spawn(m f, []).
<0. 51. 0>

TheBIF sel f () returnsthe pid of the calling process. Example:

- modul e(m) .
-export([loop/0]).

I oop() ->
recei ve
who_are_you ->
io:format ("l am ~p~n", [self()]),

I oop()
end.

1> P = spawn(m loop, []).
<0. 58. 0>

2> P! who_are_you.

I am <0. 58. 0>

who_are_you

Read more about processes in Processes.

5.2.9 Tuple

Compound data type with a fixed number of terms:

{Term, ..., Ter mi\}

Each term Ter min the tupleis called an element. The number of elementsis said to be the size of the tuple.
There exists anumber of BIFs to manipulate tuples.

Examples:

1> P = {adam 24, {july, 29}}.
{adam 24, {jul y, 29} }

2> el ement (1, P).

adam

3> el ement (3, P).

{iuly, 29}

4> P2 = setel enent (2, P, 25).
{adam 25, {j ul y, 29}}

5> tupl e_size(P).

3

6> tupl e_size({}).

0

114 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Data Types

5.2.10 List
Compound data type with a variable number of terms.
[Ternt, ..., Ter m\|

Each term Ter min thelist is called an element. The number of elementsis said to be the length of thelist.
Formally, alist iseither theempty list[] or consists of ahead (first element) and atail (remainder of thelist) whichis

also alist. Thelatter can be expressed as[H| T] . The notation[Ter ni, . . ., Ter m\] aboveis actually shorthand
forthelist[Terni|[...[[TernN[1]1]].

Example:

[1 isaligt, thus

[c|[]] isalist, thus
[bl[c|[]1]] isalig, thus
[al[bl[cl[11]] isalist,orinshort| a, b, c].

A list wherethetail isalist is sometimes called a proper list. It is allowed to have alist where the tail isnot alist, for
example[a| b] . However, thistype of list is of little practical use.

Examples:

1> L1 = [a, 2,{c, 4}].
[a, 2,{c, 4}]

2> [HT] = L1

[a, 2,{c, 4}]

3> H

4> T.

[2,{c,4}]

5> L2 = [d|T].
[d,2,{c, 4}]

6> | ength(L1).

7> length([]).

A collection of list processing functions can be found in the STDLIB modulel i st s.

5.2.11 String

Strings are enclosed in double quotes ("), but is not adatatypein Erlang. Instead a string " hel | 0" is shorthand for
thelist [$h, $e, $I, $I , $0] , thatis[104, 101, 108, 108, 111] .

Two adjacent string literals are concatenated into one. This is done at compile-time and does not incur any runtime
overhead. Example:

"string" "42"

isequivalent to

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 115

5.2 Data Types

"string42"

5.2.12 Record

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct
in C. However, record is not a true data type. Instead record expressions are translated to tuple expressions during
compilation. Therefore, record expressions are not understood by the shell unless specia actions are taken. See
shel | (3) for details.

Examples:

- modul e(person).
-export ([new 2]).

-record(person, {nanme, age}).

new(Nane, Age) ->
#per son{ nane=Nane, age=Age}.

1> person: new(ernie, 44).
{person, erni e, 44}

Read more about records in Records. More examples can be found in Programming Examples.

5.2.13 Boolean
There is no Boolean data type in Erlang. Instead the atomst r ue and f al se are used to denote Boolean values.

Examples:

1> 2 =< 3.

true

2> true or fal se
true

5.2.14 Escape Sequences
Within strings and quoted atoms, the following escape sequences are recognized:

Sequence Description

\b backspace

\d delete

\e escape

\f form feed

\n newline

\r carriage return

116 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Data Types

\s space

\t tab

\v vertical tab

\XYZ,\YZ,\Z character with octal representation XYZ, YZ or Z
\XXY character with hexadecimal representation XY

character with hexadecimal representation; X... isoneor

O more hexadecimal characters
N N\

t/\zn\\/\zz control A to control Z

v single quote

v double quote

\ backslash

Table 2.1: Recognized Escape Sequences.

5.2.15 Type Conversions

There are anumber of BIFsfor type conversions. Examples:

1> atomto_list(hello).

"hel | 0"

2> list_to_atom("hello").

hel | o

3> binary_to_list(<<"hello">>).

"hel | 0"

4> binary_to_list(<<104, 101, 108, 108, 111>>).
"hel | 0"

5> |ist_to_binary("hello").
<<104, 101, 108, 108, 111>>

6> float_to_|list(7.0).
"7.00000000000000000000e+00"
7> |list_to_float("7.000e+00").

7.0

8> integer_to_list(77).
w7

9> |list_to_integer("77").
77

10> tuple_to_list({a,b,c}).
[a, b, c]

11> list_to_tuple([a,b,c]).
{a, b, c}

12> termto_binary({a,b,c}).

<<131, 104, 3, 100, 0, 1, 97, 100, 0, 1, 98, 100, O, 1, 99>>

13> binary_to_tern(<<131, 104, 3, 100, 0, 1, 97, 100, 0, 1, 98, 100, 0, 1, 99>>).
{a, b, c}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 117

5.3 Pattern Matching

5.3 Pattern Matching
5.3.1 Pattern Matching

Variables are bound to values through the pattern matching mechanism. Pattern matching occurs when evaluating a
function call, case-r ecei ve-t r y- expressions and match operator (=) expressions.

In apattern matching, aleft-hand side pattern is matched against aright-hand side term. If the matching succeeds, any
unbound variables in the pattern become bound. If the matching fails, a run-time error occurs.

Examples:

1> X

** 1. variable 'X is unbound **
2> X = 2.

2

3> X + 1.

3

4> {X, Y} ={1, 2}.

** exception error: no match of right hand side value {1, 2}
5> {X, Y} ={2, 3}.

{2, 3}

6> Y.

5.4 Modules
5.4.1 Module Syntax

Erlang code is divided into modules. A module consists of a sequence of attributes and function declarations, each
terminated by period (.). Example:

- modul e(m) . % nodul e attribute
-export([fact/1]). % nodul e attribute

fact(N) when N>0 -> % begi nni ng of function declaration
N * fact(N-1); % |

fact(0) -> % |
1. % end of function declaration

See the Functions chapter for a description of function declarations.

5.4.2 Module Attributes

A module attribute defines a certain property of amodule. A module attribute consists of atag and avalue.

- Tag(Val ue) .

Tag must be an atom, while Val ue must be a literal term. As a convenience in user-defined attributes, the literal
term Val ue the syntax Nane/ Ari ty (where Nane isan atom and Ar i t y a positive integer) will be translated to
{Nane, Arity}.

118 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Modules

Any module attribute can be specified. The attributes are stored in the compiled code and can be retrieved by calling
Modul e: modul e_i nfo(attri butes) or by using beam lib(3).

There are several modul e attributes with predefined meanings, some of which have arity two, but user-defined module
attributes must have arity one.

Pre-Defined Module Attributes
Pre-defined module attributes should be placed before any function declaration.
- nodul e(Modul e) .

Module declaration, defining the name of the module. The name Modul e, an atom, should be the same as the
file name minus the extension er | . Otherwise code loading will not work as intended.

This attribute should be specified first and is the only attribute which is mandatory.
-export (Functions).
Exported functions. Specifieswhich of the functions defined within the modulethat arevisible outside the module.

Functions isalist [Namel/ Arity1l,
Arityl aninteger.

., NanmeN ArityN], where each Nanel is an aom and

-i mport (Modul e, Functi ons).

Imported functions. Imported functions can be called the same way aslocal functions, that iswithout any module
prefix.

Modul e, an atom, specifieswhich moduleto import functionsfrom. Funct i ons isalist smilar asfor expor t
above.

-conpi | e(Options).

Compiler options. Opt i ons, which isasingle option or alist of options, will be added to the option list when
compiling the module. See conpi | e(3) .

-vsn(Vsn).
Moduleversion. Vsn isany literal term and can beretrieved using beam | i b: ver si on/ 1, see beam lib(3).
If this attribute is not specified, the version defaults to the MD5 checksum of the module.

Behaviour Module Attribute

It is possible to specify that the module is the callback module for a behaviour:

- behavi our (Behavi our) .

The atom Behavi our gives the name of the behaviour, which can be a user defined behaviour or one of the OTP
standard behavioursgen_server,gen_fsmgen_event or supervi sor.

The spelling behavi or isalso accepted.
Read more about behaviours and callback modulesin OTP Design Principles.

Record Definitions

The same syntax as for module attributes is used by for record definitions:

-record(Record, Fi el ds) .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 119

5.4 Modules

Record definitions are allowed anywhere in amodule, also among the function declarations. Read more in Records.

The Preprocessor

The same syntax as for module attributes is used by the preprocessor, which supports file inclusion, macros, and
conditional compilation:

-include("SoneFile.hrl").
- defi ne(Macr o, Repl acenent) .

Read more in The Preprocessor.

Setting File and Line
The same syntax as for module attributes is used for changing the pre-defined macros ?FI LE and ?LI NE:

-file(File, Line).

This attribute is used by tools such as Y ecc to inform the compiler that the source program was generated by another
tool and indicates the correspondence of source files to lines of the original user-written file from which the source
program was produced.

Types and function specifications

A similar syntax as for module attributes is used for specifying types and function specifications.

-type nmy_type() :: aton() | integer().
-spec my_function(integer()) -> integer().

Read more in Types and Function specifications.
The desciption is based on EEP8 - Types and function specifications which will not be further updated.

5.4.3 Comments

Comments may be placed anywherein amodul e except within strings and quoted atoms. The comment beginswith the
character "%", continues up to, but does not include the next end-of-line, and has no effect. Note that the terminating
end-of-line has the effect of white space.

5.4.4 The module_info/0 and module_info/1 functions

The compiler automaticaly inserts the two specia, exported functions into each module:
Modul e: modul e_i nf o/ 0 andModul e: nodul e_i nf o/ 1. Thesefunctionscan becalledtoretrieveinformation
about the module.

module_info/0

The nodul e_i nf o/ O function in each module returns a list of { Key, Val ue} tuples with information about
the module. Currently, the list contain tuples with the following Keys: att ri but es, conpi | e, export s, and
i mports. Theorder and number of tuples may change without prior notice.

120 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

5.5 Functions

Warning:

The{i nport s, Val ue} tuple may beremoved in afuture release because Val ue isaways an empty list. Do
not write code that depends on it being present.

module_info/l

The call nodul e_i nf o(Key) , where key is an atom, returns a single piece of information about the module.
The following values are allowed for Key:

attributes

Returnalistof { At t ri but eNane, Val uelLi st} tuples, whereAt t ri but eNane isthename of an attribute,
and Val uelLi st isalist of values. Note: a given attribute may occur more than once in the list with different
valuesif the attribute occurs more than once in the module.

Thelist of attributes will be empty if the module has been stripped with beam lib(3).
conpile

Return alist of tuples containing information about how the module was compiled. Thislist will be empty if the
modul e has been stripped with beam 1ib(3).

i nports

Alwaysreturn an empty list. Thei nport s key may not be supported in future release.
exports

Return alist of { Name, Ari t y} tupleswith al exported functions in the module.
functions

Return alist of { Name, Ari t y} tupleswith all functionsin the module.

5.5 Functions

5.5.1 Function Declaration Syntax
A function declaration is a sequence of function clauses separated by semicolons, and terminated by period (.).
A function clause consists of a clause head and a clause body, separated by - >.

A clause head consists of the function name, an argument list, and an optional guard sequence beginning with the
keyword when.

Nane(Patternll, ..., PatternlN) [when GuardSeql] ->
Body1;

Nane(Patternki, ..., Pat t ernKN) [when Guar dSeqgK] ->
BodyK.

The function name is an atom. Each argument is a pattern.

The number of arguments Nisthe arity of the function. A function is uniquely defined by the module name, function
name and arity. That is, two functions with the same name and in the same module, but with different arities are two
completely different functions.

A function named f in the module mand with arity Nis often denoted asm f / N.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 121

5.5 Functions

A clause body consists of a sequence of expressions separated by comma (,):

Expr 1,

Expr N
Valid Erlang expressions and guard sequences are described in Erlang Expressions.
Example:

fact(N) when N>O -> % first clause head
N * fact(N-1); % first clause body

fact(0) -> % second cl ause head
1. % second cl ause body

5.5.2 Function Evaluation

When afunction m f / Niscalled, first the code for the function islocated. If the function cannot be found, an undef
run-time error will occur. Note that the function must be exported to be visible outside the module it is defined in.

If the function is found, the function clauses are scanned sequentially until a clause isfound that fulfills the following
two conditions:

» thepatternsin the clause head can be successfully matched against the given arguments, and
e theguard sequence, if any, istrue.

If such a clause cannot be found, af unct i on_cl ause run-time error will occur.

If such aclauseisfound, the corresponding clause body is evaluated. That is, the expressionsin the body are evaluated
sequentially and the value of the last expression is returned.

Example: Consider the function f act :

- modul e(m) .
-export([fact/1]).

fact (N when N>O ->
N * fact(N-1);
fact(0) ->
1.

Assume we want to calculate factoria for 1:

1> mfact(1).

Evaluation starts at the first clause. The pattern N is matched against the argument 1. The matching succeeds and the
guard (N>0) istrue, thus Nis bound to 1 and the corresponding body is evaluated:

N * fact(N-1) => (N is bound to 1)
1 * fact(0)

122 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.6 Types and Function Specifications

Now f act (0) iscalled and thefunction clauses are scanned sequentially again. First, the pattern Nis matched against
0. The matching succeeds, but the guard (N>0) is false. Second, the pattern 0 is matched against 0. The matching
succeeds and the body is evaluated:

fact (0) =>

*
* 1 =>

1
1
1
Evaluation has succeed and m f act (1) returns 1.

Ifmfact/ 1iscaledwithanegative number as argument, no clause head will match. A f uncti on_cl ause run-
time error will occur.

5.5.3 Tail recursion

If the last expression of a function body isafunction call, atail recursive call is done so that no system resources for
example call stack are consumed. This means that an infinite loop can be doneiif it usestail recursive calls.

Example:

loop(N) ->
io:format ("~w~-n", [N]),
| oop(N+1).

As a counter-example see the factorial example above that is not tail recursive since a multiplication is done on the
result of therecursivecall tof act (N-1) .

5.5.4 Built-In Functions, BIFs

Built-in functions, BIFs, areimplemented in C code in the runtime system and do thingsthat are difficult or impossible
to implement in Erlang. Most of the built-in functions belong to the module er | ang but there are also built-in
functions belonging to afew other modules, for examplel i st s and et s.

The most commonly used BIFs belonging to er | ang are auto-imported, they do not need to be prefixed with the
module name. Which BIFs are auto-imported is specified in er | ang(3) . For example, standard type conversion
BlFslikeat om t o_I i st and BIFsallowed in guards can be called without specifying the module name. Examples:

1> tupl e_size({a,b,c}).

3

2> atomto_list('Erlang').
"Erl ang"

Note that normally it is the set of auto-imported built-in functions that is referred to when talking about 'BIFs.

5.6 Types and Function Specifications

5.6.1 Introduction of Types

Erlang isadynamically typed language. Still, it comes with alanguage extension for declaring sets of Erlang termsto
form a particular type, effectively forming a specific sub-type of the set of all Erlang terms.

Subsequently, these types can be used to specify types of record fiel ds and the argument and return types of functions.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 123

5.6 Types and Function Specifications

Typeinformation can be used to document function interfaces, provide more information for bug detection tools such
asDi al yzer, and can be exploited by documentation tools such as Edoc for generating program documentation of
various forms. It is expected that the type language described in this document will supersede and replace the purely
comment-based @ ype and @ pec declarations used by Edoc.

5.6.2 Types and their Syntax

Types describe sets of Erlang terms. Types consist and are built from a set of predefined types (e.g. i nt eger (),
at om(), pi d(), ...) described below. Predefined typesrepresent atypically infinite set of Erlang termswhich belong
to thistype. For example, thetype at on{) standsfor the set of all Erlang atoms.

For integers and atoms, we allow for singleton types (e.g. theintegers- 1 and 42 or theatoms' f oo’ and' bar').
All other types are built using unions of either predefined types or singleton types. In atype union between atype and
one of its sub-types the sub-type is absorbed by the super-type and the union is subsequently treated asif the sub-type
was not a constituent of the union. For example, the type union:

aton() | 'bar' | integer() | 42

describes the same set of terms as the type union:

aton() | integer()

Because of sub-type relations that exist between types, types form alattice where the topmost element, any(), denotes
the set of all Erlang terms and the bottom-most element, none(), denotes the empty set of terms.

The set of predefined types and the syntax for typesis given below:

Type :: any() %% The top type, the set of all Erlang terns.
none() %% The bottom type, contains no terms.
pi d()

port ()

ref erence()

[] 996 ni |

At om

Bi nary

float()

Fun

| nt eger

Li st

Tupl e

Uni on

User Def i ned %%b described in Section 2

Union :: Typel | Type2

Atom :: atom()

| Erlang_Atom %Wh6' foo', 'bar',

Bi nary :: binary() Wh<<_:_ * 8>

| <<>>

| <<_:Erlang_Integer>> %%b Base si ze

| <<_:_*Erlang_| nteger>> %o Unit size

| <<_:Erlang_Integer, _:_*Erlang_|nteger>>
Fun :: fun() %6 any function

| fun((...) -> Type) %o any arity, returning Type

124 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.6 Types and Function Specifications

| fun(() -> Type)
| fun((TList) -> Type)

I nteger :: integer()
| Erlang_I nteger
| Erlang_Integer..Erlang_Integer

List :: |ist(Type)
| inproper_list(Typel, Type2)
| maybe_i nproper_list(Typel, Type2)

Tuple :: tuple()

[{}
| {TList}

TList :: Type
| Type, TLi st

, -1, 0, 1, ... 42 ...
%% speci fies an integer range

%% Proper list ([]-term nated)
% Typel=cont ents, Type2=term nati on
%% Typel and Type2 as above

%b stands for a tuple of any size

Because lists are commonly used, they have shorthand type notations. Thetypel i st (T) hastheshorthand[T] . The
shorthand [T, . . .] stands for the set of non-empty proper lists whose elements are of type T. The only difference
between the two shorthandsisthat [T] may bean empty listbut[T, ...] may not.

Notice that the shorthand for | i st (), i.e. thelist of elements of unknown type, is[_] (or[any()]),not[] . The

notation [] specifiesthe singleton type for the empty list.

For convenience, the following types are also built-in. They can be thought as predefined aliases for the type unions
also shown in the table. (Some type unions below dlightly abuse the syntax of types.)

Built-in type Standsfor

term) any()

bool ean() ‘false' | 'true'
byt e() 0..255

char () 0..16#10ffff
non_neg_i nt eger () 0..
pos_integer () 1..

neg i nteger ()

-1

nunber ()

integer() | float()

list()

[any()]

maybe_i nproper _|ist()

maybe_i nproper _list(any(), any())

maybe_i nproper list(T)

maybe i nproper _list(T, any())

string()

[char ()]

nonenpty_string()

[char(),...]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 125

5.6 Types and Function Specifications

|
modul e() at om()

nf a() {aton(),aton(), byte()}

node() atom)

ti meout () "infinity' | non_neg_integer()
no_return() none()

Users are not allowed to define types with the same names as the predefined or built-in ones. This is checked by the
compiler and itsviolation resultsin acompilation error. (For bootstrapping purposes, it can also result to just awarning
if thisinvolves a built-in type which has just been introduced.)

Note:
The following built-in list types also exist, but they are expected to be rarely used. Hence, they have long names:

nonenpty_maybe_ i nproper_Ilist(Type) :: nonenpty_maybe i nproper_list(Type, any())
nonenpty_maybe i nproper_list() :: nonenpty_nmybe_i nproper_I|ist(any())

where the following two types define the set of Erlang terms one would expect:

nonenpty_i nproper _|ist(Typel, Type2)
nonenpty_maybe i nproper _|ist(Typel, Type2)

Alsofor convenience, weallow for record notation to be used. Recordsarejust shorthandsfor the corresponding tuples.

Record :: #Erlang_Aton{}
| #Erl ang_At on{ Fi el ds}

Records have been extended to possibly contain type information. This is described in the sub-section "Type
information in record declarations' below.

5.6.3 Type declarations of user-defined types

As seen, the basic syntax of atype is an atom followed by closed parentheses. New types are declared using -type
and '-opaque’ compiler attributes as in the following:

-type nmy_struct_type() :: Type.
-opaque ny_opaq_type() :: Type.

where the type nameis an atom (' my_struct _type' in the above) followed by parentheses. Type is atype as
defined in the previous section. A current restriction is that Type can contain only predefined types, or user-defined

126 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.6 Types and Function Specifications

typeswhich are either module-local (i.e., with adefinition that is present in the code of the module) or are remote types
(i.e., types defined in and exported by other modules; see below). For module-local types, the restriction that their
definition exists in the module is enforced by the compiler and results in a compilation error. (A similar restriction
currently exists for records.)

Type declarations can also be parameterized by including type variables between the parentheses. The syntax of type
variablesis the same as Erlang variables (starts with an upper case |etter). Naturally, these variables can - and should
- appear on the RHS of the definition. A concrete example appears below:

-type orddict(Key, Val) :: [{Key, Val}].

A module can export some types in order to declare that other modules are allowed to refer to them as remote types.
This declaration has the following form:

-export_type([T1/ AL, ..., Tk/AK]).

where the Ti's are atoms (the name of the type) and the Ai's are their arguments. An exampleis given below:

-export_type([nmy_struct_type/0, orddict/2]).

Assuming that these types are exported from module ' nod' then one can refer to them from other modules using
remote type expressions like those below:

nmod: ny_struct _type()
nmod: orddi ct (atom(), tern())

Oneisnot alowed to refer to types which are not declared as exported.

Typesdeclared asopaque represent sets of termswhose structure is not supposed to be visible in any way outside of
their defining module (i.e., only the module defining them is allowed to depend on their term structure). Consequently,
such types do not make much sense as module local - module local types are not accessible by other modules anyway
- and should always be exported.

5.6.4 Type information in record declarations

The types of record fields can be specified in the declaration of the record. The syntax for thisis:

-record(rec, {fieldl :: Typel, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). |.e., the above is a shorthand for:

-record(rec, {fieldl :: Typel, field2 :: any(), field3 :: Type3}).

In the presence of initial values for fields, the type must be declared after the initialization as in the following:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 127

5.6 Types and Function Specifications

-record(rec, {fieldl =[] :: Typel, field2, field3 = 42 :: Type3}).

Naturally, the initial values for fields should be compatible with (i.e. a member of) the corresponding types. Thisis
checked by the compiler and results in a compilation error if aviolation is detected. For fields without initial values,
thesingletontype' undef i ned' isaddedto al declared types. In other words, thefollowing two record declarations
have identical effects:

-record(rec, {fl = 42 :: integer(),
f2 :: float(),
f3 ro'a' | 'b'}).
-record(rec, {fl = 42 :: integer(),
f2 :: 'undefined | float(),
f3 :: 'undefined | 'a' | 'b'}).

For this reason, it is recommended that records contain initializers, whenever possible.
Any record, containing type information or not, once defined, can be used as atype using the syntax:
#rec{}

In addition, the record fields can be further specified when using a record type by adding type information about the
field in the following manner:

#rec{sone_field :: Type}
Any unspecified fields are assumed to have the typein the original record declaration.

5.6.5 Specifications for functions

A specification (or contract) for afunction is given using the new compiler attribute ' - spec' . The general format
isasfollows:

-spec Modul e: Functi on(ArgTypel, ..., ArgTypeN) -> ReturnType.
The arity of the function has to match the number of arguments, or else a compilation error occurs.

Thisform can also be used in header files (.hrl) to declare type information for exported functions. Then these header
files can beincluded in files that (implicitly or explicitly) import these functions.

For most uses within a given module, the following shorthand suffices:

-spec Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

Also, for documentation purposes, argument hames can be given:

-spec Function(ArgNamel :: Typel, ..., ArgNaneN :: TypeN) -> RT.

128 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.6 Types and Function Specifications

A function specification can be overloaded. That is, it can have several types, separated by a semicolon (;):

-spec foo(T1l, T2) -> T3
: (T4, T5) -> T6.

A current restriction, which currently resultsin awarning (OBS: not an error) by the compiler, is that the domains of
the argument types cannot be overlapping. For example, the following specification results in awarning:

-spec foo(pos_integer()) -> pos_integer()
; (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input and output arguments of a function. For
example, the following specification defines the type of a polymorphic identity function:

-spec id(X) -> X

However, note that the above specification does not restrict the input and output type in any way. We can constrain
these types by guard-like subtype constraints;

-spec id(X) -> X when is_subtype(X, tuple()).

or equivalently by the more succinct and more modern form of the above:

-spec id(X) -> X when X :: tuple().

and provide bounded quantification. Currently, the : : constraint (the i s_subt ype/ 2 guard) is the only guard
constraint which can beused inthe' when' partof a' - spec’ attribute.

Thescopeof an: : constraintisthe(...) -> Ret Type specification after which it appears. To avoid confusion,
we suggest that different variables are used in different constituents of an overloaded contract asin the example bel ow:

-spec foo({X, integer()}) -> X when X :: atom()

; ([Y]) -> Y when Y :: nunber().

Some functions in Erlang are not meant to return; either because they define servers or because they are used to throw
exceptions as the function below:

nmy_error(Err) -> erlang:throw{error, Err}).

For such functions we recommend the use of the special no_return() type for their "return”, viaa contract of the form:

-spec nmy_error(term()) -> no_return().

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 129

5.7 Expressions

5.7 Expressions

In this chapter, al valid Erlang expressions are listed. When writing Erlang programs, it is also allowed to use macro-
and record expressions. However, these expressions are expanded during compilation and are in that sense not true
Erlang expressions. Macro- and record expressions are covered in separate chapters. Macros and Records.

5.7.1 Expression Evaluation

All subexpressions are evaluated before an expression itself is evaluated, unless explicitly stated otherwise. For
example, consider the expression:

Exprl + Expr2

Expr 1 and Expr 2, which are also expressions, are evaluated first - in any order - before the addition is performed.

Many of the operators can only be applied to arguments of a certain type. For example, arithmetic operators can only
be applied to numbers. An argument of the wrong type will cause abadar g run-time error.

57.2 Terms

The simplest form of expression is aterm, that is an integer, float, atom, string, list or tuple. The return value is the
term itself.

5.7.3 Variables

A variable is an expression. If a variable is bound to a value, the return value is this value. Unbound variables are
only alowed in patterns.

Variables start with an uppercase letter or underscore () and may contain alphanumeric characters, underscore and
@. Examples:

X

Nanmel
PhoneNunber
Phone_nunber

_Hei ght

Variables are bound to values using pattern matching. Erlang uses single assignment, a variable can only be bound
once.

The anonymous variable is denoted by underscore () and can be used when avariable is required but its value can
be ignored. Example:

[H_1 =1[12373]

Variables starting with underscore (_), for example__Hei ght , arenormal variables, not anonymous. They are however
ignored by the compiler in the sense that they will not generate any warnings for unused variables. Example: The
following code

menber (_, []) ->

130 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

(1.

can be rewritten to be more readable:
menber (Elem []) ->
[1.

This will however cause a warning for an unused variable El em if the code is compiled with the flag
war n_unused_var s set. Instead, the code can be rewritten to:

menber (_Elem []) ->

Note that since variables starting with an underscore are not anonymous, this will match:

{3 =1{12}
But this will fail:
{N N = {1,2}

The scope for avariableisits function clause. Variables bound in abranch of ani f, case, or r ecei ve expression
must be bound in al branchesto have aval ue outside the expression, otherwise they will beregarded as'unsafe’ outside
the expression.

For thet r y expression introduced in Erlang 5.4/0OTP-R10B, variable scoping islimited so that variables bound in the
expression are always 'unsafe’ outside the expression. Thiswill be improved.

5.7.4 Patterns

A pattern has the same structure as aterm but may contain unbound variables. Example:

Nanmel
[HT]

{error, Reason}

Patterns are allowed in clause heads, case andr ecei ve expressions, and match expressions.

Match Operator = in Patterns
If Patt er n1 and Pat t er n2 are valid patterns, then the following is also avalid pattern:

Patternl = Pattern2

When matched against aterm, both Pat t er n1 and Pat t er n2 will be matched against the term. The idea behind
thisfeature is to avoid reconstruction of terms. Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 131

5.7 Expressions

f ({ connect, From To, Nunber, Opti ons}, To) ->
Si gnal = {connect, From To, Nunber, Opti ons},

f(Signal, To) ->
i gnore.

can instead be written as

f({connect, _,To, ,_} = Signal, To) ->

f(Si gnai , To) ->
i gnore.

String Prefix in Patterns
When matching strings, the following is avalid pattern:

f("prefix" ++ Str) -> ...

Thisis syntactic sugar for the equivalent, but harder to read

f([$p, $r, Se, $f, $i, $x | Str]) -> ...

Expressions in Patterns

An arithmetic expression can be used within a pattern, if it uses only numeric or bitwise operators, and if its value can
be evaluated to a constant at compile-time. Example:

case {Val ue, Result} of
{?THRESHOLD+1, ok} -> ...

This feature was added in Erlang 5.0/0TP R7.

5.7.5 Match

Exprl = Expr2

Matches Expr 1, a pattern, against Expr 2. If the matching succeeds, any unbound variable in the pattern becomes
bound and the value of Expr 2 isreturned.

If the matching fails, abadmat ch run-time error will occur.
Examples:

1> {A, B} = {answer, 42}.
{answer, 42}

2> A

answer

132 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

3> {C DO =1[1, 2].
** exception error: no match of right hand side value [1, 2]

5.7.6 Function Calls

Expr F(Expri, ..., Expr N)
Expr M Expr F(Expr1i, ..., Expr N)

In the first form of function calls, Expr M Expr F(Expr 1, . .., Expr N), each of Expr Mand Expr F must be an
atom or an expression that evaluates to an atom. The function is said to be called by using the fully qualified function
name. Thisis often referred to as a remote or external function call. Example:

lists: keysearch(Nane, 1, List)

In the second form of function calls, Expr F(Expr 1, . .., Expr N), Expr F must be an atom or evaluate to afun.

If ExprF is an atom the function is said to be called by using the implicitly qualified function name. If the
function Expr F is localy defined, it is caled. Alternatively if Expr F is explicitly imported from module M
M Expr F(Exprl, ..., ExprN) iscaled. If Expr F is neither declared locally nor explicitly imported, Expr F
must be the name of an automatically imported BIF. Examples:

handl e(Msg, State)
spawn(m init, [])

Examples where ExprF isafun:;

Funl = fun(X) -> X+1 end
Funl(3)
= 4

Fun2 = {lists, append}
Fun2([1,2], [3,4])

= [1, 2,3, 4]

fun lists:append/2([1,2], [3,4])
= [1, 2,3, 4]

Note that when calling alocal function, there is a difference between using the implicitly or fully qualified function
name, asthe latter always refers to the latest version of the module. See Compilation and Code Loading.

See also the chapter about Function Evaluation.
Local Function Names Clashing With Auto-imported BIFs

If alocal function has the same name as an auto-imported BIF, the semanticsis that implicitly qualified function calls
are directed to the locally defined function, not to the BIF. To avoid confusion, thereisacompiler directive available,
-conpi l e({no_auto_i nport, [F/ A]}),that makesaBIF not being auto-imported. In certain situations, such
a compile-directive is mandatory.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 133

5.7 Expressions

Warning:

Before OTP R14A (ERTS version 5.8), an implicitly qualified function call to afunction having the same name
as an auto-imported BIF always resulted in the BIF being called. In newer versions of the compiler the local
functionisinstead called. The changeisthereto avoid that future additions to the set of auto-imported BIFs does
not silently change the behavior of old code.

However, to avoid that old (pre R14) code changed its behavior when compiled with OTP version R14A or later,
the following restriction applies: If you override the name of a BIF that was auto-imported in OTP versions prior
to R14A (ERTS version 5.8) and have an implicitly qualified call to that function in your code, you either need
to explicitly remove the auto-import using a compiler directive, or replace the call with afully qualified function
call, otherwise you will get a compilation error. See example below:

-export([length/1,f/1]).
-conpil e({no_auto_inport,[length/1]}). %erlang:|ength/1 no | onger autoi nported
l'ength([]) ->

0:

length([HT]) ->
1 + length(T). %6 Calls the local funtion length/1

f(X) when erlang:length(X) >3 -> %0 Calls erlang:length/1,

%b which is allowed in guards
| ong.

The same logic applies to explicitly imported functions from other modules as to locally defined functions. To both
import a function from another module and have the function declared in the module at the same time is not allowed.

-export ([f/1]).
-conpil e({no_auto_inmport,[length/1]}). %erlang:length/1 no | onger autoi nported
-inport(nod, [l ength/1]).

f(X) when erlang:length(X) > 33 -> W6 Calls erlang:|enght/1,
%6 which is allowed in guards

erl ang: | engt h(X); %6 Explicit call to erlang:length in body
f(x) ->
I engt h(X) . %6 nod: | ength/1 is called

For auto-imported BIFs added to Erlang in release R14A and thereafter, overriding the name with a local function
or explicit import is always allowed. However, if the - conpi | e({no_aut o_i nport, [F/ A]) directiveisnot
used, the compiler will issue a warning whenever the function is called in the module using the implicitly qualified
function name.

57.7 If

if
Guar dSeql ->
Body1;

134 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

Guar dSegN - >
BodyN
end

Thebranchesof ani f -expression are scanned sequentially until aguard sequence Guar dSeq which evaluatesto true
isfound. Then the corresponding Body (sequence of expressions separated by ',') is evaluated.

The return value of Body isthereturn value of thei f expression.

If no guard sequenceistrue, ani f _cl ause run-time error will occur. If necessary, the guard expressiont r ue can
be used in the last branch, as that guard sequence is always true.

Example:

is_greater_than(X, Y) ->
if

XY ->
true;
true -> % works as an 'el se' branch
fal se
end
5.7.8 Case

case Expr of
Patternl [when CQuardSeql] ->
Body1;

Patt ernN [when GuardSegN] ->
BodyN
end

The expression Expr is evaluated and the patterns Pat t er n are sequentially matched against the result. If amatch
succeeds and the optional guard sequence Guar dSeq istrue, the corresponding Body is evaluated.

The return value of Body isthe return value of the case expression.

If there is no matching pattern with atrue guard sequence, acase_cl ause run-time error will occur.
Example:

is_valid_signal (Signal) ->
case Signal of
{signal, _Wat, From _To} ->
true;
{signal, _Wat, _To} ->
true;
_Else ->
fal se
end.

5.7.9 Send

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 135

5.7 Expressions

Exprl ! Expr2

Sends the value of Expr 2 as a message to the process specified by Expr 1. The value of Expr 2 is aso the return
value of the expression.

Expr 1 must evaluateto apid, aregistered name (atom) or atuple{ Name, Node} , where Nare isan atom and Node
anode name, also an atom.

« |If Expr 1 evaluatesto a name, but this nameis not registered, abadar g run-time error will occur.

» Sending amessage to a pid never fails, even if the pid identifies a non-existing process.

« Distributed message sending, that isif Expr 1 evaluatesto atuple { Nane, Node} (or apid located at another
node), also never fails.

5.7.10 Receive

receive
Patternl [when CQuardSeql] ->
Body1;

Patt ernN [when GuardSegN] ->
BodyN
end

Receives messages sent to the process using the send operator (!). The patterns Pat t er n are sequentially matched
against the first message in time order in the mailbox, then the second, and so on. If amatch succeeds and the optional
guard sequence Guar dSeq istrue, the corresponding Body is evaluated. The matching message is consumed, that is
removed from the mailbox, while any other messages in the mailbox remain unchanged.

The return value of Body isthereturn value of ther ecei ve expression.

r ecei ve never fails. Execution is suspended, possibly indefinitely, until a message arrives that does match one of
the patterns and with a true guard sequence.

Example:

wai t _for_onhook() ->
receive
onhook ->
di sconnect (),
idle();
{connect, B} ->
B! {busy, self()},
wai t _for_onhook()
end.

It is possible to augment ther ecei ve expression with atimeout:

recei ve
Patternl [when GQuardSeql] ->
Body1;
PatternN [when GuardSeqN] ->
BodyN
after
ExprT ->

136 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

Body T
end

Expr T should evaluate to an integer. The highest allowed value is 16#ffffffff, that is, the value must fit in 32 bits.
recei ve. . af t er works exactly as r ecei ve, except that if no matching message has arrived within Expr T
milliseconds, then Body T isevaluated instead and itsreturn value becomesthereturn valueof ther ecei ve. . af t er

expression.
Example:

wai t _for_onhook() ->
receive
onhook ->
di sconnect (),
idle();
{connect, B} ->
B ! {busy, self()},
wai t _f or_onhook()
after
60000 ->
di sconnect (),
error()
end

Itislegal tousear ecei ve. . af t er expression with no branches:

receive
after
ExprT ->
Body T
end

This construction will not consume any messages, only suspend execution in the process for Expr T milliseconds and
can be used to implement simple timers.

Example:

timer() ->
spawn(m tinmer, [self()]).

tinmer(Pid) ->

recei ve
after
5000 ->
Pid ! tinmeout
end

There are two special cases for the timeout value Expr T:

infinity
The process should wait indefinitely for a matching message -- thisis the same as not using atimeout. Can be
useful for timeout values that are calculated at run-time.

If there is no matching message in the mailbox, the timeout will occur immediately.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 137

5.7 Expressions

5.7.11 Term Comparisons

Exprl op Expr2

op Description

== equal to

/= not equal to

=< lessthan or equal to

< lessthan

>= greater than or equal to
> greater than

== exactly equal to

=/= exactly not equal to

Table 7.1: Term Comparison Operators.

The arguments may be of different data types. The following order is defined:

nunber < atom < reference < fun < port < pid < tuple <list < bit string

Listsare compared element by element. Tuplesare ordered by size, two tupleswith the same size are compared el ement
by element.

If one of the compared terms is an integer and the other a float, the integer isfirst converted into a float, unless the
operator isone of =:= and =/=. If theinteger istoo big to fit in afloat no conversion is done, but the order is determined
by inspecting the sign of the numbers.

Returns the Boolean value of the expression, t r ue or f al se.
Examples:

1> 1==1. 0.
true

2> 1=:=1.0.
fal se

3> 1 > a.
fal se

5.7.12 Arithmetic Expressions

138 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

op Expr
Exprl op Expr2

op Description Argument type
+ unary + number
- unary - number
+ number
- number
* number
/ floating point division number
bnot unary bitwise not integer
div integer division integer
rem integer remainder of X/Y integer
band bitwise and integer
bor bitwise or integer
bxor arithmetic bitwise xor integer
bl arithmetic bitshift left integer
bsr bitshift right integer

Table 7.2: Arithmetic Operators.

Examples:

1> +1.

1

2> - 1.

-1

3> 1+1.

2

4> 4/ 2.

2.0

5> 5 div 2.

2

6> 5 rem 2.

1

7> 2#10 band 2#01.
0

8> 2#10 bor 2#01.
3

9> a + 10.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 139

5.7 Expressions

** exception error: bad argunent in an arithmetic expression
in operator +/2
called as a + 10
10> 1 bsl (1 bsl 64).
** exception error: a systemlimt has been reached
in operator bsl/2
called as 1 bsl 18446744073709551616

5.7.13 Boolean Expressions

op Expr
Exprl op Expr2

op Description

not unary logical not
and logical and

or logical or

xor logical xor

Table 7.3: Logical Operators.

Examples:

1> not true.
fal se
2> true and fal se.
fal se
3> true xor false.
true
4> true or garbage.
** exception error: bad argunent
in operator or/2
called as true or garbage

5.7.14 Short-Circuit Expressions

Expr1l orel se Expr2
Expr1 andal so Expr2

Expressions where Expr 2 is evaluated only if necessary. That is, Expr 2 is evaluated only if Expr 1 evaluates to
fal seinanorel se expression, or only if Expr 1 evaluatestot r ue in an andal so expression. Returns either
thevalue of Expr 1 (thatis, t r ue or f al se) or the value of Expr 2 (if Expr 2 was evaluated).

Example 1:

140 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

case A >= -1.0 andal so mat h: sqrt (A+1l) > B of

Thiswill work even if Aislessthan- 1. 0, sincein that case, mat h: sqrt/ 1 is never evaluated.
Example 2:

OnlyOne = is_aton(L) orel se
(is_list(L) andal so |l ength(L) == 1),

From R13A, Expr 2 isno longer required to evaluate to a boolean value. As a consequence, andal so and or el se
are now tail-recursive. For instance, the following function is tail-recursive in R13A and later:

all (Pred, [Hd| Tail]) ->
Pred(Hd) andalso all(Pred, Tail);
all(_, [1) ->

true.

5.7.15 List Operations

Exprl ++ Expr2
Exprl -- Expr2
The list concatenation operator ++ appends its second argument to its first and returns the resulting list.

The list subtraction operator - - produces a list which is a copy of the first argument, subjected to the following
procedure: for each element in the second argument, the first occurrence of this element (if any) is removed.

Example:

1> [1,2,3]++[4,5].
[1,2,3,4,5]
2>[1,2,3,2,1,2]--[2,1,2].
[3,1,2]

Warning:
The complexity of A -- B s proportional to | engt h(A) *| engt h(B) , meaning that it will be very slow
if both Aand B arelong lists.

5.7.16 Bit Syntax Expressions

Each element Ei specifies a segment of the bit string. Each element Ei is a value, followed by an optiona size
expression and an optional type specifier list.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 141

5.7 Expressions

Ei = Value |
Val ue: Si ze |
Val ue/ TypeSpeci fi erList |
Val ue: Si ze/ TypeSpeci fi erLi st

Used in a bit string construction, Val ue isan expression which should evaluate to an integer, float or bit string. If the
expression is something else than asingle literal or variable, it should be enclosed in parenthesis.

Used in a bit string matching, Val ue must be avariable, or aninteger, float or string.

Note that, for example, using astring literal asin <<" abc" >> is syntactic sugar for <<$a, $b, $c>>.
Used in a bit string construction, Si ze is an expression which should evaluate to an integer.

Used in abit string matching, Si ze must be an integer or avariable bound to an integer.

The value of Si ze specifies the size of the segment in units (see below). The default value depends on the type (see
below). For i nt eger itis8, for fl oat itis64, for bi nary and bi t st ri ng it isthe whole binary or bit string.
In matching, this default value is only valid for the very last element. All other bit string or binary elements in the
matching must have a size specification.

Fortheut f 8, ut f 16, and ut f 32 types, Si ze must not be given. The size of the segment isimplicitly determined
by the type and value itself.

TypeSpeci fi erLi st isalist of type specifiers, in any order, separated by hyphens (-). Default values are used
for any omitted type specifiers.

Type=integer |float |binary |bytes |bitstring|bits|utf8|utfl6|utf32
Thedefaultisi nt eger . byt es isashorthand for bi nary and bi t s isashorthand for bi t st ri ng. See
below for more information about the ut f types.
Si gnedness=si gned |unsi gned
Only matters for matching and when thetypeisi nt eger . Thedefault isunsi gned.
Endi anness=big|little|native
Native-endian means that the endianness will be resolved at 1oad time to be either big-endian or little-endian,
depending on what is native for the CPU that the Erlang machineis run on. Endianness only matters when the
Typeiseitheri nt eger,utf 16, ut f 32, or f | oat . Thedefault isbi g.
Unit=unit:IlntegerlLiteral
The alowed rangeis 1..256. Defaultsto 1 for i nt eger , f1 oat and bi t st ri ng, andto 8 for bi nary. No
unit specifier must be given for the typesut f 8, ut f 16, and ut f 32.

The value of Si ze multiplied with the unit gives the number of bits. A segment of type bi nar y must have a size
that is evenly divisible by 8.

Note:

When constructing binaries, if the size N of an integer segment istoo small to contain the given integer, the most
significant bits of the integer will be silently discarded and only the N least significant bits will be put into the
binary.

Thetypesut f 8, ut f 16, and ut f 32 specifies encoding/decoding of the Unicode Transformation Formats UTF-8,
UTF-16, and UTF-32, respectively.

When constructing a segment of a utf type, Val ue must be an integer in one of the ranges 0..16#D7FF,
16#E000..164#FFFD, or 16#10000..16#10FFFF (i.e. avalid Unicode code point). Construction will fail withabadar g
exception if Val ue isoutside the allowed ranges. The size of the resulting binary segment depends on the type and/

142 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

or Val ue. For ut f 8, Val ue will be encoded in 1 through 4 bytes. For ut f 16, Val ue will be encoded in 2 or 4
bytes. Finally, for ut f 32, Val ue will always be encoded in 4 bytes.

When constructing, aliteral string may be given followed by one of the UTF types, for example: <<" abc"/ ut f 8>>
which is syntatic sugar for <<$a/ ut f 8, $b/ ut f 8, $c/ ut f 8>>.

A successful match of a segment of a utf type results in an integer in one of the ranges 0..16#D7FF,
16#E000..16#FFFD, or 16#10000..16#10FFFF (i.e. avalid Unicode code point). The match will fail if returned value
would fall outside those ranges.

A segment of type ut f 8 will match 1 to 4 bytes in the binary, if the binary at the match position contains a valid
UTF-8 sequence. (See RFC-2279 or the Unicode standard.)

A segment of type ut f 16 may match 2 or 4 bytesin the binary. The match will fail if the binary at the match position
does not contain alegal UTF-16 encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)

A segment of type ut f 32 may match 4 bytes in the binary in the same way asan i nt eger segment matching 32
bits. The match will fail if the resulting integer is outside the legal ranges mentioned above.

Examples:

1> Binl = <<1, 17, 42>>
<<1, 17, 42>>

2> Bin2 = <<"abc">>

<<97, 98, 99>>

3> Bin3 = <<1,17,42: 16>>

<<1, 17,0, 42>>

4> <<A B, C 16>> = <<1,17,42: 16>>
<<1, 17,0, 42>>

5> C

42

6> <<D: 16, E, F>> = <<1, 17, 42: 16>>
<<1, 17,0, 42>>

7> D.

273

8> F.

42

9> <<G H bi nary>> = <<1, 17, 42: 16>>
<<1, 17,0, 42>>

10> H

<<17, 0, 42>>

11> <<G H bi tstring>> = <<1, 17, 42: 12>>,
<<1, 17,1, 10: 4>>

12> H

<<17, 1, 10: 4>>

13> <<1024/ ut f 8>>

<<208, 128>>

Note that bit string patterns cannot be nested.

Note also that "B=<<1>>" isinterpreted as"B =<<1>>" which isasyntax error. The correct way isto write a space
after '=". "B= <<1>>,

More examples can be found in Programming Examples.

5.7.17 Fun Expressions

fun
(Patternli, ..., PatternlN) [when GuardSeql] ->
Body1;

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 143

5.7 Expressions

(PatternKi, ..., Patt er nKN) [when CuardSeqK] ->
BodyK
end

A fun expression begins with the keyword f un and ends with the keyword end. Between them should be a function
declaration, similar to aregular function declaration, except that no function name is specified.

Variablesin afun head shadow variables in the function clause surrounding the fun expression, and variables bound
inafun body are local to the fun body.

The return value of the expression is the resulting fun.
Examples:

1> Funl = fun (X) -> X+1 end.

#Fun<er| _eval . 6. 39074546>

2> Funi(2).

3

3> Fun2 = fun (X) when X>=5 -> gt; (X) -> It end.
#Fun<er| _eval . 6. 39074546>

4> Fun2(7).

gt

The following fun expressions are also allowed:

fun Nane/Arity
fun Modul e: Nane/ Arity

InNanme/ Arity, Name isanatomand Ari ty isaninteger. Nane/ Ar i t y must specify an existing local function.
The expression is syntactic sugar for:

fun (Argl, ..., ArgN) -> Nane(Argl, ..., ArgN) end

In Modul e: Nanme/ Ari ty, Modul e and Name areatomsand Ar i t y isaninteger. A fun defined in this way will
refer to the function Narre with arity Ar i t y inthe latest version of module Mbdul e.

When applied to a number N of arguments, atuple { Modul e, Funct i onNane} isinterpreted as a fun, referring
to the function Funct i onNane with arity N in the module Modul e. The function must be exported. Thisusageis
deprecated. See Function Callsfor an example.

More examples can be found in Programming Examples.

5.7.18 Catch and Throw

catch Expr

Returnsthe value of Expr unless an exception occurs during the evaluation. In that case, the exception is caught. For
exceptions of classer r or , that isrun-time errors: {* EXI T' , { Reason, St ack}} isreturned. For exceptions of
classexit,thatisthecodecalledexit (Term: {' EXI T', Ter n} isreturned. For exceptions of classt hr ow,
that isthe code called t hr ow(Ter n) : Ter mis returned.

144 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

Reason depends on the type of error that occurred, and St ack is the stack of recent function calls, see Errors and
Error Handling.

Examples:

1> catch 1+2.

3
2> catch 1+a.
{"EXIT ,{badarith,[...]}}

Note that cat ch has low precedence and catch subexpressions often needs to be enclosed in a block expression or
in parenthesis:

3> A = catch 1+2.

** 1. syntax error before: 'catch' **
4> A = (catch 1+2).

3

TheBIFt hr ow(Any) can be used for non-local return from afunction. It must be evaluated within acat ch, which
will return the value Any. Example:

5> catch throw(hell o).
hel | o

If t hr ow 1 isnot evaluated within a catch, anocat ch run-time error will occur.

5.7.19 Try

try Exprs
cat ch
[assl:] Excepti onPatternl [when ExceptionCuardSeql] ->
Except i onBody1;
[A assN:] Excepti onPatternN [when Excepti onCuardSeqN ->
Except i onBodyN
end

Thisisan enhancement of catch that appeared in Erlang 5.4/OTP-R10B. It givesthe possibility do distinguish between
different exception classes, and to choose to handle only the desired ones, passing the others on to an enclosingt ry
or cat ch or to default error handling.

Note that although the keyword cat ch isused in thet r y expression, there is not acat ch expression within the
try expression.

Returnsthevalueof Expr s (asequenceof expressionsExpr 1, ..., Expr N)unlessanexceptionoccursduringthe
evaluation. In that case the exception is caught and the patterns Except i onPat t er n with the right exception class
d ass are sequentially matched against the caught exception. An omitted Cl ass isshorthand for t hr ow. If amatch
succeeds and the optional guard sequence Except i onGuar dSeq istrue, the corresponding Except i onBody is
evaluated to become the return value.

If an exception occurs during evaluation of Expr s but there is no matching Except i onPat t er n of the right
d ass with atrue guard sequence, the exception ispassed on asif Expr s had not been enclosedinat r y expression.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 145

5.7 Expressions

If an exception occurs during evaluation of Except i onBody it isnot caught.
Thet ry expression can have an of section:

try Exprs of
Patternl [when CQuardSeql] ->
Body1;

Patt ernN [when GuardSegN] ->
BodyN
catch
[assl:] Excepti onPatternl [when ExceptionCuardSeql] ->
Except i onBody1;

[A assN:] Excepti onPatternN [when Excepti onCGuardSeqN ->
Except i onBodyN
end

If the evaluation of Expr s succeeds without an exception, the patterns Pat t er n are sequentially matched against
the result in the same way as for a case expression, except that if the matching fails, at ry_cl ause run-time error
will occur.

An exception occurring during the evaluation of Body is not caught.
Thet ry expression can also be augmented with an af t er section, intended to be used for cleanup with side effects:

try Exprs of
Patternl [when CQuardSeql] ->
Body1;

Patt ernN [when GuardSegN] ->
BodyN
catch
[assl:] ExceptionPatternl [when ExceptionCuardSeql] ->
Excepti onBody1;

[A assN:] Excepti onPatternN [when Excepti onCGuardSeqN ->
Except i onBodyN
after
Af t er Body
end

Af t er Body is evaluated after either Body or Excepti onBody no matter which one. The evaluated value of
Af t er Body islost; the return value of thet r y expression isthe same with an af t er section as without.

Even if an exception occurs during evaluation of Body or Except i onBody, Af t er Body isevaluated. In thiscase
the exception is passed on after Af t er Body has been evaluated, so the exception from the t r y expression is the
same with an af t er section aswithout.

If an exception occurs during evaluation of Af t er Body itself itisnot caught, soif Af t er Body isevaluated after an
exceptionin Expr s, Body or Except i onBody, that exceptionislost and masked by the exceptionin Af t er Body.

Theof , cat ch and af t er sections are al optional, aslong asthereis at least acat ch or an af t er section, so
thefollowing arevalid t r y expressions:

try Exprs of
Pattern when GuardSeq ->
Body

146 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

after
Af t er Body
end

try Exprs
catch
Expr essi onPattern ->
Expr essi onBody
after
Af t er Body
end

try Exprs after AfterBody end

Example of using af t er, this code will close the file even in the event of exceptionsin fil e:read/ 2 or in
bi nary_to_terni 1, and exceptionswill be the same aswithout thet ry...af t er ...end expression:

term ze_file(Nanme) ->

{ok, F} = file:open(Nane, [read, binary]),

try
{ok,Bin} = file:read(F, 1024*1024),
bi nary_to_termn(Bin)

after
file:close(F)

end.

Example: Usingt ry toemulatecat ch Expr.

try Expr
catch

throw. Term -> Term

exit: Reason -> {'EXIT', Reason}

error: Reason -> {' EXIT', { Reason, erl ang: get _stacktrace()}}
end

5.7.20 Parenthesized Expressions

(Expr)

Parenthesized expressions are useful to override operator precedences, for example in arithmetic expressions:

1> 1+ 2 * 3.
7
2> (1 +2) * 3.
9

5.7.21 Block Expressions

begi n
Expr 1,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 147

5.7 Expressions

Expr N
end

Block expressions provide away to group a sequence of expressions, similar to aclause body. The return valueis the
value of the last expression Expr N.

5.7.22 List Comprehensions

List comprehensions are a feature of many modern functional programming languages. Subject to certain rules, they
provide a succinct notation for generating elementsin alist.

List comprehensions are anal ogous to set comprehensionsin Zermelo-Frankel set theory and are called ZF expressions
in Miranda. They are analogousto theset of andfi ndal | predicatesin Prolog.

List comprehensions are written with the following syntax:

[Expr || Qalifierl,..., QualifierN

Expr isan arbitrary expression, and each Qual i f i er iseither agenerator or afilter.

e A generator iswritten as:
Pattern <- ListExpr.
Li st Expr must be an expression which evaluates to alist of terms.

* A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression which evaluates to a bitstring.

e Afilter isan expression which evaluatestot r ue or f al se.
The variablesin the generator patterns shadow variables in the function clause surrounding the list comprehensions.

A list comprehension returns a list, where the elements are the result of evaluating Expr for each combination of
generator list elements and bit string generator elements for which all filters are true.

Example:

1> [X*2 || X< [1,23]].
[2, 4, 6]

More examples can be found in Programming Examples.

5.7.23 Bit String Comprehensions

Bit string comprehensions are analogous to List Comprehensions. They are used to generate bit strings efficiently and
succinctly.

Bit string comprehensions are written with the following syntax:

<< BitString || Qalifierd,..., QualifierN >>
Bi t St ri ng isabit string expression, and each Qual i f i er iseither agenerator, abit string generator or afilter.

e A generator iswritten as:
Pattern <- ListExpr.

148 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

Li st Expr must be an expression which evaluates to alist of terms.

e A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression which evaluates to a bitstring.

« Afilter isan expression which evaluatestot r ue or f al se.

The variables in the generator patterns shadow variables in the function clause surrounding the bit string
comprehensions.

A bit string comprehension returnsabit string, which iscreated by concatenating theresultsof evaluatingBi t St ri ng
for each combination of bit string generator elements for which all filters are true.

Example:

1> << << (X*2) >> ||
<<X>> <= << 1,2,3 >> >>,
<<2, 4, 6>>

More examples can be found in Programming Examples.

5.7.24 Guard Sequences

A guard sequenceis a sequence of guards, separated by semicolon (;). The guard sequenceistrueif at least one of the
guardsistrue. (The remaining guards, if any, will not be evaluated.)
Quardil;...; GuardK

A guard isasequence of guard expressions, separated by comma(,). Theguard istrueif al guard expressions evaluate
totrue.
QuardeExprl, ..., GuardExprN

The set of valid guard expressions (sometimes called guard tests) is a subset of the set of valid Erlang expressions.
The reason for restricting the set of valid expressions is that evaluation of a guard expression must be guaranteed to
be free of side effects. Valid guard expressions are:

o theatomtrue,

e other constants (terms and bound variables), all regarded as false,

« calstothe BIFs specified below,

e term comparisons,

e arithmetic expressions,

» boolean expressions, and

e short-circuit expressions (andal so/or el se).

is_aton 1

is_binary/1

is_bitstring/1

i s_bool ean/ 1

is float/1

is_function/1l

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 149

5.7 Expressions

is function/2

is_integer/1

is list/1

is _nunber/1

is_pid/1l

is port/1l

is record/2

is record/3

is referencel/l

is tuple/l

Table 7.4: Type Test BIFs.

Notethat most typetest BIFshaveolder equivalents, without thei s__ prefix. These old BlIFsareretained for backwards
compatibility only and should not be used in new code. They are also only allowed at top level. For example, they
are not allowed in boolean expressions in guards.

abs(Nunber)

bit_size(Bitstring)

byte_size(Bitstring)

el ement (N, Tupl e)

float(Term

hd(Li st)

| engt h(Li st)

node()

node(Pi d| Ref | Port)

round(Nurber)

sel f ()

size(Tupl e| Bitstring)

t1(List)

150 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Expressions

t runc(Nunber)

tupl e_size(Tupl e)

Table 7.5: Other BIFs Allowed in Guard Expressions.

If an arithmetic expression, a boolean expression, a short-circuit expression, or acal to aguard BIF fails (because of
invalid arguments), the entire guard fails. If the guard was part of a guard sequence, the next guard in the sequence
(that is, the guard following the next semicolon) will be evaluated.

5.7.25 Operator Precedence

Operator precedence in falling priority:

#

Unary + - bnot not

/ * div rem band and L eft associative
+ - bor bxor bsl bsr or xor L eft associative
++ -- Right associative

== /==<<>=>===[=

andalso

orelse

=1 Right associative

catch

Table 7.6: Operator Precedence.

When eval uating an expression, the operator with the highest priority isevaluated first. Operatorswith the same priority
are evaluated according to their associativity. Example: The left associative arithmetic operators are evaluated left
toright:

6 +5* 4 - 3/ 2 evaluates to
6 + 20 - 1.5 evaluates to

26 - 1.5 evaluates to

24.5

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 151

5.8 The Preprocessor

5.8 The Preprocessor

5.8.1 File Inclusion

A file can beincluded in the following way:

-include(File).
-include_lib(File).
Fi | e, astring, should point out afile. The contents of thisfile areincluded as-is, at the position of the directive.

Include filesare typically used for record and macro definitionsthat are shared by several modules. It isrecommended
that the file name extension . hr | be used for include files.

Fi | e may start with a path component $VAR, for some string VAR. If that is the case, the value of the environment
variable VAR as returned by os: get env(VAR) is substituted for $VAR. If os: get env(VAR) returnsf al se,
$VARIsleft asis.

If the filename Fi | e is absolute (possibly after variable substitution), the include file with that name is included.
Otherwise, the specified fileis searched for in the current working directory, in the same directory asthe module being
compiled, and in the directories given by thei ncl ude option, in that order. Seeer | c(1) and conpi | e(3) for
details.

Examples:

-include("ny_records. hrl").
-include("incdir/nmy_records. hrl").
-include("/home/ user/proj/my_records. hrl").
-incl ude("$PRQJ_ROOT/ ny_records. hrl").

i ncl ude_Ilibissimilartoi ncl ude, but should not point out an absolute file. Instead, the first path component
(possibly after variable substitution) is assumed to be the name of an application. Example:

-include_li b("kernel/include/file.hrl").

The code server usescode: | i b_di r (ker nel) tofind the directory of the current (latest) version of Kernel, and
then the subdirectory i ncl ude issearched for thefilefil e. hrl .

5.8.2 Defining and Using Macros

A macro is defined the following way:

-define(Const, Replacenent).
-define(Func(Varl,..., VarN), Repl acenent).

A macro definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the macro.

If amacro isused in several modules, it is recommended that the macro definition is placed in an include file.

A macro is used the following way:

152 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 The Preprocessor

?Const
?Func(Argl, ..., Ar gN)

Macros are expanded during compilation. A simple macro ?Const will be replaced with Repl acenent . Example:

-def i ne(TI MEQUT, 200).

cal |l (Request) ->
server:call (refserver, Request, ?TIMEQUT).

Thiswill be expanded to:

cal | (Request) ->
server:call (refserver, Request, 200).

A macro ?Func(Argl, ..., ArgN) will be replaced with Repl acenent , where al occurrences of a variable
Var from the macro definition are replaced with the corresponding argument Ar g. Example:

-define(MACROL(X, Y), {a, X b, V}).
bar (X) ->

?2MACROL(a, b),

2MACROL(X, 123)

Thiswill be expanded to:

bar (X) ->
{a, a, b, b},
{a, X b, 123} .

Itisgood programming practice, but not mandatory, to ensure that amacro definitionisavalid Erlang syntactic form.

To view the result of macro expansion, a module can be compiled with the' P' option. conpil e: fil e(Fil e,
['P"]).Thisproducesalisting of the parsed code after preprocessing and parse transforms, in thefileFi | e. P.

5.8.3 Predefined Macros
The following macros are predefined:

?MODULE

The name of the current module.
?MODULE_STRI NG

The name of the current module, as a string.
?FI LE.

The file name of the current module.
?LI NE.

The current line number.
?MACHI NE.

The machine name, ' BEAM .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 153

5.8 The Preprocessor

5.8.4 Macros Overloading

It is possible to overload macros, except for predefined macros. An overloaded macro has more than one definition,
each with a different number of arguments.

The feature was added in Erlang 5.7.5/0TP R13B04.

A macro ?Func(Argl, ..., ArgN) witha(possibly empty) list of arguments results in an error message if there
isat least one definition of Func with arguments, but none with N arguments.

Assuming these definitions:

-define(FO(), c).
-define(F1(A), A.
-define(C, mf).

the following will not work:

fo() ->
?F0. % No, an enpty list of arguments expected.

f1(A) ->
?F1(A, A). % No, exactly one argunment expected.

On the other hand,

tQ ->
2Q() .

will expand to

fQ) ->
mf().

5.8.5 Flow Control in Macros
The following macro directives are supplied:

- undef (Macr o) .
Causes the macro to behave as if it had never been defined.
-i fdef (Macro).
Evaluate the following lines only if Macr o is defined.
-i f ndef (Macr o).
Evaluate the following lines only if Macr o is not defined.
- el se.
Only allowed after ani f def ori f ndef directive. If that condition was false, the linesfollowing el se are
evaluated instead.
-endif.
Specifiestheend of ani f def ori f ndef directive.

154 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 The Preprocessor

Note:

The macro directives cannot be used inside functions.

Example:

- modul e(m) .

-i f def (debug) .
-define(LOX X), io:format("{~p, ~p}: ~p~n", [?MODULE, ?LINE, X])).
-el se.

-define(LOE X), true).

-endif.

When trace output is desired, debug should be defined when the module mis compiled:

% erlc -Ddebug m erl
or

1> c(m {d, debug}).
{ok, n}

?LOG Ar g) will then expandto acall toi o: f or mat / 2 and provide the user with some simple trace output.

5.8.6 Stringifying Macro Arguments

The construction ??Ar g, where Ar g is amacro argument, will be expanded to a string containing the tokens of the
argument. Thisissimilar to the #ar g stringifying constructionin C.

The feature was added in Erlang 5.0/0TP R7.
Example:

-define(TESTCALL(Call), io:format("Call ~s: ~w-n", [??Call, Call])).
?TESTCALL(myfunction(1,2)),
?TESTCALL(you: function(2,1)).

resultsin
io:format("Call ~s: ~w-n",["myfunction (1, 2)", mnyfunction(l,2)]),

io:format("Call ~s: ~w-n",["you : function (2, 1)",you:function(2,1)]).

That is, atrace output with both the function called and the resulting value.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 155

5.9 Records

5.9 Records

A record is a data structure for storing a fixed humber of elements. It has hamed fields and is similar to a struct in
C. Record expressions are translated to tuple expressions during compilation. Therefore, record expressions are not
understood by the shell unless specia actions are taken. Seeshel | (3) for details.

More record examples can be found in Programming Examples.

5.9.1 Defining Records

A record definition consists of the name of the record, followed by the field names of the record. Record and field
names must be atoms. Each field can be given an optional default value. If no default value is supplied, undef i ned
will be used.

-record(Nanme, {Fieldl [= Val uel],

F| éIdN [= ValueN }).

A record definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the record.

If arecord is used in several modules, it is recommended that the record definition is placed in an include file.

5.9.2 Creating Records

Thefollowing expression creates anew Nane record wherethe value of each field Fi el dI isthevalue of evaluating
the corresponding expression Expr | :

#Nanme{ Fi el d1=Expr1, ..., Fi el dK=Expr K}

The fields may be in any order, not necessarily the same order as in the record definition, and fields can be omitted.
Omitted fields will get their respective default value instead.

If several fields should be assigned the same value, the following construction can be used:

#Name{ Fi el d1=Expr1, ..., Fi el dk=Expr K, _=ExprL}

Omitted fields will then get the value of evaluating Expr L instead of their default values. This feature was added
in Erlang 5.1/OTP R8 and is primarily intended to be used to create patterns for ETS and Mnesia match functions.
Example:

-record(person, {name, phone, address}).

| ookup(Narme, Tab) ->
ets: mat ch_obj ect (Tab, #person{name=Name, _='"_'}).

156 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.9 Records

5.9.3 Accessing Record Fields

Expr #Nane. Fi el d

Returns the value of the specified field. Expr should evaluate to a Narnre record.
The following expression returns the position of the specified field in the tuple representation of the record:

#Nane. Fi el d

Example:

-record(person, {nane, phone, address}).

| ookup(Narme, List) ->
l'i sts: keysearch(Nane, #person.nanme, List).

5.9.4 Updating Records

Expr #Nane{ Fi el d1=Expr1, ..., Fi el dK=Expr K}

Expr should evaluate to a Nane record. Returns a copy of thisrecord, with the value of each specified field Fi el dlI
changed to the value of evaluating the corresponding expression Expr | . All other fields retain their old values.

5.9.5 Records in Guards

Since record expressions are expanded to tuple expressions, creating records and accessing record fields are allowed
in guards. However all subexpressions, for example for field initiations, must of course be valid guard expressions
aswell. Examples:

handl e(Msg, State) when Msg==#nsg{to=void, no=3} ->

handl e(Msg, State) when State#state.runni ng==true ->
Thereisasoatypetest BIFi s_record(Term RecordTag).Example

is_person(P) when is_record(P, person) ->
true;

is_person(_P) ->
fal se.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 157

5.9 Records

5.9.6 Records in Patterns
A pattern that will match a certain record is created the same way as arecord is created:
#Name{ Fi el d1=Expr1, ..., Fi el dK=Expr K}

In this case, one or more of Expr 1...Expr K may be unbound variables.

5.9.7 Nested records

Beginning with R14 parentheses when accessing or updating nested records can be omitted. Assuming we have the
following record definitions:

-record(nrecO, {name = "nested0"}).
-record(nrecl, {name = "nestedl", nrecO=#nrec0{}}).
-record(nrec2, {name = "nested2", nrecl=#nrecl{}}).

N2 = #nrec2{},
Before R14 you would have needed to use parentheses as following:

"nest ed0" = ((N2#nrec2.nrecl)#nrecl. nrecO)#nrecO. nane,
NOn = ((N2#nrec2. nrecl)#nrecl. nrecO)#nrecO{nane = "nestedOa"},

Since R14 you can also write:

"nest ed0" = N2#nrec2. nrecl#nrecl. nrecO#nrecO. nane,
NOn = N2#nr ec2. nrecl#nrecl. nrecO#nrecO{nane = "nestedOla"},

5.9.8 Internal Representation of Records

Record expressions are transated to tuple expressions during compilation. A record defined as

-record(Name, {Field1l,..., Fi el dN}) .

isinternally represented by the tuple

{Nane, Val uel, ..., Val ueN}

where each Val uel isthedefault value for Fi el dI .
To each module using records, a pseudo function is added during compilation to obtain information about records:

record_info(fields, Record) -> [Field]

158 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.10 Errors and Error Handling

record_i nfo(size, Record) -> Size

Si ze isthe size of the tuple representation, that is one more than the number of fields.

In addition, #Recor d. Nane returns the index in the tuple representation of Nane of the record Recor d. Nane
must be an atom.

5.10 Errors and Error Handling
5.10.1 Terminology

Errors can roughly be divided into four different types:

e Compile-time errors

e Logical errors

* Run-timeerrors

* Generated errors

A compile-time error, for example a syntax error, should not cause much trouble as it is caught by the compiler.

A logical error iswhen a program does not behave as intended, but does not crash. An example could be that nothing
happens when a button in agraphical user interface is clicked.

A run-time error iswhen a crash occurs. An example could be when an operator is applied to arguments of the wrong
type. The Erlang programming language has built-in features for handling of run-time errors.

A run-time error can also be emulated by calling er | ang: error (Reason) or erl ang: error (Reason,
Ar gs) (those appeared in Erlang 5.4/0TP-R10).

A run-time error is another name for an exception of classer r or .

A generated error is when the code itself callsexi t/ 1 or t hr ow/ 1. Note that emulated run-time errors are not
denoted as generated errors here.

Generated errors are exceptions of classesexi t andt hr ow.

When arun-time error or generated error occurs in Erlang, execution for the process which evaluated the erroneous
expression is stopped. This is referred to as a failure, that execution or evaluation fails, or that the process fails,
terminates or exits. Note that a process may terminate/exit for other reasons than a failure.

A process that terminates will emit an exit signal with an exit reason that says something about which error has
occurred. Normally, some information about the error will be printed to the terminal.

5.10.2 Exceptions

Exceptions are run-time errors or generated errors and are of three different classes, with different origins. The try
expression (appeared in Erlang 5.4/0TP-R10B) can distinguish between the different classes, whereas the catch
expression can not. They are described in the Expressions chapter.

Class Origin
Run-time error for example 1+a, or the process called
error erlang: error/ 1, 2 (appeared in Erlang 5.4/0TP-
R10B)
exit Theprocesscaledexit/ 1

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 159

5.10 Errors and Error Handling

t hr ow Theprocesscaledt hr ow 1

Table 10.1: Exception Classes.

An exception consists of its class, an exit reason (the Exit Reason), and a stack trace (that aids in finding the code
location of the exception).

The stack trace can beretrieved using er | ang: get _st ackt race/ 0 (new in Erlang 5.4/OTP-R10B) from within
atry expression, and isreturned for exceptions of classer r or fromacat ch expression.

An exception of classer r or isaso known asarun-time error.

5.10.3 Handling of Run-Time Errors in Erlang

Error Handling Within Processes

It is possible to prevent run-time errors and other exceptions from causing the process to terminate by using cat ch
or t ry, seethe Expressions chapter about Catch and Try.

Error Handling Between Processes

Processes can monitor other processes and detect process terminations, see the Processes chapter.

5.10.4 Exit Reasons

When a run-time error occurs, that is an exception of class er r or, the exit reason is atuple { Reason, St ack}.
Reason isaterm indicating the type of error:

Reason Type of error

badar g Bad argument. The argument is of wrong data type, or is

otherwise badly formed.
badarith Bad argument in an arithmetic expression.
{badmat ch, \} Evaluation of a match expression failed. The value V

did not match.

No matching function clause is found when evaluating a

function_cl ause X
- function call.

No matching branch is found when evaluating acase

{case_clause, V} expression. The value V did not match.

No true branch is found when evaluating an i f

if clause :
_ expression.

No matching branch is found when evaluating the of-

{try_clause, V} section of at ry expression. The value V did not match.

The function cannot be found when evaluating a

undef function call.

{badf un, F} There is something wrong with afun F.

160 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.11 Processes

A funis applied to the wrong number of arguments. F

{badarity, F} describes the fun and the arguments.

Thetimeout valueinar ecei ve. . af t er expression

ti meout _val ue is evaluated to something else than an integer or
infinity.
nopr oc Trying to link to a non-existing process.

Trying to evaluate at hr ow outsideacat ch. Visthe

{nocat ch, V} thrown term.

A system limit has been reached. See Efficiency Guide

system|imt for information about system limits.

Table 10.2: Exit Reasons.

St ack is the stack of function calls being evauated when the error occurred, given as a list of tuples
{Modul e, Nane, Arity} withthe most recent function call first. The most recent function call tuple may in some
casesbe{ Mbdul e, Nare, [Arg] }.

5.11 Processes

5.11.1 Processes

Erlang is designed for massive concurrency. Erlang processes are light-weight (grow and shrink dynamically) with
small memory footprint, fast to create and terminate and the scheduling overhead is low.

5.11.2 Process Creation
A processis created by calling spawn:

spawn(Modul e, Nane, Args) -> pid()
Modul e = Nane = atom()
Args = [Argl, ..., Ar gN|
Argl = term)

Spawn creates anew process and returns the pid.

The new process will start executing in Modul e: Name(Argl, ..., ArgN) where the argumentsis the elements
of the (possible empty) Ar gs argument list.

There exist anumber of other spawn BIFs, for example spawn/ 4 for spawning a process at another node.

5.11.3 Registered Processes

Besides addressing a process by using its pid, there are also BIFs for registering a process under a name. The name
must be an atom and is automatically unregistered if the process terminates:

Associates the name Nane, an atom, with the process

regi ster(Name, Pid) Pi d

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 161

5.11 Processes

Returns alist of names which have been registered

registered() usingr egi st er/ 2.

Returns the pid registered under Nane,

wher ei s(Narre) orundef i nedif the nameis not registered.

Table 11.1: Name Registration BIFs.

5.11.4 Process Termination
When a process terminates, it always terminates with an exit reason. The reason may be any term.

A processissaid to terminate normally, if the exit reasonistheatomnor mal . A processwith no more code to execute
terminates normally.

A process terminates with exit reason { Reason, St ack} when a run-time error occurs. See Error and Error
Handling.

A process can terminate itself by calling one of the BIFs exit (Reason), erl ang: error (Reason),
erl ang: error (Reason, Args),erlang:fault(Reason) orerlang: faul t (Reason, Args).The
process then terminates with reason Reason for exi t / 1 or { Reason, St ack} for the others.

A processmay also beterminated if it receivesan exit signal with another exit reasonthannor mal , seeError Handling
below.

5.11.5 Message Sending

Processes communicate by sending and receiving messages. Messages are sent by using the send operator ! and
received by calling receive.

Message sending is asynchronous and safe, the message is guaranteed to eventually reach the recipient, provided that
the recipient exists.

5.11.6 Links

Two processes can be linked to each other. A link between two processes Pi d1 and Pi d2 iscreated by Pi d1 caling
the BIF I i nk(Pi d2) (or vice versa). There also exists a number a spawn_I i nk BIFs, which spawns and links
to aprocess in one operation.

Links are bidirectional and there can only be one link between two processes. Repeated callsto | i nk(Pi d) have
no effect.

A link can be removed by calling the BIF unl i nk(Pi d) .
Links are used to monitor the behaviour of other processes, see Error Handling below.

5.11.7 Error Handling

Erlang has a built-in feature for error handling between processes. Terminating processes will emit exit signals to
all linked processes, which may terminate as well or handle the exit in some way. This feature can be used to build
hierarchical program structures where some processes are supervising other processes, for example restarting them
if they terminate abnormally.

Refer to OTP Design Principles for more information about OTP supervision trees, which uses this feature.

162 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.11 Processes

Emitting Exit Signals

When a process terminates, it will terminate with an exit reason as explained in Process Termination above. This exit
reason is emitted in an exit signal to all linked processes.

A processcan also call thefunctionexi t (Pi d, Reason) . Thiswill result in an exit signal with exit reason Reason
being emitted to Pi d, but does not affect the calling process.

Receiving Exit Signals

The default behaviour when a process receives an exit signal with an exit reason other than nor mal , isto terminate
and in turn emit exit signals with the same exit reason to its linked processes. An exit signa with reason nor nal
isignored.

A process can be set to trap exit signals by calling:

process_flag(trap_exit, true)

When aprocessistrapping exits, it will not terminate when an exit signal isreceived. Instead, the signal istransformed
into amessage {' EXI T' , FronPi d, Reason} which is put into the mailbox of the process just like a regular

message.

An exception to the above is if the exit reasonis ki | | , that isif exit (Pi d, kil 1) has been caled. This will
unconditionally terminate the process, regardless of if it is trapping exit signals or not.

5.11.8 Monitors

An dternative to links are monitors. A process Pi d1 can create a monitor for Pi d2 by calling the BIF
erl ang: noni t or (process, Pi d2). Thefunction returns areference Ref .

If Pi d2 terminates with exit reason Reason, a'DOWN' messageis sent to Pi d1:

{' DOMW , Ref, process, Pid2, Reason}

If Pi d2 does not exist, the ' DOWN' message is sent immediately with Reason set to nopr oc.

Monitors are unidirectional. Repeated calls to er| ang: noni t or (process, Pid) will create severa,
independent monitors and each one will send a'DOWN' message when Pi d terminates.

A monitor can be removed by calling er | ang: denoni t or (Ref) .
It is possible to create monitors for processes with registered names, also at other nodes.

5.11.9 Process Dictionary

Each process has its own process dictionary, accessed by calling the following BIFs:

put (Key, Val ue)
get (Key)

get ()

get _keys(Val ue)
er ase(Key)
erase()

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 163

5.12 Distributed Erlang

5.12 Distributed Erlang
5.12.1 Distributed Erlang System

A distributed Erlang system consists of a number of Erlang runtime systems communicating with each other. Each
such runtime system is called a node. Message passing between processes at different nodes, as well as links and
monitors, are transparent when pids are used. Registered names, however, are local to each node. This meansthe node
must be specified as well when sending messages etc. using registered names.

Thedistribution mechanismisimplemented using TCP/I P sockets. How toimplement an alternative carrier isdescribed
in ERTSUser's Guide.

5.12.2 Nodes

A node is an executing Erlang runtime system which has been given a name, using the command line flag - nane
(long names) or - snane (short names).

The format of the node name is an atom name@ost where nane is the name given by the user and host isthe
full host name if long names are used, or the first part of the host name if short names are used. node() returnsthe
name of the node. Example:

% erl -nane dil bert
(di |l bert @ab. eri csson. se) 1> node() .
"di | bert @ab. eri csson. se'

% erl -sname dil bert
(di | bert @ab) 1> node() .
di | bert @ab

Note:

A node with along node name cannot communicate with a node with a short node name.

5.12.3 Node Connections

The nodes in a distributed Erlang system are loosely connected. The first time the name of another node is used, for
example if spawn(Node, M F, A) or net _adm pi ng(Node) is called, a connection attempt to that node will
be made.

Connectionsare by default transitive. If anode A connectsto node B, and node B has a connection to node C, then node
A will also try to connect to node C. Thisfeature can be turned off by using the command lineflag - connect _al |
fal se,seeerl (1).

If a node goes down, all connections to that node are removed. Calling er | ang: di sconnect (Node) will force
disconnection of anode.

Thelist of (visible) nodes currently connected to isreturned by nodes() .

5.12.4 epmd

The Erlang Port Mapper Daemon epmd is automatically started at every host where an Erlang node is started. It is
responsible for mapping the symbolic node names to machine addresses. See epnd(1) .

164 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.12 Distributed Erlang

5.12.5 Hidden Nodes

In adistributed Erlang system, it is sometimes useful to connect to a node without also connecting to all other nodes.
An example could be some kind of O&M functionality used to inspect the status of a system without disturbing it.
For this purpose, a hidden node may be used.

A hidden node is a node started with the command line flag - hi dden. Connections between hidden nodes and other
nodes are not transitive, they must be set up explicitly. Also, hidden nodes does not show up inthelist of nodesreturned
by nodes() . Instead, nodes(hi dden) or nodes(connect ed) must be used. This means, for example, that
the hidden node will not be added to the set of nodesthat gl obal iskeeping track of.

This feature was added in Erlang 5.0/0TP R7.

5.12.6 C Nodes

A C node is a C program written to act as a hidden node in a distributed Erlang system. The library Erl_Interface
contains functions for this purpose. Refer to the documentation for Erl_Interface and Interoperability Tutorial for
more information about C nodes.

5.12.7 Security

Authentication determines which nodes are allowed to communicate with each other. In a network of different Erlang
nodes, it is built into the system at the lowest possible level. Each node has its own magic cookie, which is an Erlang
atom.

When a nodes tries to connect to another node, the magic cookies are compared. If they do not match, the connected
node rejects the connection.

At start-up, a node has a random atom assigned as its magic cookie and the cookie of other nodes is assumed to
be nocooki e. The first action of the Erlang network authentication server (aut h) is then to read a file named
$HOVE/ . er | ang. cooki e. If the file does not exigt, it is created. The UNIX permissions mode of the fileis set
to octal 400 (read-only by user) and its contents are a random string. An atom Cooki e is created from the contents
of the file and the cookie of the local nodeis setto thisusing er | ang: set _cooki e(node(), Cooki e). This
also makes the local node assume that all other nodes have the same cookie Cooki e.

Thus, groups of users with identical cookie files get Erlang nodes which can communicate freely and without
interference from the magic cookie system. Users who want run nodes on separate file systems must make certain that
their cookie files are identical on the different file systems.

For a node Node 1 with magic cookie Cooki e to be able to connect to, or accept a connection from, another node
Node?2 with a different cookie Di f f Cooki e, the function er | ang: set _cooki e(Node2, D ff Cooki e)
must first be called at Node1. Distributed systems with multiple user I1Ds can be handled in this way.

The default when a connection is established between two nodes, isto immediately connect all other visible nodes as
well. Thisway, thereis always afully connected network. If there are nodes with different cookies, this method might
be inappropriate and the command line flag - connect _al | f al se must be set, see erl ().

The magic cookie of the local node isretrieved by calling er | ang: get _cooki e() .

5.12.8 Distribution BIFs

Some useful BIFsfor distributed programming, seeer | ang(3) for more information:

er| ang: di sconnect _node(Node) Forces the disconnection of anode.

erl ang: get _cooki e() Returns the magic cookie of the current node.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 165

5.12 Distributed Erlang

is_alive()

Returnst r ueif the runtime system is a node and can
connect to other nodes, f al seotherwise.

noni t or _node(Node, true|false)

Monitor the status of Node. A message{ nodedown,
Node} isreceived if the connection to it islost.

Returns the name of the current node. Allowed in

node() guards.

Returns the node where Ar g, apid, reference, or port, is
node(Arg) located. 9P P

Returns alist of al visible nodes this node is connected
nodes() o

Depending on Ar g, this function can return alist
nodes(Arg) not only of visible nodes, but also hidden nodes and

previously known nodes, etc.

set _cooki e(Node, Cookie)

Sets the magic cookie used when connecting to Node.
If Nodeisthe current node, Cooki ewill be used when
connecting to all new nodes.

spawn|[_| i nk| _opt] (Node, Fun)

Creates a process at aremote node.

spawn|[_| i nk| opt] (Node, Mbodul e,
Functi onNane, Args)

Creates a process at a remote node.

Table 12.1: Distribution BIFs.

5.12.9 Distribution Command Line Flags

Examples of command line flags used for distributed programming, seeer | (1) for moreinformation:

-connect _all false

Only explicit connection set-ups will be used.

- hi dden

Makes a node into a hidden node.

-name Name

Makes a runtime system into a node, using long node
names.

-set cooki e Cooki e

Sameascalinger | ang: set _cooki e(node(),
Cooki e) .

-sname Name

Makes a runtime system into a node, using short node
names.

Table 12.2: Distribution Command Line Flags.

166 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.13 Compilation and Code Loading

5.12.10 Distribution Modules

Examples of modules useful for distributed programming:

In Kernel:

gl obal A global name registration facility.

gl obal _group Grouping nhodes to global name registration groups.
net _adm Various Erlang net administration routines.

net _ker nel Erlang networking kernel.

Table 12.3: Kernel Modules Useful For Distribution.

In STDLIB:

sl ave Start and control of slave nodes.

Table 12.4: STDLIB Modules Useful For Distribution.

5.13 Compilation and Code Loading

How codeis compiled and loaded is not alanguage issue, but is system dependent. This chapter describes compilation
and code loading in Erlang/OTP with pointers to relevant parts of the documentation.

5.13.1 Compilation

Erlang programs must be compiled to object code. The compiler can generate a new file which contains the object
code. The current abstract machine which runsthe object codeis called BEAM, therefore the object files get the suffix
. beam The compiler can also generate a binary which can be loaded directly.

The compiler islocated in the Kernel module conpi | e, seeconpi | e(3).

conpi |l e: fil e(Mdul e)
conpi l e:fil e(Mddul e, Options)

The Erlang shell understands the command ¢ (Modul e) which both compiles and loads Mbdul e.
Thereisasoamodulemak e which providesaset of functionssimilar tothe UNIX type Makefunctions, seemake(3) .
The compiler can also be accessed from the OS prompt, seeer | (1) .

% erl -conpile Mdulel...MduleN
% erl -make

Theer | ¢ program provides an even better way to compile modules from the shell, seeer | c¢(1) . It understands a
number of flags that can be used to define macros, add search paths for include files, and more.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 167

5.13 Compilation and Code Loading

%erlc <flags> Filel.erl...FileN erl

5.13.2 Code Loading

The object code must be loaded into the Erlang runtime system. Thisis handled by the code server, seecode(3) .

The code server loads code according to a code loading strategy which is either interactive (default) or embedded. In
interactive mode, code are searched for in a code path and loaded when first referenced. In embedded mode, code is
loaded at start-up according to a boot script. Thisis described in System Principles.

5.13.3 Code Replacement
Erlang supports change of code in arunning system. Code replacement is done on module level.

The code of amodule can exist in two variantsin a system: current and old. When amodule isloaded into the system
for the first time, the code becomes ‘current’. If then a new instance of the module is loaded, the code of the previous
instance becomes ‘old' and the new instance becomes 'current'.

Both old and current code is valid, and may be evaluated concurrently. Fully qualified function calls always refer to
current code. Old code may till be evaluated because of processes lingering in the old code.

If athird instance of the modul e isloaded, the code server will remove (purge) the old code and any processeslingering
init will be terminated. Then the third instance becomes 'current' and the previously current code becomes 'old'.

To change from old code to current code, a process must make a fully qualified function call. Example:

- modul e(m) .
-export([loop/0]).

I oop() ->
receive
code_sw tch ->
m | oop() ;
Msg ->
I oop()
end

To makethe process change code, send the messagecode_swi t ch toit. The processthen will makeafully qualified
cal tom | oop() and changeto current code. Note that m | oop/ O must be exported.

For code replacement of funs to work, the tuple syntax { Modul e, Funct i onNanme} must be used to represent the
fun.

5.13.4 Running a function when a module is loaded

Warning:
This section describes an experimental feature that was introduced in R13B03, and changed in a backwards-
incompatible way in R13B04. There may be more backward-incompatible changesin future releases.

The-on_I oad() directive names afunction that should be run automatically when amodule aloaded. Its syntax is:

168 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.14 Ports and Port Drivers

-on_| oad(Nane/ 0) .

It is not necessary to export the function. It will be called in afreshly spawned process (which will be terminated as
soon asthe function returns). The function must return ok if the moduleisto be remained |oaded and become callable,
or any other valueif the moduleisto be unloaded. Generating an exception will also cause the module to be unloaded.
If the return value is not an atom, awarning error report will be sent to the error logger.

A process that calls any function in amodule whose on_| oad function has not yet returned will be suspended until
theon_| oad function has returned.

In embedded mode, al modules will be loaded first and then will all on_load functions be called. The system will be
terminated unless al of the on_load functions return ok

Example:

-nmodul e(m) .
-on_| oad(l oad_my_ni fs/0).

load_ny_nifs() ->
NifPath = ..., %Set up the path to the NIF library.
Info = ..., %nitialize the Info term
erlang: | oad_nif(N fPath, Info).

If thecall toer | ang: | oad_ni f/ 2 fails, the module will be unloaded and there will be warning report sent to the
error loader.

5.14 Ports and Port Drivers

Examples of how to use ports and port drivers can be found in Interoperability Tutorial. The BIFs mentioned are as
usual documentediner | ang(3) .

5.14.1 Ports

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. They
provide abyte-oriented interface to an external program. When a port has been created, Erlang can communicate with
it by sending and receiving lists of bytes, including binaries.

The Erlang process which creates a port is said to be the port owner, or the connected process of the port. All
communication to and from the port should go via the port owner. If the port owner terminates, so will the port (and
the external program, if it iswritten correctly).

The externa program resides in another OS process. By default, it should read from standard input (file descriptor 0)
and write to standard output (file descriptor 1). The external program should terminate when the port is closed.

5.14.2 Port Drivers

It is also possible to write adriver in C according to certain principles and dynamically link it to the Erlang runtime
system. The linked-in driver looks like a port from the Erlang programmer's point of view and is called a port driver.

Warning:

An erroneous port driver will cause the entire Erlang runtime system to leak memory, hang or crash.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 169

5.14 Ports and Port Drivers

Port driversaredocumentediner | _driver(4),driver_entry(1) anderl _ddl I (3).

5.14.3 Port BIFs
To create a port:

Returns a port identifier Por t as the result of opening a
new Erlang port. Messages can be sent to and received
open_port (Port Nane, PortSettings from a port identifier, just like a pid. Port identifiers
can also be linked to or registered under a name using
i nk/landregister/2.

Table 14.1: Port Creation BIF.

Por t Nane isusualy atuple{ spawn, Command} , where the string Comrand is the name of the external program.
The external program runs outside the Erlang workspace unless a port driver with the name Comrand is found. If
found, that driver is started.

Port Setti ngs isalist of settings (options) for the port. The list typically contains at least atuple { packet , N}
which specifies that data sent between the port and the external program are preceded by an N-byte length indicator.
Validvauesfor N are 1, 2 or 4. If binaries should be used instead of listsof bytes, theoptionbi nar y must beincluded.

The port owner Pi d can communicate with the port Por t by sending and receiving messages. (In fact, any process
can send the messages to the port, but the messages from the port always go to the port owner).

Below, Dat a must be an I/O list. An /O list isabinary or a (possibly deep) list of binaries or integers in the range
0..255.

{Pi d, {command, Dat a}} Sends Dat ato the port.

Closes the port. Unless the port is already closed, the
{Pi d, cl ose} port replieswith { Por t , ¢l osed} when all buffers
have been flushed and the port really closes.

Sets the port owner of Por t to NewPi d. Unless

the port is aready closed, the port replies

{Pi d, {connect, NewPi d} } with{ Port , connect ed} to the old port owner. Note
that the old port owner is still linked to the port, but the
new port owner is not.

Table 14.2: Messages Sent To a Port.

{Port,{data, Data}} Dat aisreceived from the externa program.
{Port, cl osed} ReplytoPort | {Pid, cl ose}.

{Port, connect ed} ReplytoPort ! {Pid, {connect, NewPi d} }
{"EXIT, Port, Reason} If the port has terminated for some reason.

Table 14.3: Messages Received From a Port.

170 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.14 Ports and Port Drivers

Instead of sending and receiving messages, there are also a number of BIFs that can be used. These can be called by
any process, not only the port owner.

port _comrand(Port, Dat a) Sends Dat ato the port.

port_cl ose(Port) Closes the port.

Sets the port owner of Por t to NewPi d. The old port
port_connect (Port, NewPi d) owner Pi dstays linked to the port and have to call
unl i nk(Port) if thisisnot desired.

erlang: port _info(Port,Iten) Returnsinformation as specified by | t em

erl ang: ports() Returnsalist of all ports on the current node.

Table 14.4: Port BIFs.

There are some additional BlIFsthat only apply to port drivers: port _control /3 ander| ang: port _cal | / 3.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 171

6.1 Records

6 User's Guide

This chapter contains examples on using records, funs, list comprehensions and the bit syntax.

6.1 Records
6.1.1 Records vs Tuples

The main advantage of using records instead of tuplesisthat fields in a record are accessed by name, whereas fields
in atuple are accessed by position. To illustrate these differences, suppose that we want to represent a person with
thetuple{ Name, Address, Phone}.

We must remember that the Nane field isthefirst element of the tuple, the Addr ess field isthe second element, and
so on, in order to write functions which manipulate this data. For example, to extract data from a variable P which
contains such atuple we might write the following code and then use pattern matching to extract the relevant fields.

Name = el ement (1, P),
Address = elenent(2, P),

Code like this is difficult to read and understand and errors occur if we get the numbering of the elements in the
tuple wrong. If we change the data representation by re-ordering the fields, or by adding or removing afield, then all
references to the person tuple, wherever they occur, must be checked and possibly modified.

Records allow us to refer to the fields by name and not position. We use arecord instead of atuple to store the data.
If we write arecord definition of the type shown below, we can then refer to the fields of the record by name.

-record(person, {name, phone, address}).

For example, if P is now avariable whose value is a per son record, we can code as follows in order to access the
name and address fields of the records.

Name = P#person. nane,
Addr ess = P#per son. addr ess,

Internally, records are represented using tagged tuples:

{person, Nane, Phone, Address}

172 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.1 Records

6.1.2 Defining a Record

This definition of a person will be used in many of the exampleswhich follow. It containsthree fields, name, phone
and addr ess. The default values for nane and phone is"" and [], respectively. The default value for addr ess is
the atom undef i ned, since no default valueis supplied for thisfield:

-record(person, {name = "", phone = [], address})

We have to define the record in the shell in order to be able use the record syntax in the examples:

> rd(person, {nane = "", phone =[], address}).
person

This is due to the fact that record definitions are available at compile time only, not at runtime. See shel | (3) for
details on records in the shell.
6.1.3 Creating a Record

A new per son record is created as follows:

> #person{phone=[0, 8, 2, 3,4, 3,1, 2], nane="Robert"}.
#person{name = "Robert", phone = [0, 8, 2, 3,4, 3,1, 2], address = undefi ned}
Sincethe addr ess field was omitted, its default value is used.

There is a new feature introduced in Erlang 5.1/OTP R8B, with which you can set a value to al fields in a record,
overriding the defaults in the record specification. The special field _, means"all fields not explicitly specified".

> #person{name = "Jakob", _ ='_'}.
#per son{nane = "Jakob", phone = ' ' K address ="' '}

Itisprimarily intended to be used in et s: mat ch/ 2 and mesi a: mat ch_obj ect / 3, to set record fields to the
aom' ' .(Thisisawildcardinet s: mat ch/ 2.)

6.1.4 Accessing a Record Field

> P = #person{nane = "Joe", phone =[0,8,2,3,4,3,1,2]}.
#person{nane = "Joe", phone = [0,8, 2, 3,4, 3,1, 2], address = undefi ned}
> P#person. nane.

"Joe"

6.1.5 Updating a Record

> P1 = #person{nane="Joe", phone=[1, 2,3], address="A street"}.
#person{name = "Joe", phone = [1,2,3],address = "A street"}
> P2 = Pl#person{nanme="Robert"}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 173

6.1 Records

#person{name = "Robert", phone = [1, 2, 3], address = "A street"}

6.1.6 Type Testing

The following example shows that the guard succeeds if P is record of type per son.

foo(P) when is_record(P, person) -> a person;
foo(_) -> not_a person.

6.1.7 Pattern Matching

Matching can be used in combination with records as shown in the following example:

> P3 = #person{nanme="Joe", phone=[0,0, 7], address="A street"}.

#person{name = "Joe", phone = [0,0, 7], address = "A street"}
> #person{nane = Nane} = P3, Nane.
"Joe"

Thefollowing function takesalist of per son records and searches for the phone number of aperson with a particular
name:

find_phone([#per son{ nane=Nane, phone=Phone} | _], Nanme) ->
{found, Phone};

find_phone([_| T], Nanme) ->
find_phone(T, Nane);

find_phone([], Nane) ->
not _f ound.

Thefields referred to in the pattern can be given in any order.

6.1.8 Nested Records

The value of afield in arecord might be an instance of arecord. Retrieval of nested data can be done stepwise, or in
asingle step, as shown in the following example:

-record(nanme, {first = "Robert", last = "Ericsson"}).
-record(person, {name = #nanme{}, phone}).

deno() ->
P = #person{nane= #name{first="Robert",last="Virding"}, phone=123},
Fi rst = (P#person. nane) #nane. first.

Inthisexample, deno() evaluatesto” Robert".

6.1.9 Example

%b6 File: person.hrl

174 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

%% Dat a Type: person

%% wher e:

%6 name: A string (default is undefined).

%6 age: An integer (default is undefined).

%6 phone: A list of integers (default is []).

%6 dict: A dictionary containing various information

%6 about the person.
%6 A {Key, Value} list (default is the enpty list).
G e e et

-record(person, {name, age, phone =[], dict =[]}).

- modul e(person) .
-include("person. hrl").
-conpil e(export_all). % For test purposes only.

%6 This creates an instance of a person.
%% Note: The phone nunber is not supplied so the
%6 default value [] will be used.

make_hacker _wi t hout _phone(Nanme, Age) ->
#per son{name = Name, age = Age,
di ct [{conput er _know edge, excellent},
{drinks, coke}]}.

%% Thi s denonstrates matching in argunents

print (#person{nane = Nane, age = Age,
phone = Phone, dict = Dict}) ->
io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
"Dictionary: ~w. ~n", [Name, Age, Phone, Dict]).

%% Denonstrates type testing, selector, updating.

bi rt hday(P) when record(P, person) ->
P#per son{ age = P#person. age + 1}.

regi ster_two_hackers() ->

Hacker1l = make_hacker _wi t hout _phone("Joe", 29),
A dHacker = birthday(Hacker1),
% The central _regi ster_server should have
% an interface function for this.
central _regi ster_server ! {register_person, Hacker1},
central _register_server ! {register_person,

A dHacker #per son{ name = "Robert",

phone = [0,8,3,2,4,5,3,1]}}.

6.2 Funs
6.2.1 Example 1 - map

If we want to double every element in alist, we could write a function named doubl e:

doubl e([H T]) -> [2*H| doubl e(T)];
doubl e([]) -> (1.

This function obviously doubles the argument entered as input as follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 175

6.2 Funs

> doubl e([1,2,3,4]).
[2,4,6,8]

We now add the function add_one, which adds one to every element in alist:

add_one([H T]) -> [H+1l]| add_one(T)];
add_one([]) ->[].

These functions, doubl e and add_one, have avery similar structure. We can exploit this fact and write a function
map which expresses this similarity:

mep(F, [HT]) -> [F(H|mp(F, T)];
mep(F, [1) ->[1.

We can now express the functionsdoubl e and add_one in terms of map asfollows:

doubl e(L) -> map(fun(X) -> 2*X end, L).
add_one(L) -> map(fun(X) -> 1 + X end, L).

map(F, List) isafunction which takesafunction F and alist L as arguments and returns the new list which is
obtained by applying F to each of the elementsin L.

The process of abstracting out the common features of anumber of different programsis called procedural abstraction.
Procedural abstraction can be used in order to write several different functions which have a similar structure, but
differ only in some minor detail. Thisis done asfollows:

» write one function which represents the common features of these functions
» parameterize the difference in terms of functions which are passed as arguments to the common function.

6.2.2 Example 2 - foreach

Thisexampleillustrates procedural abstraction. Initially, we show the following two examples written as conventional
functions:

« al elementsof alist are printed onto a stream
* amessageisbroadcast to alist of processes.

print_list(Stream [HT]) ->
io:format(Stream "~p~n", [H]),
print_list(Stream T);
print_list(Stream []) ->
true.

br oadcast (Msg, [Pid|Pids]) ->
Pid ! Mg,
br oadcast (Msg, Pids);
broadcast(_, []) ->

176 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

true.

Both these functions have avery similar structure. They both iterate over alist doing something to each element in the
list. The "something" hasto be carried round as an extra argument to the function which does this.

Thefunction f or each expresses this similarity:

foreach(F, [HT]) ->

F(H),
foreach(F, T);

foreach(F, []) ->
ok.

Using f or each, print _|i st becomes:

foreach(fun(H ->io:format(S, "~p~n",[H) end, L)

br oadcast becomes:

foreach(fun(Pid) -> Pid ! Mend, L)

f or each isevaluated for its side-effect and not its value. f or each(Fun , L) callsFun(X) for each element X
in L and the processing occurs in the order in which the elements were defined in L. map does not define the order
in which its elements are processed.

6.2.3 The Syntax of Funs

Funs are written with the syntax:
F =fun (Argl, Arg2, ... ArgN) ->
end -

This creates an anonymous function of N arguments and binds it to the variable F.

If we have already written a function in the same module and wish to pass this function as an argument, we can use
the following syntax:

F = fun FunctionNane/Arity

With this form of function reference, the function which is referred to does not need to be exported from the module.
We can also refer to afunction defined in a different module with the following syntax:

F = {Modul e, Functi onNane}

In this case, the function must be exported from the module in question.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 177

6.2 Funs

The follow program illustrates the different ways of creating funs:

-modul e(fun_test).

-export([t1/0, t2/0, t3/0, t4/0, double/1]).
-inport(lists, [map/2]).

t1() -> map(fun(X) -> 2 * X end, [1,2, 3, 4,5]).
t2() -> map(fun double/1, [1,2,3,4,5]).

t3() -> map({?MODULE, double}, [1,2,3,4,5]).

doubl e(X) -> X * 2.

We can evauate the fun F with the syntax:

F(Argl, Arg2, ..., Argn)

To check whether atermisafun, usethetesti s_f uncti on/ 1 in aguard. Example:

f(F, Args) when is_function(F) ->

appl y(F, Args);
f(N, _) when is_integer(N) ->
N.

Funs are a distinct type. The BIFs erlang:fun_info/1,2 can be used to retrieve information about a fun, and the BIF
erlang:fun_to_list/1 returnsatextual representation of afun. The check process code/2 BIF returnstrueif the process
contains funs that depend on the old version of amodule.

Note:

In OTP R5 and earlier releases, funs were represented using tuples.

6.2.4 Variable Bindings Within a Fun

The scope rules for variables which occur in funs are as follows:

« All variables which occur in the head of afun are assumed to be "fresh” variables.

* Variableswhich are defined before the fun, and which occur in function calls or guard tests within the fun, have
the values they had outside the fun.

e No variables may be exported from a fun.
The following examplesillustrate these rules:

print_list(File, List) ->
{ok, Streant = file:open(File, wite),
foreach(fun(X) -> io:format(Stream"~p~n",[X]) end, List),
file:close(Strean.

178 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

In the above example, the variable X which is defined in the head of the funisanew variable. Thevalue of thevariable
St r eamwhich is used within within the fun getsitsvalue fromthefi | e: open line.

Since any variable which occursin the head of afunis considered a new variable it would be equally valid to write:

print_list(File, List) ->
{ok, Strean} = file:open(File, wite),
foreach(fun(File) ->
io:format (Stream "~p~n",[File])
end, List),
file:close(Strean.

In this example, Fi | e isused as the new variable instead of X. Thisis rather silly since code in the body of the fun
cannot refer to the variable Fi | e which is defined outside the fun. Compiling this example will yield the diagnostic:

./ FileNane.erl:Line: Warning: variable 'File'
shadowed in 'l anbda head'

This reminds us that the variable Fi | e which is defined inside the fun collides with the variable Fi | e which is
defined outside the fun.

The rules for importing variables into a fun has the conseguence that certain pattern matching operations have to be
moved into guard expressions and cannot be written in the head of the fun. For example, we might write the following
codeif we intend the first clause of F to be evaluated when the value of itsargument is'Y:

f(...) ->
Y= ...
map(fun(X) when X ==Y ->
) ->

end,)
instead of

fF(...) ->

Y = ...
map(fun(y) ->
) ->

end, ...)

6.2.5 Funs and the Module Lists

The following examples show a dialogue with the Erlang shell. All the higher order functions discussed are exported
fromthemodulel i st s.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 179

6.2 Funs

map

mep(F, [HT]) -> [F(H|mp(F, T)];
mep(F, []) ->[].

map takes afunction of one argument and alist of terms. It returns the list obtained by applying the function to every
argument in thelist.

> Double = fun(X) -> 2 * X end.
#Fun<er| _eval . 6. 72228031>

> |ists:map(Double, [1,2,3,4,5]).
[2,4,6,8,10]

When a new fun is defined in the shell, the value of the Fun is printed as Fun#<er | _eval >.

any

any(Pred, [HT]) ->
case Pred(H) of
true -> true;
false -> any(Pred, T)
end;
any(Pred, []) ->
fal se.

any takes apredicate P of one argument and alist of terms. A predicate isafunction which returnst r ue or f al se.
any istrueif thereisaterm Xin thelist such that P(X) ist r ue.

Wedefineapredicate Bi g(X) whichist r ue if itsargument is greater that 10.

>Big = fun(X) ->if X > 10 -> true; true -> false end end.
#Fun<er| _eval . 6. 72228031>

> |lists:any(Big, [1,2,3,4]).

fal se

> |ists:any(Big, [1,2,3,12,5]).

true

all

all (Pred, [HT]) ->
case Pred(H) of
true -> all(Pred, T);
false -> false
end;
all(Pred, []) ->
true.

al I hasthe same argumentsasany. It istrueif the predicate applied to all elementsin thelist istrue.

180 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

> |lists:all(Big, [1,2,3,4,12,6]).
fal se
> |ists:all(Big, [12,13,14,15]).
true

foreach

foreach(F, [HT]) ->
F(H),
foreach(F, T);
foreach(F, []) ->
ok.

f or each takes afunction of one argument and alist of terms. The function is applied to each argument in the list.
f or each returns ok. It is used for its side-effect only.

> |ists:foreach(fun(X) -> io:format("~wn",[X]) end, [1,2,3,4]).
1
2
3
4
ok

foldl

foldl (F, Accu, [Hd|Tail]) ->
foldl (F, F(Hd, Accu), Tail);
foldl (F, Accu, []) -> Accu.

f ol dl takesafunction of two arguments, an accumulator and a list. The function is called with two arguments. The
first argument is the successive elementsin the list, the second argument is the accumulator. The function must return
anew accumulator which is used the next time the function is called.

If we havealist of listsL = ["I","like","Erlang"], then we can sum the lengths of al the stringsin L
asfollows:

>L =["I","like","Erlang"].

["1","like","Erlang"]

10> lists:foldl (fun(X, Sunm) -> length(X) + Sumend, 0, L).

11

f ol dI workslike awhi | e loop in an imperative language:

L= ["I","like","Erlang"],
Sum = 0,
while(L !=1[]){
Sum += | engt h(head(L)),
L =tail(L)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 181

6.2 Funs

end

mapfold|

mapfol dl (F, AccuO, [Hd|Tail]) ->
{R Accul} = F(Hd, Accu0),
{Rs, Accu2} = nmapfoldl (F, Accul, Tail),
{[R Rs], Accu2};

mapfol dl (F, Accu, []) -> {[], Accu}.

mapf ol dl simultaneously maps and folds over alist. The following example shows how to change al lettersin L
to upper case and count them.

First upcase:

> Upcase = fun(X) when $a =< X, X =< $z -> X + $A - $a;
(X) -> X

end.

#Fun<er| _eval . 6. 72228031>

> Upcase_word =

fun(X) ->
i sts: map(Upcase, X)
end.

#Fun<er| _eval . 6. 72228031>
> Upcase_word("Erl ang").

" ERLANG'
> |ists: map(Upcase_word, L).
["1","LIKE", "ERLANG']

Now we can do the fold and the map at the same time:

> |ists:mapfoldl (fun(Word, Sum) ->
{Upcase_word(Word), Sum + | ength(Wrd)}

end, 0, L).
{["I","LIKE", "ERLANG'] , 11}
filter

filter(F, [HT]) ->
case F(H of
true -> [Hfilter(F, T)];
false -> filter(F, T)
end;
filter(F, []) ->1[].

filter takesapredicate of one argument and alist and returns all element in the list which satisfy the predicate.

> |lists:filter(Big, [500,12,2,45,6,7]).
[500, 12, 45]

182 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

When we combine maps and filters we can write very succinct code. For example, suppose we want to define a set
difference function. Wewant to definedi f f (L1, L2) tobethedifference betweenthelistsL1 and L2. Thisisthe
list of al elementsin L1 which are not contained in L2. This code can be written as follows:

di ff(L1, L2) ->
filter(fun(X) -> not nenber(X, L2) end, L1).

The AND intersection of thelist L1 and L2 is also easily defined:

intersection(L1,L2) -> filter(fun(X) -> menber (X, L1) end, L2).

takewhile

takewhil e(Pred, [HT]) ->
case Pred(H) of
true -> [Htakewhile(Pred, T)];
false -> []
end,
takewhil e(Pred, []) ->
[1.

t akewhi | e(P, L) takeselements X from alist L aslong asthe predicate P(X) istrue.

> |ists:takewhil e(Big, [200,500,45,5,3,45,6]).
[200, 500, 45]

dropwhile

dropwhi l e(Pred, [HT]) ->
case Pred(H) of
true -> dropwhile(Pred, T);
false -> [H T]
end;
dropwhi | e(Pred, []) ->
[1.

dr opwhi | e isthe complement of t akewhi | e.

> |ists:dropwhil e(Big, [200,500,45,5,3,45,6]).
[5, 3, 45, 6]

splitwith

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 183

6.2 Funs

splitwith(Pred, L) ->
splitwith(Pred, L, []).

splitwith(Pred, [HT], L) ->
case Pred(H) of
true -> splitwith(Pred, T, [HL]);
false -> {reverse(L), [HT]}
end;
splitwith(Pred, [], L) ->
{reverse(L), []}.

splitwith(P, L) splitsthelist L into the two sub-lists{ L1,
L2 = dropwhile(P, L).

> |ists:splitwith(Big, [200,500,45,5,3,45,6]).
{[200, 500, 45],[5, 3, 45, 6] }

6.2.6 Funs Which Return Funs

L2}, where L

t akewhi | e(P,

L) and

Sofar, thissection has only described functionswhich take funs as arguments. It isal so possible to write more powerful
functions which themselves return funs. The following examplesillustrate these type of functions.

Simple Higher Order Functions

Adder (X) isafunction which, given X, returns a new function Gsuch that G(K) returnsK + X

> Adder = fun(X) -> fun(Y) -> X + Y end end.
#Fun<er| _eval . 6. 72228031>

> Add6 = Adder(6).

#Fun<er| _eval . 6. 72228031>

> Add6(10) .

16

Infinite Lists

The ideaisto write something like:

- modul e(| azy) .
-export([ints_from 1]).
ints_fromN) ->
fun() ->
[N ints_fronm N+1)]
end.

Then we can proceed as follows:

> XX = lazy:ints_from(1).
#Fun<| azy. 0. 29874839>

> XX().

[1] #Fun<l azy. 0. 29874839>]
> hd(XX()) .

1

>Y =t (XX()).

#Fun<| azy. 0. 29874839>

184 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

> hd(Y()).
2

etc. - thisisan example of "lazy embedding".

Parsing
The following examples show parsers of the following type:
Par ser (Toks) -> {ok, Tree, Toksl} | fail

Toks isthelist of tokens to be parsed. A successful parse returns{ ok, Tree, Toksl1}, whereTr ee isaparse
treeand Toks 1 isatail of Tr ee which contains symbols encountered after the structure which was correctly parsed.
Otherwisef ai | isreturned.

The example which follows illustrates a simple, functional parser which parses the grammar:
(a] b) & (c | d)

The following code defines a function pconst (X) in the module f unpar se, which returns a fun which parses a
list of tokens.

pconst (X) ->

fun (T) ->
case T of
[X T1] -> {ok, {const, X}, Ti};
_ -> fail
end
end.

This function can be used as follows:

> P1 = funparse: pconst(a).
#Fun<f unpar se. 0. 22674075>
> Pl([a, b, c]).

{ok, {const,a},[b,c]}

> P1([x,y,2]).

fail

Next, we define the two higher order functions pand and por which combine primitive parsers to produce more
complex parsers. Firstly pand:

pand(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R1, T1} ->
case P2(T1l) of
{ok, R2, T2} ->
{ok, {*and', Rl, R2}};

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 185

6.2 Funs

fail ->
fail
end;
fail ->
fail
end
end.

Given a parser P1 for grammar Gl, and a parser P2 for grammar G2, pand(P1, P2) returns a parser for the
grammar which consists of sequences of tokens which satisfy G1 followed by sequences of tokens which satisfy G2.

por (P1, P2) returnsa parser for the language described by the grammar Gl or G2.

por (P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R T1} ->
{ok, {‘or',1, R}, T1};
fail ->
case P2(T) of
{ok, R1, T1} ->
{ok, {'or',2 R1}, T1};
fail ->
fail
end
end
end.

The original problem wasto parsethegrammar (a | b) & (c¢ | d). Thefollowing code addressesthis problem:

grammar () ->
pand(
por (pconst (a), pconst (b)),
por (pconst (c), pconst(d))).

The following code adds a parser interface to the grammar:

parse(List) ->
(granmmar ()) (List).

We can test this parser as follows:

> funparse: parse([a,c]).
{ok,{'and" ,{"'or',1,{const,a}},{"'or',1,{const,c}}}}
> funparse: parse([a,d]).
{ok,{'and" ,{"'or',1,{const,a}},{"or', 2, {const,d}}}}
> funparse: parse([b,c]).
{ok,{'and" ,{"'or', 2, {const,b}},{"or',1,{const,c}}}}
> funparse: parse([b,d]).
{ok,{'and" ,{"or', 2, {const,b}},{"or', 2, {const,d}}}}
> funparse: parse([a, b]).

186 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 List Comprehensions

fail

6.3 List Comprehensions

6.3.1 Simple Examples

We start with asimple example:

> [X || X< [1,2,a38,4,b,5,6], X> 3].
[a 4,b,5,6]

This should be read as follows:

Thelist of X such that X istaken fromthelist[1, 2, a, . . .] and X isgreater than 3.
Thenotation X <- [1, 2, a, ...] isagenerator and the expression X > 3 isafilter.
An additional filter can be added in order to restrict the result to integers:

>[X || X<-[1,2,a,3,4,b,5,6], integer(X), X > 3].
[4,5, 6]

Generators can be combined. For example, the Cartesian product of two lists can be written as follows:

>[{X Y || X< [1,23], Y < [ab]].
[{1, a}, {1,b} {2 a}, {2 b}, {3, a},{3, b}]

6.3.2 Quick Sort

The well known quick sort routine can be written as follows:

sort([Pivot|T]) ->
sort([X || X< T, X< Pivot]) ++
[Pivot] ++
sort([X || X<- T, X>= Pivot]);
sort([]) -> [].

Theexpression[X || X <- T, X < Pivot] isthelist of all elementsin T, which arelessthan Pi vot .
[X]| X <- T, X >= Pivot] isthelist of al elementsin T, which are greater or equal to Pi vot .

To sort alist, we isolate the first element in the list and split the list into two sub-lists. The first sub-list contains all
elements which are smaller than the first element in the list, the second contains all elements which are greater than
or equal to the first element in the list. We then sort the sub-lists and combine the results.

6.3.3 Permutations

The following example generates all permutations of the elementsin alist:

perms([]) -> [[1];

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 187

6.3 List Comprehensions

perms(L) -> [[HT] [| H< L, T < perms(L--[H)].

We take take Hfrom L in al possible ways. The result isthe set of all lists[H| T] , where T isthe set of all possible
permutations of L with Hremoved.

> perns([b,u,qg]).
[[b,ug]l,[b,gu],[ubgl,[ugb] [gbu],[g ub]]

6.3.4 Pythagorean Triplets
Pythagorean triplets are sets of integers{ A, B, C} suchthat A**2 + B**2 = C**2.

Thefunction pyt h(N) generatesalist of al integers{ A, B, C} suchthat A**2 + B**2 = C**2 and wherethe
sum of the sidesis equal to or lessthan N.

pyth(N) ->
[{ABCG ||
A <- lists:seq(1, N,
B <- lists:seq(1, N,
C <- lists:seq(1,N),
A+B+C =< N,
A*A+B*B == CC

> pyth(3).
(1.
> pyth(11).
(]

> pyth(12).
[{3,4,5},{4, 3,5}]
> pyt h(50).
[{3,4 5},
{4, 3,5},
{5, 12, 13},
{6, 8, 10},
{8, 6, 10},
{8, 15, 17},
{9, 12, 15},
{12, 5, 13},
{12, 9, 15},
{12, 16, 20},
{15, 8, 17},
{16, 12, 20}]

The following code reduces the search space and is more efficient:

pythi(N) ->
[{ABC ||
A <- lists:seq(1l, N-2),
B <- lists:seq(A+l, N-1),
C <- lists:seq(B+1, N,
A+B+C =< N,
A*A+B*B == C*C].

188 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 List Comprehensions

6.3.5 Simplifications with List Comprehensions

Asan example, list comprehensions can be used to simplify some of the functionsinl i sts. erl :

append(L) -> [X || L1 < L, X <- L1J.
map(Fun, L) -> [Fun(X) || X <- L].
filter(Pred, L) ->[X || X <- L, Pred(X)].

6.3.6 Variable Bindings in List Comprehensions
The scope rules for variables which occur in list comprehensions are as follows:

« dl variableswhich occur in agenerator pattern are assumed to be "fresh" variables

e any variables which are defined before the list comprehension and which are used in filters have the values they
had before the list comprehension

* no variables may be exported from alist comprehension.

As an example of these rules, suppose we want to write the function sel ect , which selects certain elements from a
list of tuples. We might writesel ect (X, L) -> [Y || {X Y} <- L]. withtheintention of extracting
al tuplesfrom L where thefirst itemis X.

Compiling thisyields the following diagnostic:
./ FileNane. erl:Line: Warning: variable 'X shadowed in generate

This diagnostic warns us that the variable X in the pattern is not the same variable as the variable X which occursin
the function head.

Evaluating sel ect yieldsthe following result:

> select(b,[{a, 1},{b, 2},{c,3},{b, 7}]).
[1,2,3,7]

Thisresult is not what we wanted. To achieve the desired effect we must write sel ect asfollows:

select(X, L) -> [Y || {X1, Y} < L, X == X1].

The generator now contains unbound variables and the test has been moved into thefilter. This now works as expected:

> select (b, [{a, 1},{b, 2},{c, 3}, {b, 7}]).
[2,7]

One conseguence of the rules for importing variables into a list comprehensions is that certain pattern matching
operations have to be moved into the filters and cannot be written directly in the generators. To illustrate this, do not
write asfollows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 189

6.4 Bit Syntax

[Expression || Patternlnvolving Y <- Expr, ...]
Instead, write as follows:

fC...) ->
Y=...
[Expression || Patternlnvolving Y1 <- Expr, Y == VY1, ...]

6.4 Bit Syntax

6.4.1 Introduction

In Erlang a Bin is used for constructing binaries and matching binary patterns. A Bin is written with the following
syntax:

<<El, E2, ... En>>

A Binisalow-level sequenceof bitsor bytes. The purpose of aBinistobeableto, from ahighlevel, construct abinary,

Bin = <<E1, E2, ... En>>

in which case all elements must be bound, or to match a binary,

<<El, E2, ... En>> = Bin

where Bi n isbound, and where the elements are bound or unbound, as in any match.
In R12B, a Bin need not consist of awhole number of bytes.

A bitstring is asequence of zero or more bits, where the number of bits doesn't need to be divisible by 8. If the number
of bitsisdivisible by 8, the bitstring isaso a binary.

Each element specifies a certain segment of the bitstring. A segment is a set of contiguous bits of the binary (not
necessarily on a byte boundary). The first element specifies the initial segment, the second element specifies the
following segment etc.

The following examplesillustrate how binaries are constructed or matched, and how elements and tails are specified.

Examples

Example 1: A binary can be constructed from a set of constants or a string literal:

Binl1l = <<1, 17, 42>>
Bi n12 = <<"abc">>
yields binaries of size 3; binary to list(Binll) evauaes to [1, 17, 42], and

binary to |ist(Binl2) evaduatesto[97, 98, 99].

190 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Bit Syntax

Example 2: Similarly, abinary can be constructed from a set of bound variables:

A=1 B =17, C = 42,
Bin2 = <<A, B, C 16>>

yieldsabinary of size4, and bi nary_to_li st (Bi n2) evaluatesto[1, 17, 00, 42] too. Hereweused a
size expression for the variable Cin order to specify a 16-bits segment of Bi n2.

Example 3: A Bin can aso be used for matching: if D, E, and F are unbound variables, and Bi n2 is bound asin the
former example,

<<D: 16, E, F/binary>> = Bin2

yieldsD = 273,E = 00,and Fbindstoabinary of sizel: binary_to_list(F) = [42].

Example 4: The following is a more elaborate example of matching, where Dgr amis bound to the consecutive bytes
of an IP datagram of |P protocol version 4, and where we want to extract the header and the data of the datagram:

-define(l P_VERSI ON, 4).
-define(l P_M N _HDR LEN, 5).

Dgr anti ze = byte_si ze(Dgranj,
case Dgram of
<<?| P_VERSI O\: 4, HLen: 4, SrvcType:8, TotLen: 16,
ID:16, Flgs:3, FragOif: 13,
TTL: 8, Proto:8, HdrChkSum 16,
Srcl P: 32,
Dest | P: 32, Rest Dgr am bi nary>> when HLen>=5, 4*HLen=<Dgr anSi ze ->
OptsLen = 4*(HLen - ?I P_M N_HDR LEN),
<<Opt s: Opt sLen/ bi nary, Dat a/ bi nary>> = Rest Dgr am

end.

Herethe segment corresponding to the Opt s variable hasatype modifier specifying that Opt s should bind to abinary.
All other variables have the default type equal to unsigned integer.

An | P datagram header is of variable length, and its length - measured in the number of 32-bit words - is given in the
segment corresponding to HLen, the minimum value of which is 5. It is the segment corresponding to Opt s that is
variable: if HLen isequal to 5, Opt s will be an empty binary.

Thetail variables Rest Dgr amand Dat a bind to binaries, as al tail variables do. Both may bind to empty binaries.
If the first 4-bits segment of Dgr amis not equal to 4, or if HLen islessthan 5, or if the size of Dgr amis less than
4* HLen, the match of Dgr amfails.

6.4.2 A Lexical Note

Note that "B=<<1>>" will be interpreted as "B =< <1>>", which is a syntax error. The correct way to write the
expressionis"B = <<1>>",

6.4.3 Segments

Each segment has the following general syntax:

Val ue: Si ze/ TypeSpeci fi erLi st

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 191

6.4 Bit Syntax

Both the Si ze and the TypeSpeci fi er or both may be omitted; thus the following variations are allowed:
Val ue

Val ue: Si ze

Val ue/ TypeSpeci fi erLi st

Default values will be used for missing specifications. The default values are described in the section Defaults.

Used in binary construction, the Val ue part is any expression. Used in binary matching, the Val ue part must be a
literal or variable. You can read more about the Val ue part in the section about constructing binaries and matching
binaries.

The Si ze part of the segment multiplied by the unit in the TypeSpeci fi er Li st (described below) gives the
number of bits for the segment. In construction, Si ze is any expression that evaluates to an integer. In matching,
Si ze must be a constant expression or avariable.

The TypeSpeci fi er Li st isalist of type specifiers separated by hyphens.

Type
Thetypecan bei nt eger,fl oat,orbi nary.

Signedness
The signedness specification can be either si gned or unsi gned. Note that signedness only matters for
matching.

Endianness
The endianness specification can be either bi g, i tt| e, or nat i ve. Native-endian means that the endian
will be resolved at |oad time to be either big-endian or little-endian, depending on what is "native" for the CPU
that the Erlang machineisrun on.

Unit
Theunit sizeisgivenasuni t: | nt eger Li t er al . The allowed rangeis 1-256. It will be multiplied by
the Si ze specifier to give the effective size of the segment. In R12B, the unit size specifies the alignment for
binary segments without size (examples will follow).

Example:

X:4/little-signed-integer-unit:8
This element has atotal size of 4*8 = 32 bits, and it contains asigned integer in little-endian order.

6.4.4 Defaults

The default type for a segment is integer. The default type does not depend on the value, even if the value is aliteral.
For instance, the default typein '<<3. 14>>'isinteger, not float.

The default Si ze depends on the type. For integer it is 8. For float it is 64. For binary it is al of the binary. In
matching, this default value is only valid for the very last element. All other binary elements in matching must have
a size specification.

The default unit depends on the the type. For i nt eger ,fl oat ,andbi t stringitisl. Forbinaryitis8.
The default signednessisunsi gned.
The default endiannessisbi g.

6.4.5 Constructing Binaries and Bitstrings

This section describes the rules for constructing binaries using the bit syntax. Unlike when constructing lists or tuples,
the construction of abinary can fail with abadar g exception.

192 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Bit Syntax

There can be zero or more segments in a binary to be constructed. The expression '<<>>' constructs a zero length
binary.

Each segment in a binary can consist of zero or more bits. There are no alignment rules for individual segments of
typei nt eger andf | oat . For binaries and bitstrings without size, the unit specifiesthe alignment. Since the default
alignment for the bi nar y typeis 8, the size of abinary segment must be a multiple of 8 bits (i.e. only whole bytes).
Example:

<<Bi n/ bi nary, Bi tstring/bitstring>>

The variable Bi n must contain awhole number of bytes, because the bi nar y type defaultstouni t : 8. A badar g
exception will be generated if Bi n would consist of (for instance) 17 bits.

On the other hand, the variable Bi t st ri ng may consist of any number of hits, for instance 0, 1, 8, 11, 17, 42, and
so on, because the default uni t for bitstringsis 1.

Warning:

For clarity, it is recommended not to change the unit size for binaries, but to use bi nar y when you need byte
alignment, and bi t st r i ng when you need bit alignment.

The following example

<<X:1,Y:6>>

will successfully construct a bitstring of 7 bits. (Provided that all of X and Y are integers.)
As noted earlier, segments have the following general syntax:
Val ue: Si ze/ TypeSpeci fi erLi st

When constructing binaries, Val ue and Si ze can be any Erlang expression. However, for syntactical reasons, both
Val ue and Si ze must be enclosed in parenthesis if the expression consists of anything more than asingle literal or
variable. The following gives a compiler syntax error:

<<X+1: 8>>

This expression must be rewritten to

<<(X+1) : 8>>

in order to be accepted by the compiler.

Including Literal Strings
As syntactic sugar, an literal string may be written instead of a element.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 193

6.4 Bit Syntax

<<"hel | 0" >>

which is syntactic sugar for

<<$h, $e, $I , $I , $o>>

6.4.6 Matching Binaries
This section describes the rules for matching binaries using the bit syntax.

There can be zero or more segmentsin abinary pattern. A binary pattern can occur in every place patterns are allowed,
aso inside other patterns. Binary patterns cannot be nested.

The pattern '<<>>' matches a zero length binary.
Each segment in abinary can consist of zero or more hits.

A segment of type bi nary must have a size evenly divisible by 8 (or divisible by the unit size, if the unit size has
been changed).

A segment of typebi t st ri ng hasno restrictions on the size.
As noted earlier, segments have the following general syntax:
Val ue: Si ze/ TypeSpeci fi erLi st

When matching Val ue value must be either a variable or an integer or floating point literal. Expressions are not
allowed.

Si ze must be an integer literal, or a previously bound variable. Note that the following is not allowed:

foo(N, <<X: N, T/binary>>) ->
{X, T}.

The two occurrences of N are not related. The compiler will complain that the Nin the size field is unbound.

The correct way to write this exampleislikethis:

foo(N, Bin) ->
<<X: N, T/ bi nary>> = Bin
{X T}.

Getting the Rest of the Binary or Bitstring
To match out the rest of abinary, specify abinary field without size:

f oo(<<A: 8, Rest/bi nary>>) ->

The size of the tail must be evenly divisible by 8.
To match out the rest of a bitstring, specify afield without size:

foo(<<A 8, Rest/bitstring>>) ->

194 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Bit Syntax

There is no restriction on the number of bitsin the tail.

6.4.7 Appending to a Binary

In R12B, the following function for creating a binary out of alist of triples of integersis now efficient:

triples_to_bin(T) ->
triples_to_bin(T, <<>>).

triples_to_bin([{X Y,2} | T], Acc) ->

triples_to_bin(T, <<Acc/binary, X:32,Y:32,Z: 32>>); % i nefficient before RL2B
triples_to_bin([], Acc) ->

Acc.

In previous releases, this function was highly inefficient, because the binary constructed so far (Acc) was copied in
each recursion step. That is no longer the case. See the Efficiency Guide for more information.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 195

7.1 Introduction

7 User's Guide

7.1 Introduction

7.1.1 Purpose
Premature optimization is the root of al evil. -- D.E. Knuth

Efficient code can be well-structured and clean code, based on on a sound overall architecture and sound algorithms.
Efficient code can be highly implementation-code that by passes documented interfaces and takes advantage of obscure
quirksin the current implementation.

Ideally, your code should only contain the first kind of efficient code. If that turns out to be too slow, you should
profile the application to find out where the performance bottlenecks are and optimize only the bottlenecks. Other
code should stay as clean as possible.

Fortunately, compiler and run-time optimizations introduced in R12B makes it easier to write code that is both clean
and efficient. For instance, the ugly workarounds needed in R11B and earlier releases to get the most speed out of
binary pattern matching are no longer necessary. In fact, the ugly codeis slower than the clean code (because the clean
code has become faster, not because the uglier code has become slower).

This Efficiency Guide cannot really learn you how to write efficient code. It can give you afew pointers about what to
avoid and what to use, and some understanding of how certain language features are implemented. We have generally
not included general tips about optimization that will work in any language, such as moving common calculations
out of loops.

7.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language and concepts of OTP.

7.2 The Eight Myths of Erlang Performance

Some truths seem to live on well beyond their best-before date, perhaps because "information™ spreads more rapidly
from person-to-person faster than a single rel ease note that notes, for instance, that funs have become faster.

Here we try to kill the old truths (or semi-truths) that have become myths.

7.2.1 Myth: Funs are slow

Y es, funs used to be slow. Very slow. Slower than appl y/ 3. Originally, funs were implemented using nothing more
than compiler trickery, ordinary tuples, appl y/ 3, and agreat deal of ingenuity.

But that is ancient history. Funs was given its own data type in the R6B release and was further optimized in the R7B
release. Now the cost for afun call falls roughly between the cost for a call to local function and appl y/ 3.

7.2.2 Myth: List comprehensions are slow

List comprehensions used to be implemented using funs, and in the bad old days funs were really slow.

Nowadays the compiler rewrites list comprehensions into an ordinary recursive function. Of course, using a tail-
recursive function with areverse at the end would be still faster. Or would it? That leads us to the next myth.

196 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.2 The Eight Myths of Erlang Performance

7.2.3 Myth: Tail-recursive functions are MUCH faster than recursive functions

According to the myth, recursive functions leave references to dead terms on the stack and the garbage collector will
have to copy all those dead terms, while tail-recursive functions immediately discard those terms.

That used to be true before R7B. In R7B, the compiler started to generate code that overwrites references to terms
that will never be used with an empty list, so that the garbage collector would not keep dead values any longer than
necessary.

Even after that optimization, a tail-recursive function would still most of the time be faster than a body-recursive
function. Why?

It has to do with how many words of stack that are used in each recursive call. In most cases, a recursive function
would use more words on the stack for each recursion than the number of words a tail-recursive would allocate on
the heap. Since more memory is used, the garbage collector will be invoked more frequently, and it will have more
work traversing the stack.

In R12B and later releases, there is an optimization that will in many cases reduces the number of words used on the
stack in body-recursive calls, so that a body-recursive list function and tail-recursive function that callslists:reverse/1
at the end will use exactly the same amount of memory. | i sts: map/ 2,1 i sts:filter/2,listcomprehensions,
and many other recursive functions now use the same amount of space as their tail-recursive equivalents.

So which isfaster?

It depends. On Solaris/Sparc, the body-recursive function seems to be dlightly faster, even for lists with very many
elements. On the x86 architecture, tail-recursion was up to about 30 percent faster.

So the choice is now mostly a matter of taste. If you really do need the utmost speed, you must measure. Y ou can no
longer be absolutely sure that the tail-recursive list function will be the fastest in all circumstances.

Note: A tail-recursive function that does not need to reversethelist at theend is, of course, faster than abody-recursive
function, as are tail-recursive functions that do not construct any terms at all (for instance, a function that sums all
integersin alist).

7.2.4 Myth: '++'is always bad
The ++ operator has, somewhat undeservedly, got avery bad reputation. It probably has something to do with codelike
DO NOT

naive reverse([H T]) ->
nai ve_reverse(T) ++[H| ;
nai ve_reverse([]) ->

(1.

which isthe most inefficient way thereisto reverse alist. Since the ++ operator copiesitsleft operand, the result will
be copied again and again and again... leading to quadratic complexity.

On the other hand, using ++ like this
OK

nai ve_but _ok_reverse([H T], Acc) ->
nai ve_but _ok_reverse(T, [H ++Acc);
nai ve_but _ok_reverse([], Acc) ->
Acc.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 197

7.3 Common Caveats

isnot bad. Each list element will only be copied once. The growing result Acc istheright operand for the ++ operator,
and it will not be copied.

Of course, experienced Erlang programmers would actually write
DO

vanilla_reverse([H T], Acc) ->
vani |l a_reverse(T, [H Acc]);
vanilla_reverse([], Acc) ->
Acc.

which is dightly more efficient because you don't build a list element only to directly copy it. (Or it would be more
efficient if the the compiler did not automatically rewrite[Hl ++Acc to[H| Acc] .)
7.2.5 Myth: Strings are slow

Actually, string handling could be slow if done improperly. In Erlang, you'll have to think a little more about how
the strings are used and choose an appropriate representation and use the re module instead of the obsoleter egexp
module if you are going to use regular expressions.

7.2.6 Myth: Repairing a Dets file is very slow

Therepair timeisstill proportional to the number of recordsin the file, but Dets repairs used to be much, much slower
in the past. Dets has been massively rewritten and improved.

7.2.7 Myth: BEAM is a stack-based byte-code virtual machine (and therefore
slow)

BEAM isaregister-based virtual machine. It has 1024 virtual registersthat are used for holding temporary values and
for passing arguments when calling functions. Variables that need to survive afunction call are saved to the stack.

BEAM is a threaded-code interpreter. Each instruction is word pointing directly to executable C-code, making
instruction dispatching very fast.

7.2.8 Myth: Use ' 'to speed up your program when a variable is not used
That was once true, but since R6B the BEAM compiler is quite capable of seeing itself that avariable is not used.

7.3 Common Caveats

Here we list afew modules and BIFs to watch out for, and not only from a performance point of view.

7.3.1 The regexp module

Theregular expression functionsin the regexp module are written in Erlang, not in C, and were meant for occasional
use on small amounts of data, for instance for validation of configuration files when starting an application.

Use the re module (introduced in R13A) instead, especially in time-critical code.

7.3.2 The timer module

Creating timers using erlang:send_after/3 and erlang:start_timer/3 is much more efficient than using the timers
provided by the timer module. The t i mer module uses a separate process to manage the timers, and that process

198 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.3 Common Caveats

can easily become overloaded if many processes create and cancel timers frequently (especially when using the SMP
emulator).

The functionsin the t i mer module that do not manage timers (such astiner:tc/ 3 ortiner: sl eep/ 1), do
not call the timer-server process and are therefore harmless.

7.3.3 list_to_atom/1

Atoms are not garbage-collected. Once an atom is created, it will never be removed. The emulator will terminate if
the limit for the number of atoms (1048576 by default) is reached.

Therefore, converting arbitrary input strings to atoms could be dangerous in a system that will run continuously. 1f
only certain well-defined atoms are allowed as input, you can use list_to_existing_atonv1 to guard against a denial-
of-service attack. (All atomsthat are allowed must have been created earlier, for instance by simply using all of them
in amodule and loading that module.)

Usingl i st _to_at om 1 toconstruct an atom that is passed to appl y/ 3 like this

appl y(list_to_aton("sone_prefix"++Var), foo, Args)

is quite expensive and is not recommended in time-critical code.

7.3.4 length/1

The time for calculating the length of alist is proportional to the length of the list, as opposed tot upl e_si ze/ 1,
byte_size/1,andbit _size/ 1, whichall executein constant time.

Normally you don't have to worry about the speed of | engt h/ 1, because it is efficiently implemented in C. Intime
critical-code, though, you might want to avoid it if the input list could potentially be very long.

Some uses of | engt h/ 1 can be replaced by matching. For instance, this code

foo(L) when length(L) >= 3 ->

can be rewritten to

foo([_, _,_|_]=L) ->

(One dlight differenceisthat | engt h(L) will fail if the L isan improper list, while the pattern in the second code

fragment will accept an improper list.)

7.3.5 setelement/3

setelement/3 copies the tuple it modifies. Therefore, updating atuple in aloop using set el enent / 3 will create a
new copy of the tuple every time.

There is one exception to the rule that the tuple is copied. If the compiler clearly can see that destructively updating
the tuple would give exactly the same result asif the tuple was copied, the call to set el enent / 3 will be replaced
with a special destructive setelement instruction. In the following code sequence

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 199

7.3 Common Caveats

mul ti pl e_setel ement (TO) ->
Tl = setelement(9, TO, bar),
T2 = setelement(7, T1, foobar),
setel ement (5, T2, new_val ue).

thefirst set el erent / 3 call will copy the tuple and modify the ninth element. Thetwo following set el enent / 3
callswill modify the tuple in place.

For the optimization to be applied, all of the followings conditions must be true:

* Theindices must be integer literals, not variables or expressions.
* Theindices must be given in descending order.
* There must be no calls to other function in between the callsto set el enent / 3.

» Thetuplereturned fromoneset el ermrent / 3 call must only be used in the subsequent call to
set el enent/ 3.

If it is not possible to structure the code asin the mul ti pl e_set el ement / 1 example, the best way to modify
multiple elementsin alarge tupleisto convert the tuple to alist, modify the list, and convert the list back to atuple.

7.3.6 sizel/l

si ze/ 1 returnsthe size for both tuples and binary.

Using the new BIFst upl e_si ze/ 1 and byt e_si ze/ 1 introduced in R12B gives the compiler and run-time
system more opportunities for optimization. A further advantage is that the new BIFs could help Dialyzer find more
bugsin your program.

7.3.7 split_binary/2

It is usually more efficient to split a binary using matching instead of calling the spl it _bi nary/ 2 function.
Furthermore, mixing bit syntax matching and spl i t _bi nary/ 2 may prevent some optimizations of bit syntax
matching.

DO

<<Bi n1: Num bi nary, Bi n2/ bi nary>> = Bin,

DO NOT

{Binl, Bin2} = split_binary(Bin, Num

7.3.8 The '--' operator

Note that the '- - ' operator has a complexity proportional to the product of the length of its operands, meaning that it
will be very slow if both of its operands are long lists:

DO NOT

HugeLi st 1 -- HugeLi st 2

Instead use the ordsets module:

200 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and matching binaries

DO

HugeSet 1 = ordsets:from|i st (HugeListl),
HugeSet 2 = ordsets:from|i st (HugelLi st2),
ordset s: subtract (HugeSet 1, HugeSet 2)

Obvioudly, that codewill not work if the original order of thelist isimportant. If the order of thelist must be preserved,
do like this:

DO
Set = gb_sets:from|ist(Hugelist?2),
[E || E <- HugelListl, not gb_sets:is_elenent(E Set)]
Subtle note 1: This code behaves differently from '- - ' if the lists contain duplicate elements. (One occurrence of an

element in HugeList2 will remove all occurrencesin HugeList1.)

Subtle note 2: This code compares lists elements using the '==" operator, while - - ' usesthe '=: ='. If that difference
is important, set s can be used instead of gb_set s, but note that sets: from_|i st/ 1 is much slower than
gb_sets:fromlist/1forlonglists.

Using the - - * operator to delete an element from alist is not a performance problem:
OK

HugelListl -- [El enment]

7.4 Constructing and matching binaries

In R12B, the most natural way to write binary construction and matching is now significantly faster than in earlier
releases.

To construct at binary, you can simply write
DO (in R12B) / REALLY DO NOT (in earlier releases)

ny_list_to_binary(List) ->
nmy_list _to_binary(List, <<>>).

ny_list_to_binary([H T], Acc) ->
ny_list to binary(T, <<Acc/binary, H>);

nmy list to_binary([], Acc) ->
Acc.

Inreleasesbefore R12B, Acc would be copied in every iteration. In R12B, Acc will becopied only inthefirst iteration
and extra space will be allocated at the end of the copied binary. In the next iteration, Hwill be written in to the extra
space. When the extra space runs out, the binary will be reallocated with more extra space.

The extraspace allocated (or reallocated) will be twice the size of the existing binary data, or 256, whichever islarger.
The most natural way to match binariesis now the fastest:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 201

7.4 Constructing and matching binaries

DO (in R12B)

ny_binary to |ist(<<H, T/binary>>) ->
[H ny_binary to_ list(T)];
ny_binary_to_|ist(<<>>) ->[].

7.4.1 How binaries are implemented

Internally, binaries and bitstrings are implemented in the same way. In this section, we will call them binaries since
that iswhat they are called in the emulator source code.

There are four types of binary objects internally. Two of them are containers for binary data and two of them are
merely references to a part of abinary.

The binary containers are called refc binaries (short for reference-counted binaries) and heap binaries.

Refc binaries consist of two parts: an object stored on the process heap, called a ProcBin, and the binary object itself
stored outside al process heaps.

The binary object can be referenced by any number of ProcBins from any number of processes; the object contains a
reference counter to keep track of the number of references, sothat it can beremoved when thelast reference disappears.

All ProcBin objects in a process are part of alinked list, so that the garbage collector can keep track of them and
decrement the reference countersin the binary when a ProcBin disappears.

Heap binaries are small binaries, up to 64 bytes, that are stored directly on the process heap. They will be copied
when the process is garbage collected and when they are sent as a message. They don't require any special handling
by the garbage collector.

There are two types of reference objects that can reference part of arefc binary or heap binary. They are called sub
binaries and match contexts.

A sub binary is created by spl i t _bi nary/ 2 and when a binary is matched out in a binary pattern. A sub binary
isareference into a part of another binary (refc or heap binary, never into aanother sub binary). Therefore, matching
out abinary isrelatively cheap because the actual binary datais never copied.

A match context issimilar to asub binary, but isoptimized for binary matching; for instance, it containsadirect pointer
to the binary data. For each field that is matched out of abinary, the position in the match context will be incremented.

In R11B, a match context was only using during a binary matching operation.

In R12B, the compiler triesto avoid generating code that creates a sub binary, only to shortly afterwards create a new
match context and discard the sub binary. Instead of creating a sub binary, the match context is kept.

The compiler can only do this optimization if it can know for sure that the match context will not be shared. If it would
be shared, the functional properties (also called referential transparency) of Erlang would break.

7.4.2 Constructing binaries
In R12B, appending to a binary or bitstring

<<Bi nary/ bi nary, ...>>
<<Binary/bitstring, ...>>

is specially optimized by the run-time system. Because the run-time system handles the optimization (instead of the
compiler), there are very few circumstances in which the optimization will not work.

To explain how it works, we will go through this code

202 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and matching binaries

Bi N0 = <<0>>, 086 1
Bi n1 = <<Bi n0/ bi nary, 1, 2, 3>>, %% 2

Bi n2 = <<Bi nl/bi nary, 4, 5, 6>>, %% 3

Bi n3 = <<Bi n2/ bi nary, 7, 8, 9>>, % 4

Bi n4 = <<Bi nl/bi nary, 17>>, %5 1!
{Bi n4, Bi n3} %806 6
line by line.

Thefirst line (marked with the %86 1 comment), assigns a heap binary to the variable Bi nO.

The second line is an append operation. Since Bi n0 has not been involved in an append operation, a new refc binary
will be created and the contents of Bi nO will be copied into it. The ProcBin part of the refc binary will have its size
set to the size of the data stored in the binary, while the binary object will have extra space alocated. The size of the
binary object will be either twice the size of Bi nO or 256, whichever islarger. In this case it will be 256.

It gets more interesting in the third line. Bi n1 has been used in an append operation, and it has 255 bytes of unused
storage at the end, so the three new bytes will be stored there.

Same thing in the fourth line. There are 252 bytes |eft, so there is no problem storing another three bytes.

But in the fifth line something interesting happens. Note that we don't append to the previous result in Bi n3, but to
Bi n1. We expect that Bi n4 will be assigned the value <<0, 1, 2, 3, 17>>. We aso expect that Bi n3 will retain
itsvalue (<<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>>). Clearly, the run-time system cannot write the byte 17 into the binary,
because that would change the value of Bi n3 to<<0, 1, 2, 3, 4, 17, 6, 7, 8, 9>>.

What will happen?

The run-time system will see that Bi n1 is the result from a previous append operation (not from the latest append
operation), so it will copy the contents of Bi n1 to a new binary and reserve extra storage and so on. (We will not
explain here how the run-time system can know that it is not allowed to writeinto Bi n1; it isleft asan exerciseto the
curious reader to figure out how it is done by reading the emulator sources, primarily er | _bits. c.)

Circumstances that force copying

The optimization of the binary append operation requires that there is a single ProcBin and a single reference to the
ProcBin for the binary. The reason is that the binary object can be moved (reallocated) during an append operation,
and when that happens the pointer in the ProcBin must be updated. If there would be more than on ProcBin pointing
to the binary object, it would not be possible to find and update all of them.

Therefore, certain operations on a binary will mark it so that any future append operation will be forced to copy the
binary. In most cases, the binary object will be shrunk at the sametimeto reclaim the extra space allocated for growing.

When appending to a binary

Bin = <<BinO,...>>

only the binary returned from the latest append operation will support further cheap append operations. In the code
fragment above, appending to Bi n will be cheap, while appending to Bi nO will force the creation of a new binary
and copying of the contents of Bi nO.

If abinary is sent as a message to a process or port, the binary will be shrunk and any further append operation will
copy the binary datainto anew binary. For instance, in the following code fragment

Binl = <<Bi nO,...>>
PortOPid ! Binl,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 203

7.4 Constructing and matching binaries

Bin = <<Binl,...>> %oBinl will be COPIED

Bi n1 will be copied in the third line.
The samething happensif you insert abinary into an etstableor sendittoaportusinger | ang: port _conmmand/ 2.
Matching a binary will also cause it to shrink and the next append operation will copy the binary data:

Binl = <<Bino, ...>>,
<<X, Y, Z, T/ bi nary>> = Bi n1l,
Bin = <<Binl,...> %0oBinl will be COPI ED

The reason isthat a match context contains a direct pointer to the binary data.

If a process simply keeps binaries (either in "loop data' or in the process dictionary), the garbage collector may
eventually shrink the binaries. If only one such binary is kept, it will not be shrunk. If the process later appendsto a
binary that has been shrunk, the binary object will be reallocated to make place for the data to be appended.

7.4.3 Matching binaries
We will revisit the example shown earlier
DO (in R12B)

ny_binary to |ist(<<H, T/binary>>) ->
[H ny_binary_ to_ list(T)];
ny_binary_to_|ist(<<>>) ->[].

too see what is happening under the hood.

The very first timemy_binary_to_list/ 1 iscaled, amatch context will be created. The match context will
point to the first byte of the binary. One byte will be matched out and the match context will be updated to point to
the second byte in the binary.

In R11B, at this point a sub binary would be created. In R12B, the compiler sees that there is no point in creating a
sub binary, because there will soon be acall to afunction (inthiscase,tony_bi nary _to | i st/ 1 itself) that will
immediately create a new match context and discard the sub binary.

Therefore, in R12B, ny_bi nary_to_|i st/ 1 will cal itself with the match context instead of with a sub binary.
Theinstruction that initializes the matching operation will basically do nothing when it seesthat it was passed amatch
context instead of abinary.

When the end of the binary isreached and second clause matches, the match context will simply be discarded (removed
in the next garbage collection, since thereis no longer any referenceto it).

To summarize, my_bi nary_to_list/1inR12B only needs to create one match context and no sub binaries. In
R11B, if the binary contains N bytes, N+ 1 match contexts and N sub binaries will be created.

In R11B, the fastest way to match binariesis:
DO NOT (in R12B)

ny_conpl i cated_binary_to list(Bin) ->
ny_conpl i cated_binary_to_|ist(Bin, 0).

ny_conpl i cated_binary_to_|list(Bin, Skip) ->
case Bin of

204 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and matching binaries

<<_: Ski p/ bi nary, Byte, _/ bi nary>> ->
[Byte| my_conplicated_binary_to_list(Bin, Skip+1)];
<<_: Ski p/ bi nary>> ->

[l

end.

Thisfunction cleverly avoids building sub binaries, but it cannot avoid building amatch context in each recursion step.
Therefore, in both R11B and R12B, ny_conpl i cat ed_bi nary_to_li st/ 1 builds N+1 match contexts. (Ina
future release, the compiler might be able to generate code that reuses the match context, but don't hold your breath.)

Returningtony_bi nary_to_li st/ 1, notethat the match context was discarded when the entire binary had been
traversed. What happens if the iteration stops before it has reached the end of the binary? Will the optimization still

work?

after_zero(<<0, T/ bi nary>>) ->
lE

after_zero(<<_, T/ bi nary>>) ->
after_zero(T);

after_zero(<<>>) ->
<<3>3>,

Yes, it will. The compiler will remove the building of the sub binary in the second clause

after_zero(<<_, T/ bi nary>>) ->
after_zero(T);

but will generate code that builds a sub binary in thefirst clause

af ter_zero(<<0, T/ bi nary>>) ->
T,

Therefore, af t er _zer o/ 1 will build one match context and one sub binary (assuming it is passed a binary that
contains a zero byte).

Code like the following will also be optimized:

al | _but_zeroes_to_list(Buffer, Acc, 0) ->
{lists:reverse(Acc),Buffer};

al | _but_zeroes_to_list(<<0, T/ bi nary>>, Acc, Renmining) ->
al | _but_zeroes_to_list(T, Acc, Rermining-1);

al | _but_zeroes_to_list(<<Byte, T/ bi nary>>, Acc, Renmumining) ->
al | _but_zeroes_to_list(T, [Byte|Acc], Renmining-1).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 205

7.4 Constructing and matching binaries

The compiler will remove building of sub binaries in the second and third clauses, and it will add an instruction to
the first clause that will convert Buf f er from a match context to a sub binary (or do nothing if Buf f er aready
isabinary).

Before you begin to think that the compiler can optimize any binary patterns, here is a function that the compiler
(currently, at least) is not able to optimize:

non_opt _eq([H T1], <<H, T2/ binary>>) ->
non_opt _eq(T1, T2);

non_opt _eq([_|_], <<, _/binary>>) ->
fal se;

non_opt _eq([], <<>>) ->
true.

It was briefly mentioned earlier that the compiler can only delay creation of sub binariesif it can be sure that the binary
will not be shared. In this case, the compiler cannot be sure.

We will soon show how to rewritenon_opt _eq/ 2 so that the delayed sub binary optimization can be applied, and
more importantly, we will show how you can find out whether your code can be optimized.
The bin_opt_info option

Usethebi n_opt _i nf o option to have the compiler print alot of information about binary optimizations. It can be
given either to the compiler orer | c

erlc +bin_opt_info Md.erl

or passed via an environment variable

export ERL_COWPI LER_OPTI ONS=bi n_opt _i nfo

Note that the bi n_opt _i nf o is not meant to be a permanent option added to your Makef i | es, because it is not
possible to eliminate all messages that it generates. Therefore, passing the option through the environment isin most
cases the most practical approach.

The warnings will look like this:

.lefficiency_guide.erl:60: Warning: NOT OPTIM ZED: sub binary is used or returned
.lefficiency_guide.erl:62: Warning: OPTIM ZED: creation of sub binary del ayed

To make it clearer exactly what code the warnings refer to, in the examples that follow, the warnings are inserted as
comments after the clause they refer to:

after_zero(<<0, T/ bi nary>>) ->
%% NOT OPTI M ZED: sub binary is used or returned
T
after_zero(<<_, T/ bi nary>>) ->
%% OPTI M ZED: creation of sub binary del ayed
after_zero(T);
after_zero(<<>>) ->

206 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and matching binaries

<<3>3>,

The warning for the first clause tells us that it is not possible to delay the creation of a sub binary, because it will be
returned. The warning for the second clause tells us that a sub binary will not be created (yet).

Itistimeto revisit the earlier example of the code that could not be optimized and find out why:

non_opt _eq([H T1], <<H, T2/ binary>>) ->
%% | NFO mat chi ng anything el se but a plain variable to
27 the left of binary pattern will prevent del ayed
%6 sub binary optim zation;
27 SUGGEST changi ng ar gument or der
%% NOT OPTI M ZED: cal | ed functi on non_opt _eq/2 does not
%6 begin with a suitabl e binary matching instruction
non_opt _eq(T1, T2);
non_opt_eq([_|_], <<_, _/binary>>) ->
fal se;
non_opt_eq([], <<>>) ->
true.

The compiler emitted two warnings. Thel NFOwarning refersto thefunctionnon_opt _eq/ 2 asacallee, indicating
that any functionsthat call non_opt _eq/ 2 will not be able to make delayed sub binary optimization. Thereisaso
a suggestion to change argument order. The second warning (that happens to refer to the same line) refers to the
construction of the sub binary itself.

Wewill soon show another exampl e that should make the distinction between | NFOand NOT OPTI M ZEDwarnings
somewhat clearer, but first we will heed the suggestion to change argument order:

opt _eq(<<H, T1/bi nary>>, [H T2]) ->
%% OPTI M ZED: creation of sub binary del ayed
opt _eq(T1, T2);
opt _eq(<<_, /binary>> [_|_]) ->
fal se;
opt_eq(<<>>, []) ->
true.

The compiler gives awarning for the following code fragment:

mat ch_body([0] _], <<H, _/binary>>) ->
%% | NFO mat ching anything el se but a plain variable to
27 the left of binary pattern will prevent del ayed
27 sub binary optim zation;
27 SUGGEST changi ng ar gunment or der
done;

The warning means that if thereis a call to mat ch_body/ 2 (from another clause in mat ch_body/ 2 or another
function), the delayed sub binary optimization will not be possible. There will be additional warnings for any place
where asub binary is matched out at the end of and passed as the second argument to mat ch_body/ 2. For instance:

mat ch_head(Li st, <<_:10, Data/ bi nary>>) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 207

7.5 List handling

%% NOT OPTI M ZED: cal | ed function natch_body/2 does not
%% begin with a suitabl e binary matching instruction
mat ch_body(List, Data).

Unused variables

The compiler itself figures out if avariableis unused. The same code is generated for each of the following functions

count 1(<<_, T/ bi nary>>, Count) -> count1(T, Count+1);
count 1(<<>>, Count) -> Count.

count 2(<<H, T/ bi nary>>, Count) -> count2(T, Count+1);
count 2(<<>>, Count) -> Count.

count 3(<<_H, T/ bi nary>>, Count) -> count3(T, Count+1);
count 3(<<>>, Count) -> Count.

In each iteration, the first 8 bitsin the binary will be skipped, not matched out.

7.5 List handling

7.5.1 Creating a list

Lists can only be built starting from the end and attaching list elements at the beginning. If you use the ++ operator
likethis

Listl ++ List2

you will create a new list which is copy of the elements in Li st 1, followed by Li st2. Looking at how
|ists:append/ 1 or++ would beimplemented in plain Erlang, it can be seen clearly that the first list is copied:

append([H T], Tail) ->
[H append(T, Tail)];
append([], Tail) ->
Tail .

So the important thing when recursing and building a list is to make sure that you attach the new elements to the
beginning of the list, so that you build a list, and not hundreds or thousands of copies of the growing result list.

Let usfirst look at how it should not be done:
DO NOT

bad_fib(N) ->
bad_fib(N, 0, 1, []).

bad_fib(0, _Current, _Next, Fibs) ->
Fi bs;
bad_fib(N, Current, Next, Fibs) ->
bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

208 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.5 List handling

Here we are not a building a list; in each iteration step we create a new list that is one element longer than the new
previous list.

To avoid copying the result in each iteration, we must build the list in reverse order and reverse the list when we
are done:

DO

tail _recursive_fib(N ->
tail_recursive_fib(N, 0, 1, []).

tail _recursive_fib(0, _Current, _Next, Fibs) ->
lists:reverse(Fibs);

tail_recursive_fib(N, Current, Next, Fibs) ->
tail_recursive fib(N - 1, Next, Current + Next, [Current|Fibs]).

7.5.2 List comprehensions

Lists comprehensions still have a reputation for being slow. They used to be implemented using funs, which used
to be slow.

In recent Erlang/OTP releases (including R12B), alist comprehension

[Expr(E) || E <- List]

isbasically trandated to alocal function

"lchO' ([E| Tail], Expr) ->
[Expr(E)| 'l c”rO' (Tail, Expr)];
“len0 (1, _Expr) -> [].

In R12B, if the result of the list comprehension will obviously not be used, alist will not be constructed. For instance,
in this code

[io:put_chars(E) || E <- List],
ok.

or in this code

case Var of
-
[io:put_chars(E) || E <- List];
-
end,
sonme_function(...),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 209

7.5 List handling

the valueis neither assigned to avariable, nor passed to another function, nor returned, so thereis no need to construct
alist and the compiler will smplify the code for the list comprehension to

"I cnhO' ([E| Tail], Expr) ->
Expr (E),
"lcnh0' (Tail, Expr);
"1cr0 ([1, _Expr) ->[].

7.5.3 Deep and flat lists

lists:flatten/1 buildsan entirely new list. Therefore, it isexpensive, and even more expensive than the ++ (which copies
its left argument, but not its right argument).

In the following situations, you can easily avoid callingl i sts: fl atten/ 1:

* When sending data to a port. Ports understand deep lists so there is no reason to flatten the list before sending it
to the port.

» When calling BIFs that accept deep lists, such aslist_to _binary/1 or iolist_to_binary/1.
* When you know that your list isonly one level deep, you can can use lists.append/1.

Port example
DO

port _conmmand(Port, DeeplLi st)

DO NOT

port_conmand(Port, |ists:flatten(DeepList))

A common way to send a zero-terminated string to a port is the following:
DO NOT

TerminatedStr = String ++ [0], % String="foo" => [$f, $0, $0, 0]
port _command(Port, Termi natedStr)

Instead do like this:
DO

TerminatedStr = [String, 0], % String="foo" => [[$f, $0, $0], O]
port _command(Port, Termi natedStr)

210 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.6 Functions

Append example
DO

> |ists:append([[1], [2], [3]]).
[1,2,3]
>

DO NOT

> |lists:flatten([[1], [2], [3]]).
[1,2,3]
>

7.5.4 Why you should not worry about recursive lists functions

In the performance myth chapter, the following myth was exposed: Tail-recursive functions are MUCH faster than
recursive functions.

To summarize, in R12B thereis usually not much difference between a body-recursive list function and tail-recursive
function that reverses the list at the end. Therefore, concentrate on writing beautiful code and forget about the
performance of your list functions. In the time-critical parts of your code (and only there), measure before rewriting
your code.

Important note: This section talks about lists functions that construct lists. A tail-recursive function that does not
construct alist runsin constant space, while the corresponding body-recursive function uses stack space proportional
to the length of thelist. For instance, afunction that sums alist of integers, should not be written like this

DO NOT

recursive_sun([H T]) -> Htrecursive_sun(T);
recursive_sun([]) -> 0.

but like this
DO

sum(L) -> sum(L, 0).

sum([H T], Sum) -> sum(T, Sum + H);
sunm([], Sum -> Sum

7.6 Functions

7.6.1 Pattern matching

Pattern matching in function head and in case and r ecei ve clauses are optimized by the compiler. With a few
exceptions, there is nothing to gain by rearranging clauses.

One exception is pattern matching of binaries. The compiler will not rearrange clauses that match binaries. Placing
the clause that matches against the empty binary last will usually be slightly faster than placing it first.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 211

7.6 Functions

Hereisarather contrived example to show another exception:
DO NOT

atom mapl(one) -> 1;

atom mapl(two) -> 2;

atom mapl(three) -> 3;

atom mapl(lnt) when is_integer(lnt) -> Int;
atom mapl(four) -> 4;

atom mapl(five) -> 5;

at om mapl(six) -> 6.

The problem is the clause with the variable | nt . Since a variable can match anything, including the atoms f our
five, and si x that the following clauses aso will match, the compiler must generate sub-optimal code that will
execute as follows:

First the input valueis compared to one, t wo, and t hr ee (using asingle instruction that does a binary search; thus,
quite efficient even if there are many values) to select which one of the first three clauses to execute (if any).

If none of the first three clauses matched, the fourth clause will match since a variable always matches. If the guard
testi s_i nt eger (1 nt) succeeds, the fourth clause will be executed.

If the guard test failed, the input value is compared to f our , fi ve, and si x, and the appropriate clause is selected.
(Therewill beaf unct i on_cl ause exception if none of the values matched.)

Rewriting to either
DO

atom map2(one) -> 1;

atom map2(tw) -> 2;

atom map2(three) -> 3;

atom map2(four) -> 4;

atom map2(five) -> 5;

at om map2(si x) -> 6;

atom map2(Int) when is_integer(lnt) -> Int.

or
DO

atom map3(Int) when is_integer(lnt) -> Int;
atom map3(one) -> 1;

atom map3(two) -> 2;

atom map3(three) -> 3;

atom map3(four) -> 4;

atom map3(five) -> 5;

at om map3(six) -> 6.

will give sightly more efficient matching code.
Hereis aless contrived example:
DO NOT

map_pai rsi(_Map, [], Ys) ->

212 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.6 Functions

Ys;

map_pairsi(_Map, Xs, []) ->
Xs;

map_pai rsi(Map, [X| Xs], [Y]Ys]) ->
[Map(X, Y)|nmap_pairsi(Map, Xs, Ys)].

Thefirst argument is not a problem. It isvariable, but it isavariable in all clauses. The problem isthe variable in the
second argument, Xs, in the middle clause. Because the variable can match anything, the compiler is not alowed to
rearrange the clauses, but must generate code that matches them in the order written.

If the function is rewritten like this

DO

map_pai rs2(_Map, [], Ys) ->
Ys;

map_pai rs2(_Map, [_|_]=Xs, []) ->
Xs;

map_pai rs2(Map, [X Xs], [Y|Ys]) ->
[Map(X, Y)|map_pairs2(Map, Xs, Ys)].

the compiler is free rearrange the clauses. It will generate code similar to this
DO NOT (already done by the compiler)

explicit_map_pairs(Map, XsO, Ys0) ->
case XsO of

[X Xs] ->
case YsO of
[Y]Ys] ->

[Map(X, Y)|explicit_map_pairs(Mp, Xs, Ys)];
[1->
Xs0
end;

[1->
YsO
end.

which should be slightly faster for presumably the most common case that the input lists are not empty or very short.
(Another advantage is that Dialyzer is able to deduce a better type for the variable Xs.)

7.6.2 Function Calls

Here is an intentionally rough guide to the relative costs of different kinds of calls. It is based on benchmark figures
run on Solaris/Sparc:
e Callstolocal or external functions (f oo() , m f oo()) are the fastest kind of calls.

e Cdling or applying afun (Fun() ,appl y(Fun, [])) isabout threetimes as expensive as calling alocal
function.

« Applying an exported function (Mod: Nare() , appl y(Md, Name, [])) isabouttwice asexpensive as
calling afun, or about six times as expensive as calling alocal function.

Notes and implementation details

Calling and applying afun does not involve any hash-table lookup. A fun contains an (indirect) pointer to the function
that implements the fun.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 213

7.6 Functions

Warning:

Tuples are not fun(s). A "tuple fun”, { Modul e, Funct i on}, isnot afun. The cost for calling a "tuple fun" is
similar to that of appl y/ 3 or worse. Using "tuple funs" is strongly discouraged, as they may not be supported
in a future release, and because there exists a superior alternative since the R10B release, namely the f un
Modul e: Function/ Ari ty syntax.

app! y/ 3 must look up the code for the function to execute in a hash table. Therefore, it will always be slower than
adirect call or afun cal.

It no longer matters (from a performance point of view) whether you write

Modul e: Functi on(Argl, Arg2)

or

appl y(Mdul e, Function, [Argl, Arg2])

(The compiler internally rewrites the latter code into the former.)
The following code

appl y(Modul e, Function, Argunents)

isdightly slower because the shape of the list of argumentsis not known at compile time.

7.6.3 Memory usage in recursion

When writing recursive functions it is preferable to make them tail-recursive so that they can execute in constant
memory space.

DO

list_length(List) ->
l'ist_|length(List, 0).

list_length([], AccLen) ->
AcclLen; % Base case

list_length([_|Tail], AccLen) ->

list_length(Tail, AccLen + 1). % Tail-recursive

DO NOT

list_length([]) ->
0. % Base case
list_ length([_ | Tail]) ->
list_length(Tail) + 1. % Not tail-recursive

214 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.7 Tables and databases

7.7 Tables and databases

7.7.1 Ets, Dets and Mnesia

Every example using Ets has a corresponding examplein Mnesia. In general al Ets examplesalso apply to Detstables.

Select/Match operations

Select/Match operations on Ets and Mnesia tables can become very expensive operations. They usually need to scan
the complete table. Y ou should try to structure your data so that you minimize the need for select/match operations.
However, if you really need a select/match operation, it will still be more efficient than usingt ab2l i st . Examples
of this and also of ways to avoid select/match will be provided in some of the following sections. The functions
ets: sel ect/ 2 and mmesi a: sel ect/ 3 should be preferred over et s: mat ch/ 2,et s: mat ch_obj ect/ 2,
and mesi a: mat ch_obj ect/ 3.

Note:

There are exceptions when the complete table is not scanned, for instance if part of the key is bound when
searching an or der ed_set table, or if it isa Mnesia table and there is a secondary index on the field that is
selected/matched. If the key is fully bound there will, of course, be no point in doing a select/match, unless you
have a bag table and you are only interested in a sub-set of the elements with the specific key.

When creating a record to be used in a select/match operation you want most of the fields to have the value' '. The
easiest and fastest way to do that is as follows:

#person{age = 42, _ ="' _'}.
Deleting an element

Thedelete operationisconsidered successful if the element was not present inthetable. Henceall attemptsto check that
the element is present in the EtsMnesia tabl e before del etion are unnecessary. Here follows an example for Etstables.

DO

ets: del et e(Tab, Key)

DO NOT

case ets:|ookup(Tab, Key) of

(1] ->
ets: del et e(Tab, Key)
end

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 215

7.7 Tables and databases

Data fetching

Do not fetch datathat you already have! Consider that you haveamodulethat handlesthe abstract datatype Person. Y ou
export theinterfacefunction pri nt _per son/ 1 that usestheinternal functionspri nt _name/ 1,pri nt _age/ 1,
print_occupation/1.

Note:

If the functions pri nt _name/ 1 and so on, had been interface functions the matter comes in to a whole new
light, as you do not want the user of the interface to know about the internal data representation.

DO

9B | nterface function
print _person(Personld) ->
%% Look up the person in the naned tabl e person,
case ets: | ookup(person, Personld) of
[Person] ->
print _nanme(Person),
print _age(Person),
print_occupati on(Person);
(1 ->
io:format ("No person with ID = ~p~n", [PersonlD])
end.

9%®% | nt ernal functions
print _nanme(Person) ->
io:format ("No person ~p~n", [Person#person.nane]).

print _age(Person) ->
io:format ("No person ~p~n", [Person#person.age]).

print _occupati on(Person) ->
io:format ("No person ~p~n", [Person#person.occupation]).

DO NOT

%B06 | nterface function
print_person(Personld) ->
%% Look up the person in the naned tabl e person,
case ets:|ookup(person, Personld) of
[Person] ->
print_nane(Personl D),
pri nt _age(Personl D),
print_occupati on(Personl D);
[1->
io:format ("No person with ID = ~p~n", [PersonlD])
end.

%®06 | nt ernal functionss

print_nane(Personl D) ->
[Person] = ets: | ookup(person, Personld),
io:format ("No person ~p~n", [Person#person.nane]).

print_age(Personl D) ->
[Person] = ets: | ookup(person, Personld),

216 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.7 Tables and databases

io:format ("No person ~p~n", [Person#person.age]).

print _occupati on(Personl D) ->
[Person] = ets: | ookup(person, Personld),
io:format ("No person ~p~n", [Person#person.occupation]).

Non-persistent data storage

For non-persistent database storage, prefer Ets tables over Mnesia local_content tables. Even the Mnesia
dirty_wit e operationscarry afixed overhead compared to Etswrites. Mnesiamust check if thetableisreplicated
or hasindices, thisinvolves at least one Ets lookup for eachdi rty_wri t e. Thus, Ets writes will aways be faster
than Mnesiawrites.

tab2list

Assume we have an Ets-table, which usesi dno askey, and contains:

[#person{idno = 1, nane = "Adanf, age = 31, occupation = "mail man"},
#person{idno = 2, nane = "Bryan", age = 31, occupation = "cashier"},
#person{idno = 3, nane = "Bryan", age = 35, occupation = "banker"},
#person{idno = 4, nane = "Carl", age = 25, occupation = "nmil man"}]

If we must return all data stored in the Ets-table we can use et s: t ab2l i st/ 1. However, usualy we are only
interested in a subset of the information in which case et s: t ab2l i st/ 1 isexpensive. If we only want to extract
one field from each record, e.g., the age of every person, we should use:

DO

ets:sel ect(Tab, [{ #person{idno="_",
name='_",
age=' $1',
occupation ="' _'},

[1,
['$1°]}]),

DO NOT

TabLi st = ets:tab2list(Tab),
lists: map(fun(X) -> X#person.age end, TabList),

If we are only interested in the age of al persons named Bryan, we should:
DO

ets:sel ect(Tab, [{ #person{idno="_",
name="Bryan",
age=' $1',
occupation ="' _'},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 217

7.7 Tables and databases

['$1°]11]),

DO NOT

TabLi st = ets:tab2list(Tab),
lists:foldl (fun(X, Acc) -> case X#person.nane of
"Bryan" ->
[X#per son. age| Acc] ;
->

Acc
end
end, [], TabList),
REALLY DO NOT
TabLi st = ets:tab2list(Tab),
BryanList = lists:filter(fun(X) -> X#person.nane == "Bryan" end,

TabLi st),
lists: map(fun(X) -> X#person.age end, BryanList),

If we need all information stored in the Ets table about persons named Bryan we should:
DO

ets: sel ect (Tab, [{#person{idno="_",
nane="Bryan",
age="_",
occupation ="' "}, [1, ['$_'111).

DO NOT

TabLi st = ets:tab2list(Tab),
lists:filter(fun(X) -> X#person.nanme == "Bryan" end, TabList),

Ordered_set tables

If the data in the table should be accessed so that the order of the keys in the table is significant, the table type
order ed_set could be used instead of the more usual set table type. Anor der ed_set isawaystraversedin
Erlang term order with regard to the key field so that return valuesfrom functionssuch assel ect , mat ch_obj ect
andf ol dl areordered by the key values. Traversing anor der ed_set withthefi r st and next operationsalso
returns the keys ordered.

218 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.7 Tables and databases

Note:

An ordered_set only guarantees that objects are processed in key order. Results from functions as
et s: sel ect/ 2 appear in the key order even if the key is not included in the result.

7.7.2 Ets specific

Utilizing the keys of the Ets table

An Etstableisasingle key table (either ahash table or atree ordered by the key) and should be used as one. In other
words, use the key to look up things whenever possible. A lookup by a known key in a set Ets table is constant and
for aordered_set Etstableit is O(logN). A key lookup is always preferable to a call where the whole table has to be
scanned. In the examples above, thefield i dno isthe key of the table and all lookups where only the nameis known
will result in a complete scan of the (possibly large) table for a matching result.

A simple solution would be to use the nare field asthe key instead of thei dno field, but that would cause problems
if the names were not unique. A more general solution would be create a second table with name as key and idno as
data, i.e. to index (invert) the table with regards to the nane field. The second table would of course have to be kept
consistent with the master table. Mnesia could do this for you, but a home brew index table could be very efficient
compared to the overhead involved in using Mnesia.

An index table for the table in the previous examples would have to be a bag (as keys would appear more than once)
and could have the following contents:

[#i ndex_ent ry{ nane="Adan{, idno=1},

#i ndex:ent ry{nanme="Bryan", idno=2},
#i ndex_ent ry{name="Bryan", idno=3},
#i ndex_entry{name="Car | ", idno=4}]

Given thisindex table alookup of the age fields for all persons named "Bryan" could be done like this:

Mat chi ngl Ds = ets: | ookup(| ndexTabl e, "Bryan"),
l'ists: map(fun(#i ndex_entry{idno = ID}) ->
[#per son{age = Age}] = ets:|ookup(PersonTable, |D),
Age
end,
Mat chi ngl Ds) ,

Note that the code above never uses ets: match/2 but instead utilizes the ets: | ookup/ 2 cal. The
I'ists: map/ 2 cal isonly used to traversethei dnos matching the name "Bryan" in the table; therefore the number
of lookups in the master table is minimized.

Keeping an index table introduces some overhead when inserting records in the table, therefore the number of
operations gained from the table has to be weighted against the number of operations inserting objects in the table.
However, note that the gain when the key can be used to lookup elementsis significant.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 219

7.8 Processes

7.7.3 Mnesia specific

Secondary index

If you frequently do alookup on afield that is not the key of the table, you will lose performance using "mnesia:sel ect/
match_object" as this function will traverse the whole table. You may create a secondary index instead and use
"mnesia:iindex_read" to get faster access, however thiswill require more memory. Example:

-record(person, {idno, nane, age, occupation}).

{atom c, ok} =
mesi a: creat e_t abl e(person, [{index, [#person. age]},
{attributes,
record_info(fields, person)}]),
{atom c, ok} = mmesi a: add_t abl e_i ndex(person, age),

Per sonsAge42 =
mesi a: dirty_i ndex_read(person, 42, #person.age),

Transactions

Transactionsis away to guarantee that the distributed Mnesia database remains consi stent, even when many different
processes update it in parallel. However if you have real time requirementsit is recommended to use dirty operations
instead of transactions. When using the dirty operations you lose the consistency guarantee, thisis usually solved by
only letting one process update the table. Other processes have to send update requests to that process.

% Usi ng transaction
Fun = fun() ->
[mesi a: read({Tabl e, Key}),
mesi a: read({ Tabl e2, Key2})]
end,

{atomic, [Resultl, Result2]} = mmesia:transaction(Fun),
% Same thing using dirty operations

Resul t 1
Resul t 2

mesi a:dirty_read({Tabl e, Key}),
mesi a: dirty_read({Tabl e2, Key2}),

7.8 Processes

7.8.1 Creation of an Erlang process
An Erlang processis lightweight compared to operating systems threads and processes.

A newly spawned Erlang process uses 309 words of memory in the non-SMP emulator without HiPE support. (SMP
support and HiPE support will both add to this size.) The size can be found out like this:

220 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.8 Processes

Erl ang (BEAM emnul ator version 5.6 [async-threads: 0] [kernel-poll:false]

Eshell V5.6 (abort with "G

1> Fun = fun() -> receive after infinity -> ok end end
#Fun<...>

2> {_,Bytes} = process_i nfo(spawn(Fun), menory)
{menory, 1232}

3> Bytes div erlang: system i nfo(wordsize)

309

The sizeincludes 233 words for the heap area (which includes the stack). The garbage collector will increase the heap
as needed.

The main (outer) loop for a process must be tail-recursive. If not, the stack will grow until the process terminates.
DO NOT

| oop() ->
receive
{sys, Msg} ->
handl e_sys_nsg(MsQg)
I oop()
{From Mg} ->
Reply = handl e_nmsg(MsQ),

From! Reply
I'oop()
end
io:format ("Message i s processed~n", []).

Thecall toi o: f or mat / 2 will never be executed, but a return address will still be pushed to the stack each time
| oop/ O iscaled recursively. The correct tail-recursive version of the function looks like this:

DO

l'oop() ->
recei ve
{sys, Mg} ->
handl e_sys_nsg(MsQ),
I'oop();
{From Msg} ->
Reply = handl e_nsg(MsQ),
From! Reply

I oop()
end

Initial heap size

The default initial heap size of 233 words is quite conservative in order to support Erlang systems with hundreds of
thousands or even millions of processes. The garbage collector will grow and shrink the heap as needed.

In asystem that use comparatively few processes, performance might be improved by increasing the minimum heap
size using either the +h option for erl or on a process-per-process basis using the m n_heap_si ze option for
spawn_opt/4.

Thegainistwofold: Firstly, although the garbage collector will grow the heap, it will it grow it step by step, which will
be more costly than directly establishing alarger heap when the process is spawned. Secondly, the garbage collector

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 221

7.8 Processes

may also shrink the heap if it is much larger than the amount of data stored on it; setting the minimum heap size will
prevent that.

Warning:

The emulator will probably use more memory, and because garbage collections occur less frequently, huge
binaries could be kept much longer.

In systems with many processes, computation tasks that run for a short time could be spawned off into a new process
with a higher minimum heap size. When the process is done, it will send the result of the computation to another
process and terminate. If the minimum heap size is calculated properly, the process may not have to do any garbage
collections at all. This optimization should not be attempted without proper measurements.

7.8.2 Process messages
All datain messages between Erlang processes is copied, with the exception of refc binaries on the same Erlang node.

When a message is sent to a process on another Erlang node, it will first be encoded to the Erlang External Format
before being sent via an TCP/IP socket. The receiving Erlang node decodes the message and distributes it to the right
process.

The constant pool

Constant Erlang terms (also called literals) are now kept in constant pools; each loaded module hasits own pool. The
following function

DO (in R12B and later)

days_in_month(M ->
el emrent (M {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}).

will no longer build the tuple every timeit is called (only to have it discarded the next time the garbage collector was
run), but the tuple will be located in the modul€e's constant pool.

But if a constant is sent to another process (or stored in an ETStable), it will be copied. The reason isthat the run-time
system must be able to keep track of al references to constantsin order to properly unload code containing constants.
(When the code is unloaded, the constants will be copied to the heap of the processes that refer to them.) The copying
of constants might be eliminated in a future release.

Loss of sharing

Shared sub-terms are not preserved when aterm is sent to another process, passed as the initial process arguments
in the spawn call, or stored in an ETS table. That is an optimization. Most applications do not send message with
shared sub-terms.

Here is an example of how a shared sub-term can be created:

kilo_byte() ->
kil o_byte(10, [42]).

kil o_byte(0, Acc) ->

Acc;
kil o_byte(N, Acc) ->

222 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.8 Processes

kil o_byte(N-1, [Acc|Acc])

kil o_byte/ 1l createsadeep list. If wecall | i st_to_bi nary/ 1, we can convert the deep list to a binary of
1024 bytes:

1> byte_size(list_to_binary(efficiency_guide:kilo_byte())).
1024

Usingtheerts_debug: si ze/ 1 BIF we can see that the deep list only requires 22 words of heap space:

2> erts_debug: si ze(efficiency_guide:kilo _byte()).
22

Usingtheerts_debug: fl at _si ze/ 1 BIF, we can calculate the size of the deep list if sharing isignored. It will
be the size of the list when it has been sent to another process or stored in an ETS table:

3> erts_debug: fl at_size(efficiency_guide:kilo_byte())
4094

We can verify that sharing will be lost if we insert the datainto an ETS table:

4> T = ets:new(tab, []).

17

5> ets:insert(T, {key,efficiency_guide:kilo_byte()}).

true

6> erts_debug: si ze(el ement (2, hd(ets:|ookup(T, key)))).

4094

7> erts_debug: flat_size(el enent (2, hd(ets:|ookup(T, key)))).
4094

When the datahas passed throughan ETStable, ert s_debug: si ze/ 1anderts_debug: fl at _si ze/ 1 return
the same value. Sharing has been lost.

In afuture release of Erlang/OTP, we might implement away to (optionally) preserve sharing. We have no plans to
make preserving of sharing the default behaviour, since that would penalize the vast mgjority of Erlang applications.

7.8.3 The SMP emulator

The SMP emulator (introduced in R11B) will take advantage of multi-core or multi-CPU computer by running severa
Erlang schedulers threads (typically, the same as the number of cores). Each scheduler thread schedules Erlang
processes in the same way as the Erlang scheduler in the non-SMP emulator.

To gain performance by using the SMP emulator, your application must have more than one runnable Erlang process
most of thetime. Otherwise, the Erlang emulator can still only run one Erlang process at the time, but you must still pay
the overhead for locking. Although we try to reduce the locking overhead as much as possible, it will never become
exactly zero.

Benchmarks that may seem to be concurrent are often sequential. The estone benchmark, for instance, is entirely
sequential. So is aso the most common implementation of the "ring benchmark™; usually one processis active, while
the otherswait in ar ecei ve statement.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 223

7.9 Drivers

The percept application can be used to profile your application to see how much potential (or lack thereof) it has for
concurrency.

7.9 Drivers

This chapter provides a (very) brief overview on how to write efficient drivers. It is assumed that you already have
agood understanding of drivers.

7.9.1 Drivers and concurrency
The run-time system will always take alock before running any codein adriver.

By default, that lock will be at the driver level, meaning that if several ports has been opened to the same driver, only
code for one port at the same time can be running.

A driver can be configured to instead have one lock for each port.

If adriverisusedin afunctional way (i.e. it holds no state, but only does some heavy calculation and returns aresult),
severa ports with registered names can be opened beforehand and the port to be used can be chosen based on the
scheduler ID like this:

- defi ne(PORT_NAMES() ,

{some_driver_01, sone_driver_02, some_driver_03, sone_driver_04,
sone_driver_05, sone_driver_06, sone_driver_07, sone_driver_08,
sone_driver_09, sone_driver_10, sone_driver_11, sone_driver_12,
sone_driver_13, sone_driver_14, sone_driver_15, sone_driver_16}).

client_port() ->
el enent (erl ang: system i nfo(schedul er _id) rem tupl e_size(?PORT_NAMES()) + 1,
?PORT_NAMES()) .

Aslong asthere are no more than 16 schedulers, there will never be any lock contention on the port lock for the driver.

7.9.2 Avoiding copying of binaries when calling a driver
There are basically two ways to avoid copying a binary that is sent to adriver.

If the Dat a argument for port_control/3 is a binary, the driver will be passed a pointer to the contents of the binary
and the binary will not be copied. If the Dat a argument isaniolist (list of binaries and lists), all binariesin theiolist
will be copied.

Therefore, if you want to send both a pre-existing binary and some additional data to a driver without copying the
binary, you must call port _contr ol / 3 twice; once with the binary and once with the additional data. However,
that will only work if there is only one process communicating with the port (because otherwise another process could
call the driver in-between the calls).

Another way to avoid copying binariesisto implement an out put v callback (instead of an out put callback) inthe
driver. If adriver hasanout put v callback, refc binariespassedinaniolistinthe Dat a argument for port_command/2
will be passed as references to the driver.

7.9.3 Returning small binaries from a driver

The run-time system can represent binaries up to 64 bytes as heap binaries. They will always be copied when sentina
messages, but they will require less memory if they are not sent to another process and garbage collection is cheaper.

224 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.10 Advanced

If you know that the binaries you return are always small, you should use driver API calls that do not require a pre-
allocated binary, for instance driver_output() or driver_output_term() using the ERL_DRV_BUF2BI NARY format, to
allow the run-time to construct a heap binary.

7.9.4 Returning big binaries without copying from a driver

To avoid copying datawhen abig binary is sent or returned from the driver to an Erlang process, the driver must first
allocate the binary and then send it to an Erlang process in some way.

Usedriver_alloc_binary() to allocate a binary.
There are several waysto send abinary created withdri ver _al | oc_bi nary().

« Fromthecont r ol calback, abinary can be returned provided that set_port_control() has been called with the
flag value PORT_CONTROL_FLAG_BI NARY.

* A single binary can be sent with driver_output_binary().
* Using driver_output_term() or driver_send_term(), abinary can be included in an Erlang term.

7.10 Advanced
7.10.1 Memory

A good start when programming efficiently is to have knowledge about how much memory different data types and
operationsrequire. It isimplementati on-dependent how much memory the Erlang data types and other items consume,
but here are some figures for erts-5.2 system (OTP release R9B). (There have been no significant changesin R13.)

The unit of measurement is memory words. There exists both a 32-bit and a 64-bit implementation, and a word is
therefore, 4 bytes or 8 bytes, respectively.

Datatype Memory size
1 word
On 32-bit architectures: -134217729 < i < 134217728
Small integer (28 bits)

On 64-hit architectures; -576460752303423489 < i <
576460752303423488 (60 bits)

Big integer 3..N words

1 word. Note: an atom refers into an atom table which
also consumes memory. The atom text is stored once

Atom for each unique atom in this table. The atom table is not
garbage-collected.

Float On 32-hit architectures: 4 words
On 64-hit architectures: 3 words

Binary 3..6 + data (can be shared)

List 1 word + 1 word per element + the size of each element

String (isthe same as alist of integers) 1 word + 2 words per character

Tuple 2 words + the size of each element

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 225

7.10 Advanced

1 word for aprocess identifier from the current local
node, and 5 words for a process identifier from another
node. Note: a process identifier refersinto a process
table and a node table which also consumes memory.

Pid

1 word for a port identifier from the current local node,
and 5 words for a port identifier from another node.
Note: aport identifier refers into a port table and a node
table which & so consumes memory.

On 32-bit architectures. 5 words for areference from
the current local node, and 7 words for a reference from
another node.

Reference On 64-bit architectures. 4 words for areference from
the current local node, and 6 words for a reference from
another node. Note: areference refers into a node table
which also consumes memory.

9..13 words + size of environment. Note: afun refers

Fun into a fun table which also consumes memory.

Initially 768 words + the size of each element (6 words
Etstable + size of Erlang data). The table will grow when
necessary.

327 words when spawned including a heap of 233

Erlang process words.

Table 10.1: Memory size of different data types

7.10.2 System limits

The Erlang language specification puts no limits on number of processes, length of atoms etc., but for performance
and memory saving reasons, there will always be limits in a practical implementation of the Erlang language and
execution environment.

Processes

The maximum number of simultaneously alive Erlang processesis by default 32768. This limit can be raised up
to at most 268435456 processes at startup (see documentation of the system flag +P in the erl(1) documentation).
The maximum limit of 268435456 processes will at least on a 32-bit architecture be impossible to reach due to
memory shortage.

Distributed nodes
Known nodes

A remote node Y hasto be known to node X if there exist any pids, ports, references, or funs (Erlang data types)
fromY on X, or if X and Y are connected. The maximum number of remote nodes simultaneously/ever known to
anodeislimited by the maximum number of atoms available for node names. All data concerning remote nodes,
except for the node name atom, are garbage-collected.

226 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.11 Profiling

Connected nodes

The maximum number of simultaneously connected nodes is limited by either the maximum number of
simultaneously known remote nodes, the maximum number of (Erlang) ports available, or the maximum
number of sockets available.

Charactersin an atom
255

Atoms
By default, the maximum number of atomsis 1048576. This limit can be raised or lowered using the +t option.

Ets-tables
The default is 1400, can be changed with the environment variable ERL_MAX_ETS TABLES.

Elementsin a tuple
The maximum number of elementsin atupleis 67108863 (26 bit unsigned integer). Other factors such as the
available memory can of course make it hard to create atuple of that size.

Sze of binary
In the 32-bit implementation of Erlang, 536870911 bytesis the largest binary that can be constructed or
matched using the bit syntax. (In the 64-bit implementation, the maximum size is 2305843009213693951
bytes.) If the limit is exceeded, bit syntax construction will fail withasyst em | i mi t exception, while any
attempt to match a binary that istoo large will fail. Thislimit is enforced starting with the R11B-4 release; in
earlier releases, operations on too large binaries would in general either fail or give incorrect results. In future
releases of Erlang/OTP, other operations that create binaries (such asl i st _t o_bi nar y/ 1) will probably
also enforce the same limit.

Total amount of data allocated by an Erlang node
The Erlang runtime system can use the complete 32 (or 64) bit address space, but the operating system often
limits a single process to use less than that.

Length of a node name
An Erlang node name has the form host@shortname or host@longname. The node name is used as an atom
within the system so the maximum size of 255 holds for the node name too.

Open ports

The maximum number of simultaneously open Erlang portsis by default 1024. This limit can be raised up to at
most 268435456 at startup (see environment variable ERL_MAX _PORTS in erlang(3)) The maximum limit of
268435456 open ports will at least on a 32-bit architecture be impossible to reach due to memory shortage.

Open files, and sockets
The maximum number of simultaneously open files and sockets depend on the maximum number of Erlang
ports available, and operating system specific settings and limits.

Number of arguments to a function or fun
255

7.11 Profiling

7.11.1 Do not guess about performance - profile

Even experienced software developers often guess wrong about where the performance bottlenecks are in their
programs.

Therefore, profile your program to see where the performance bottlenecks are and concentrate on optimizing them.
Erlang/OTP contains several tools to help finding bottlenecks.

f pr of and epr of provide the most detailed information about where the time is spent, but they significantly slow
downs the programs they profile.

If the program istoo big to be profiled by f pr of or epr of , cover and cpr of could be used to locate parts of the
code that should be more thoroughly profiled using f pr of or epr of .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 227

7.11 Profiling

cover provides execution counts per line per process, with less overhead than f pr of / epr of . Execution counts
can with some caution be used to locate potential performance bottlenecks. The most lightweight tool iscpr of , but
it only provides execution counts on afunction basis (for all processes, not per process).

7.11.2 Big systems

If you have a big system it might be interesting to run profiling on a smulated and limited scenario to start with.
But bottlenecks have a tendency to only appear or cause problems when there are many things going on at the same
time, and when there are many nodes involved. Therefore it is desirable to aso run profiling in a system test plant
on areal target system.

When your system is big you do not want to run the profiling tools on the whole system. Y ou want to concentrate on
processes and modules that you know are central and stand for abig part of the execution.

7.11.3 What to look for

When analyzing the result file from the profiling activity you should ook for functionsthat are called many times and
have along "own" execution time (time excluded calls to other functions). Functions that just are called very many
times can also be interesting, as even small things can add up to quite a bit if they are repeated often. Then you need
to ask yourself what can | do to reduce this time. Appropriate types of questions to ask yourself are:

* Can| reduce the number of timesthe functionis called?

* Arethereteststhat can be run less often if | change the order of tests?

* Arethere redundant tests that can be removed?

* Isthere some expression calculated giving the same result each time?

» Isthere other ways of doing this that are equivalent and more efficient?

e Can| use another internal data representation to make things more efficient?

These questions are not always trivial to answer. Y ou might need to do some benchmarks to back up your theory, to
avoid making things slower if your theory iswrong. See benchmarking.

7.11.4 Tools
fprof

f pr of measures the execution time for each function, both own time i.e how much time a function has used for its
own execution, and accumulated time i.e. including called functions. The values are displayed per process. You also
get to know how many times each function has been called. f pr of is based on trace to file in order to minimize
runtime performance impact. Using fprof is just a matter of calling a few library functions, see fprof manual page
under the application tools.

f pr of wasintroduced in version R8 of Erlang/OTP. Its predecessor epr of that is based on the Erlang trace BIFs,
is still available, see eprof manual page under the application tools. Eprof shows how much time has been used by
each process, and in which function calls this time has been spent. Time is shown as percentage of total time, not
as absolute time.

cover

cover 'sprimary useis coverage analysisto verify test cases, making sure all relevant codeis covered. cover counts
how many times each executable line of code is executed when a program isrun. Thisis done on a per module basis.
Of course this information can be used to determine what code is run very frequently and could therefore be subject
for optimization. Using cover is just a matter of calling a few library functions, see cover manual page under the
application tools.

228 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.11 Profiling

cprof

cpr of issomething in between f pr of and cover regarding features. It counts how many times each function is
called when the program is run, on a per module basis. cpr of has alow performance degradation (versus f pr of
and epr of) and does not need to recompile any modules to profile (versuscover).

Tool summarization

i Effects on Records Records Records
Size of program ; Records
Tool Results : number Execution garbage
result execution . caled by ;
: of cals time collection
time
f pr of Foersnlzarrgecn/ large significant es total and es es
P file 9 dowdown |7 own y y
Per proc significant
epr of functionto | medium 9 yes only total no no
. slowdown
screen/file
per modle moderate .
cover to screen/ small yes, per line | no no no
file slowdown
cpr of per module small small es no no no
P tocaller dowdown |7
Table 11.1:

7.11.5 Benchmarking

The main purpose of benchmarking isto find out which implementation of a given algorithm or function isthe fastest.
Benchmarking isfar from an exact science. Today's operating systems generally run background tasksthat are difficult
to turn off. Caches and multiple CPU cores doesn't make it any easier. It would be best to run Unix-computers in
single-user mode when benchmarking, but that is inconvenient to say the least for casual testing.

Benchmarks can measure wall-clock time or CPU time.

timer:tc/3 measures wall-clock time. The advantage with wall-clock time is that 1/O, swapping, and other activities
in the operating-system kernel are included in the measurements. The disadvantage is that the the measurements will
vary wildly. Usually it is best to run the benchmark several times and note the shortest time - that time should be the
minimum time that is possible to achieve under the best of circumstances.

statistics/1 with the argument r unt i me measures CPU time spent in the Erlang virtual machine. The advantage is
that the results are more consistent from run to run. The disadvantage is that the time spent in the operating system
kernel (such as swapping and 1/0) are not included. Therefore, measuring CPU time is misleading if any 1/0 (file or
sockets) are involved.

Itis probably agood ideato do both wall-clock measurements and CPU time measurements.
Some additional advice:

e Thegranularity of both types measurement could be quite high so you should make sure that each individual
measurement lasts for at least several seconds.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 229

7.11 Profiling

To make the test fair, each new test run should run in its own, newly created Erlang process. Otherwise, if all
tests runs in the same process, the later tests would start out with larger heap sizes and therefore probably does
less garbage collections. Y ou could also consider restarting the Erlang emulator between each test.

Do not assume that the fastest implementation of a given algorithm on computer architecture X aso is the fast
on computer architecture Y.

230 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.1 Introduction

8 User's Guide

8.1 Introduction

8.1.1 Purpose

The purpose of this tutorial isto give the reader an orientation of the different interoperability mechanisms that can
be used when integrating a program written in Erlang with a program written in another programming language, from
the Erlang programmer's point of view.

8.1.2 Prerequisites

Itisassumed that thereader isaskilled Erlang programmer, familiar with concepts such as Erlang datatypes, processes,
messages and error handling.

Toillustrate the interoperability principles C programs running in aUNIX environment have been used. It is assumed
that the reader has enough knowledge to be able to apply these principles to the relevant programming languages and
platforms.

Note:

For the sake of readability, the example code has been kept as simple as possible. It does not include functionality
such as error handling, which might be vital in areal-life system.

8.2 Overview

8.2.1 Built-In Mechanisms

There are two interoperability mechanisms built into the Erlang runtime system. One is distributed Erlang and the
other oneis ports. A variation of portsis linked-in drivers.

Distributed Erlang

An Erlang runtime system is made into a distributed Erlang node by giving it a name. A distributed Erlang node
can connect to and monitor other nodes, it is also possible to spawn processes at other nodes. Message passing and
error handling between processes at different nodes are transparent. There exists anumber of useful st dl i b modules
intended for use in a distributed Erlang system; for example, gl obal which provides global name registration. The
distribution mechanism is implemented using TCP/IP sockets.

When to use: Distributed Erlang is primarily used for communication Erlang-Erlang. It can also be used for
communication between Erlang and C, if the C program isimplemented as a C node, see below.

Where to read more: Distributed Erlang and some distributed programming techniques are described in the Erlang
book.

In the Erlang/OTP documentation there is a chapter about distributed Erlang in " Getting Started" (User's Guide).
Relevant man pages are er | ang (describesthe BIFs) and gl obal , net _adm pg2,r pc, pool andsl ave.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 231

8.2 Overview

Ports and Linked-In Drivers

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. They
provide a byte-oriented interface to an external program. When a port has been created, Erlang can communicate with
it by sending and receiving lists of bytes (not Erlang terms). This means that the programmer may have to invent a
suitable encoding and decoding scheme.

The actual implementation of the port mechanism depends on the platform. In the Unix case, pipes are used and the
external program should as default read from standard input and write to standard output. Theoretically, the externa
program could be written in any programming language as long as it can handle the interprocess communication
mechanism with which the port isimplemented.

The external program resides in another OS process than the Erlang runtime system. In some cases this is not
acceptable, consider for exampledriverswith very hard timerequirements. It istherefore possibleto writeaprogramin
C according to certain principles and dynamically link it to the Erlang runtime system, thisis called alinked-in driver.

When to use: Being the basic mechanism, ports can be used for al kinds of interoperability situations wherethe Erlang
program and the other program runs on the same machine. Programming is fairly straight-forward.

Linked-in driversinvolveswriting certain call-back functionsin C. Very good skills are required as the code is linked
to the Erlang runtime system.

Warning:

An erroneous linked-in driver will cause the entire Erlang runtime system to leak memory, hang or crash.

Where to read more: Ports are described in the "Miscellaneous Items” chapter of the Erlang book. Linked-in drivers
are described in Appendix E.

The BIF open_port/ 2 isdocumented in the man page for er | ang. For linked-in drivers, the programmer needs
to read the information in the man pageforer| _ddl | .

Examples: Port example.

8.2.2 C and Java Libraries

Erl_Interface

Very often the program at the other side of a port is a C program. To help the C programmer a library called
Erl_Interface has been developed. It consists of five parts:

« erl_marshal ,erl _etermerl _format,erl _mal | oc Handling of the Erlang external term format.

* erl _connect Communication with distributed Erlang, see C nodes below.

e erl _error Error print routines.

 erl_gl obal Accessglabally registered names.

* Regi stry Store and backup of key-value pairs.

The Erlang externa term format is a representation of an Erlang term as a sequence of bytes, a binary. Conversion
between the two representations is done using BIFs.

Binary = termto_binary(Term
Term = binary_to_tern(Binary)

232 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.2 Overview

A port can be set to use binaries instead of lists of bytes. It is then not necessary to invent any encoding/decoding
scheme. Erl_Interface functions are used for unpacking the binary and convert it into astruct similar to an Erlang term.
Such a struct can be manipulated in different ways and be converted to the Erlang external format and sent to Erlang.

When to use: In C code, in conjunction with Erlang binaries.

Whereto read more: Read about the Erl_|nterface User's Guide; Command Reference and Library Reference. In R5B
and earlier versions the information can be found under the Kernel application.

Examples:erl_interface example.

C Nodes

A Cprogramwhich usestheErl_Interfacefunctionsfor setting up aconnection to and communi cating with adistributed
Erlang node is called a C node, or a hidden node. The main advantage with a C node is that the communication from
the Erlang programmer's point of view is extremely easy, since the C program behaves as a distributed Erlang node.

When to use: C nodes can typically be used on device processors (as opposed to control processors) where C isabetter
choice than Erlang due to memory limitations and/or application characteristics.

Wheretoread more: Intheer | _connect part of the Erl_Interface documentation, see above. The programmer aso
needs to be familiar with TCP/IP sockets, see below, and distributed Erlang, see above.

Examples:C node example.

Jinterface
In Erlang/OTP R6B, alibrary similar to Erl_Interface for Java was added called jinterface.

8.2.3 Standard Protocols

Sometimes communication between an Erlang program and another program using a standard protocol is desirable.
Erlang/OTP currently supports TCP/IP and UDP sockets, SNMP, HTTP and 11OP (CORBA). Using one of the latter
three requires good knowledge about the protocol and is not covered by thistutorial. Please refer to the documentation
for the SNMP, Inets and Orber applications, respectively.

Sockets

Simply put, connection-oriented socket communication (TCP/IP) consists of an initiator socket ("server") started at
a certain host with a certain port number. A connector socket (“client") aware of the initiator's host name and port
number can connect to it and data can be sent between them. Connection-less socket communication (UDP) consists of
an initiator socket at a certain host with a certain port number and a connector socket sending datato it. For adetailed
description of the socket concept, please refer to a suitable book about network programming. A suggestion is UNIX
Network Programming, Volume 1: Networking APIs - Sockets and XTI by W. Richard Stevens, ISBN: 013490012X.

In Erlang/OTP, accessto TCP/IP and UDP socketsis provided by the Kernel modulesgen_t cp andgen_udp. Both
are easy to use and do not require any deeper knowledge about the socket concept.

When to use: For programs running on the same or on another machine than the Erlang program.
Whereto read more: The man pagesfor gen_t cp and gen_udp.

8.24 IC

IC (IDL Compiler) is an interface generator which given an IDL interface specification automatically generates stub
codein Erlang, C or Java. Please refer to the IC User's Guide and 1C Reference Manual.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 233

8.3 Problem Example

8.2.5 Old Applications

There are two old applications of interest when talking about interoperability: 1G which was removed in Erlang/OTP
R6B and Jive which was removed in Erlang/OTP R7B. Both applications have been replaced by | C and are mentioned
here for reference only.

IG (Interface Generator) automatically generated code for port or socket communication between an Erlang program
and a C program, given a C header file with certain keywords. Jive provided a simple interface between an Erlang
program and a Java program.

8.3 Problem Example

8.3.1 Description

A common interoperability situation is when there exists a piece of code solving some complex problem, and we
would like to incorporate this piece of code in our Erlang program. Suppose for example we have the following C
functions that we would like to be able to call from Erlang.

/* conplex.c */
int foo(int x) {

return x+1;

}

int bar(int y) {
return y*2;

}

(For the sake of keeping the example as simple as possible, the functions are not very complicated in this case).
Preferably we would liketo ableto call f oo and bar without having to bother about them actually being C functions.

% Erl ang code

Res = conpl ex: foo(X),

The communication with C is hidden in the implementation of conpl ex. er | . Inthefollowing chaptersit is shown
how this module can be implemented using the different interoperability mechanisms.

8.4 Ports

Thisis an example of how to solve the example problem by using a port.

234 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.4 Ports

ERTS External program

Gt

I:l OFprocess

O Efangprocess

¥

f

— Communication

Figure 4.1: Port Communication.

8.4.1 Erlang Program

First of all communication between Erlang and C must be established by creating the port. The Erlang process which
creates a port is said to be the connected process of the port. All communication to and from the port should go via
the connected process. If the connected process terminates, so will the port (and the external program, if it iswritten
correctly).

Theportiscreated using the BIF open_por t/ 2 with{ spawn, Ext Pr g} asthefirst argument. Thestring Ext Pr g
isthe name of the external program, including any command line arguments. The second argument isalist of options,
in this case only { packet, 2}. This option says that a two byte length indicator will be used to simplify the
communication between C and Erlang. Adding the length indicator will be done automatically by the Erlang port, but
must be done explicitly in the external C program.

The processis also set to trap exits which makes it possible to detect if the external program fails.

- modul e(conpl ex1) .
-export([start/1, init/1]).

start (ExtPrg) ->
spawn(?MODULE, init, [ExtPrg]).

init(ExtPrg) ->
regi ster(conpl ex, self()),
process_flag(trap_exit, true),
Port = open_port ({spawn, ExtPrg}, [{packet, 2}]),
| oop(Port).

Now it is possible to implement conpl ex1: f oo/ 1 and conpl ex1: bar/ 1. They both send a message to the
conpl ex process and receive the reply.

foo(X) ->
call _port({foo, X}).
bar(Y) ->

call _port({bar, Y}).

cal |l _port(Msg) ->
complex ! {call, self(), Mg},
recei ve
{conpl ex, Result} ->
Resul t
end.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 235

8.4 Ports

The conpl ex process encodes the message into a sequence of bytes, sendsit to the port, waits for areply, decodes
the reply and sends it back to the caller.

| oop(Port) ->
receive
{call, Caller, Mg} ->
Port ! {self(), {comuand, encode(Msqg)}},
receive
{Port, {data, Data}} ->
Caller ! {conpl ex, decode(Data)}
end,
| oop(Port)
end.

Assuming that both the arguments and the results from the C functions will be less than 256, a very simple encoding/
decoding scheme is employed where f 00 is represented by the byte 1, bar is represented by 2, and the argument/
result is represented by a single byte aswell.

encode({foo, X}) ->[1, X;
encode({bar, Y}) ->[2, VY].

decode([Int]) -> Int.

The resulting Erlang program, including functionality for stopping the port and detecting port failuresis shown below.

- modul e(conpl ex1) .
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start (ExtPrg) ->

spawn(?MODULE, init, [ExtPrg]).
stop() ->

conpl ex | stop.

foo(X) ->
call _port({foo, X}).
bar(Y) ->

call _port({bar, Y}).

call _port(Msg) ->
conplex ! {call, self(), Mg},
recei ve
{conpl ex, Result} ->
Resul t
end.

init(ExtPrg) ->
regi ster(conpl ex, self()),
process_flag(trap_exit, true),
Port = open_port ({spawn, ExtPrg}, [{packet, 2}]),
| oop(Port).

| oop(Port) ->
receive
{call, Caller, Mg} ->
Port | {self(), {command, encode(Msqg)}},

236 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.4 Ports

receive
{Port, {data, Data}} ->
Caller ! {conpl ex, decode(Data)}
end,
| oop(Port);
stop ->
Port | {self(), close},
receive
{Port, closed} ->
exit(nornmal)
end;
{"EXIT', Port, Reason} ->
exit(port_term nated)
end.

encode({foo, X}) ->[1, X;
encode({bar, Y}) ->[2, VY].

decode([Int]) -> Int.

8.4.2 C Program

On the C side, it is necessary to write functions for receiving and sending data with two byte length indicators from/
to Erlang. By default, the C program should read from standard input (file descriptor 0) and write to standard output
(file descriptor 1). Examples of such functions, r ead_cnd/ 1 andw i t e_cnd/ 2, are shown below.

/* erl _commc */
typedef unsi gned char byte;

read_cnd(byte *buf)
{

int len;

if (read_exact(buf, 2) I= 2)
return(-1);

len = (buf[0] << 8) | buf[1];

return read_exact (buf, len);

}
wite cnd(byte *buf, int |en)
{

byte Ii;

li = (len >> 8) & Oxff;
wite exact(&i, 1);

li =len & Oxff;
wite exact(&i, 1);

return wite_exact (buf, len);

}
read_exact (byte *buf, int |en)
{
int i, got=0;
do {
if ((i = read(0, buf+got, len-got)) <= 0)
return(i);
got += i,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 237

8.4 Ports

} while (got<len);

return(len);

}
wite_exact(byte *buf, int |en)
{
int i, wote = 0;
do {
if ((i =wite(l, buf+wote, len-wote)) <= 0)
return (i);
wote += i;

} while (wote<len);

return (len);

}

Notethat st di nandst dout arefor buffered input/output and should not be used for the communication with Erlang!

Inthermai n function, the C program should listen for amessage from Erlang and, according to the sel ected encoding/
decoding scheme, use thefirst byte to determine which function to call and the second byte as argument to the function.
The result of calling the function should then be sent back to Erlang.

/* port.c */
typedef unsigned char byte;

int main() {
int fn, arg, res;
byt e buf[100];

while (read_cnd(buf) > 0) {
fn = buf[0];
arg = buf[1];

if (fn == 1) {
res = foo(arg);

} elseif (fn == 2) {
res = bar(arg);

}
buf [0] = res;
wite_cnd(buf, 1);

Note that the C program isin awhi | e-loop checking for the return value of r ead_cnd/ 1. The reason for thisis
that the C program must detect when the port gets closed and terminate.

8.4.3 Running the Example
1. Compilethe C code.

uni x> gcc -0 extprg conplex.c erl_conmc port.c

238 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

2. Start Erlang and compile the Erlang code.

uni x> erl
Erl ang (BEAM enul ator version 4.9.1.2

Eshell V4.9.1.2 (abort with "G
1> c(conpl ex1).
{ ok, conpl ex1}

3. Run the example.

2> conpl exl:start("extprg").
<0. 34. 0>

3> conpl ex1: foo(3).

4

4> conpl ex1: bar (5) .

10

5> conpl ex1: st op() .

st op

8.5 Erl_Interface

Thisis an example of how to solve the example problem by using aport and er| _i nt er f ace. It is necessary to
read the port example before reading this chapter.

8.5.1 Erlang Program

The example below shows an Erlang program communicating with a C program over a plain port with home made
encoding.

- modul e(conpl ex1) .
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start (ExtPrg) ->

spawn(?MODULE, init, [ExtPrg]).
stop() ->

conpl ex | stop.

foo(X) ->
call _port({foo, X}).
bar(Y) ->

call _port({bar, Y}).

call _port(Msg) ->
conplex ! {call, self(), Mg},
receive
{compl ex, Result} ->
Resul t
end.

init(ExtPrg) ->
regi ster(conpl ex, self()),
process_flag(trap_exit, true),
Port = open_port ({spawn, ExtPrg}, [{packet, 2}]),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 239

8.5 Erl_Interface

| oop(Port).

| oop(Port) ->
receive
{call, Caller, Mg} ->
Port | {self(), {command, encode(Msqg)}},
recei ve
{Port, {data, Data}} ->
Caller ! {conplex, decode(Data)}
end
| oop(Port);
stop ->
Port | {self(), close},
receive
{Port, closed} ->
exit(nornal)
end
{"EXIT', Port, Reason} ->
exit(port_term nated)
end

encode({foo, X}) ->[1, X;
encode({bar, Y}) ->[2, VY].

decode([Int]) -> Int.

Compared to the Erlang module above used for the plain port, there are two differences when using Erl_Interface
on the C side: Since Erl_Interface operates on the Erlang external term format the port must be set to use binaries
and, instead of inventing an encoding/decoding scheme, theBIFst erm t o_bi nary/ 1andbi nary _to term 1
should be used. That is:

open_port ({spawn, ExtPrg}, [{packet, 2}])

is replaced with:

open_port ({spawn, ExtPrg}, [{packet, 2}, binary])

And:

Port | {self(), {command, encode(Msqg)}},
recei ve
{Port, {data, Data}} ->
Caller ! {conplex, decode(Data)}
end

is replaced with:

Port | {self(), {comand, termto_binary(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {conplex, binary_to_term Data)}
end

240 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

The resulting Erlang program is shown below.

- modul e(conpl ex2) .
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start (ExtPrg) ->

spawn(?MODULE, init, [ExtPrg]).
stop() ->

conpl ex ! stop.

foo(X) ->
call _port({foo, X}).
bar(Y) ->

call _port({bar, Y}).

call _port(Msg) ->
conplex ! {call, self(), Mg},
receive
{conpl ex, Result} ->
Resul t
end.

init(ExtPrg) ->
regi ster(conpl ex, self()),
process _flag(trap_exit, true),
Port = open_port ({spawn, ExtPrg}, [{packet, 2}, binary]),
| oop(Port).

| oop(Port) ->
receive
{call, Caller, Mg} ->
Port ! {self(), {comand, termto_binary(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {conplex, binary to_termnmData)}
end
| oop(Port);
stop ->
Port | {self(), close},
receive
{Port, closed} ->
exi t(normal)
end
{"EXIT', Port, Reason} ->
exit(port_term nated)
end

Notethat calling conpl ex2: f oo/ 1 and conpl ex2: bar/ 1 will resultinthetuple{f oo, X} or{bar, Y} being
sent to the conpl ex process, which will code them as binaries and send them to the port. This means that the C
program must be able to handle these two tuples.

8.5.2 C Program

The example below shows a C program communicating with an Erlang program over a plain port with home made
encoding.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 241

8.5 Erl_Interface

[* port.c */
typedef unsigned char byte;

int main() {
int fn, arg, res;
byt e buf[100];

while (read_cnd(buf) > 0) {
fn = buf[0];
arg = buf[1];

if (fn == 1) {
res = foo(arg);

} elseif (fn == 2) {
res = bar(arg);

}
buf [0] = res;
wite_cnd(buf, 1);

Compared to the C program above used for the plain port the whi | e-loop must be rewritten. Messages coming from
the port will be on the Erlang external term format. They should be converted into an ETERMstruct, a C struct similar
toan Erlang term. Theresult of callingf oo() or bar () must be converted to the Erlang external term format before
being sent back to the port. But before calling any other er | _i nt er f ace function, the memory handling must be

initiated.

erl _init(NULL, 0);

For reading from and writing to the port the functionsread_cnd() and wite_cnd() from the erl_comm.c

example below can still be used.

/* erl _commc */
typedef unsi gned char byte;

read_cnd(byte *buf)
{

int len;

if (read_exact (buf, 2) I= 2)
return(-1);

len = (buf[0] << 8) | buf[1];

return read_exact (buf, len);

}

wite cnd(byte *buf, int |en)

{
byte Ii;

li = (len >> 8) & Oxff;
wite exact(&i, 1);

li =len & Oxff;
wite exact(&i, 1);

242 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

return wite_exact (buf, len);

}
read_exact (byte *buf, int |en)
{
int i, got=0;
do {
if ((i =read(0, buf+got, len-got)) <= 0)
return(i);
got +=i;

} while (got<len);

return(len);

}
wite_exact(byte *buf, int |en)
{
int i, wote = 0;
do {
if ((i =wite(l, buf+wote, len-wote)) <= 0)
return (i);
wrote += i;

} while (wote<len);

return (len);

}

Thefunctioner| _decode() fromer| _mar shal will convert the binary into an ETERMstruct.

int main() {
ETERM *t upl ep;

while (read_cnd(buf) > 0) {
tupl ep = erl _decode(buf);

Inthiscaset upl ep now pointsto an ETERMstruct representing a tuple with two elements; the function name (atom)
and the argument (integer). By using thefunctioner | _el enent () fromer| _et er mitispossible to extract these
elements, which also must be declared as pointers to an ETERMstruct.

fnp = erl _elenent(1, tuplep);
argp = erl _elenent (2, tuplep);

The macros ERL_ATOM PTRand ERL | NT_VALUE fromer | _et er mcan be used to obtain the actual values of
the atom and the integer. The atom value is represented as a string. By comparing this value with the strings "foo"
and "bar" it can be decided which function to call.

if (strncnp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL_I NT_VALUE(argp));

} else if (strncnp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar (ERL_I NT_VALUE(argp));

}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 243

8.5 Erl_Interface

Now an ETERM struct representing the integer result can be constructed using the function er | _nk_i nt () from
erl _etermltisaso possibleto usethefunctioner| format () fromthemoduleer| format.

intp = erl _nk_int(res);

The resulting ETERM struct is converted into the Erlang external term format using the function er | _encode()
fromer| _mar shal and senttoErlangusingwrite_cnd().

erl _encode(intp, buf);
wite_cnd(buf, erl_etermlen(intp));

Last, the memory allocated by the ETERMcreating functions must be freed.

erl _free_conpound(tupl ep);
erl _free_term(fnp);

erl _free_term(argp);

erl _free_tern(intp);

Theresulting C program is shown below:

/[* ei.c */

#include "erl _interface. h"
#i ncl ude "ei.h"

typedef unsi gned char byte;

int main() {
ETERM *t upl ep, *intp;
ETERM *fnp, *argp;
int res;
byt e buf[100];
long all ocated, freed;

erl _init(NULL, 0);

whil e (read_cnd(buf) > 0) {
tupl ep = erl _decode(buf);
fnp = erl _elenent(1, tuplep);
argp = erl _elenment (2, tuplep);

if (strncmp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL_I NT_VALUE(argp));

} else if (strncnp(ERL_ATOM PTR(fnp), "bar", 17) == 0) {
res = bar (ERL_I NT_VALUE(argp));

}

intp = erl _nk_int(res);
erl _encode(intp, buf);
wite cnd(buf, erl_termlen(intp));

erl _free_conmpound(tupl ep);

erl _free_ termfnp);
erl _free_ term(argp);

244 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 Port drivers

erl _free_tern(intp)
}
}

8.5.3 Running the Example

1. Compile the C code, providing the paths to the include fileser| _i nt erface. h and ei . h, and to the libraries
erl interfaceandei.

uni x> gcc -0 extprg -l/usr/local/otp/lib/erl_interface-3.2. 1/include \\
-L/usr/local/otp/lib/erl _interface-3.2.1/lib \\
conplex.c erl_commc ei.c -lerl _interface -lei

In R5B and later versions of OTP, the i ncl ude and |i b directories are situated under OTPROOT/ | i b/
erl _interface- VSN, where OTPROOT isthe root directory of the OTP installation (/ usr /| ocal / ot p inthe
example above) and VSN isthe version of theer | _i nt er f ace application (3.2.1 in the example above).

In R4B and earlier versions of OTP, i ncl ude and | i b are situated under OTPROOT/ usr .

2. Start Erlang and compile the Erlang code.

uni x> erl
Erl ang (BEAM enul ator version 4.9.1.2

Eshell V4.9.1.2 (abort with "G
1> c(conpl ex2)
{ ok, conpl ex2}

3. Run the example.

2> conpl ex2: start ("extprg").
<0. 34. 0>

3> conpl ex2: foo(3).

4

4> conpl ex2: bar (5) .

10

5> conpl ex2: bar (352) .

704

6> conpl ex2: stop() .

st op

8.6 Port drivers

Thisis an example of how to solve the example problem by using alinked in port driver.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 245

8.6 Port drivers

emulator .
Port driver
Connected shared librar
process Port Y
OS5 process

Q Erlang process
—#= Commnmnication

Figure 6.1: Port Driver Communication.

8.6.1 Port Drivers

A port driver is alinked in driver, that is accessible as a port from an Erlang program. It is a shared library (SO in
Unix, DLL in Windows), with specia entry points. The Erlang runtime calls these entry points, when the driver is
started and when data is sent to the port. The port driver can also send datato Erlang.

Since a port driver is dynamically linked into the emulator process, this is the fastest way of calling C-code from
Erlang. Calling functions in the port driver requires no context switches. But it is also the least safe, because a crash
in the port driver brings the emulator down too.

8.6.2 Erlang Program

Just aswith aport program, the port communicates with a Erlang process. All communi cation goes through one Erlang
process that is the connected process of the port driver. Terminating this process closes the port driver.

Before the port is created, the driver must be loaded. This is done with the functioner| _dl | : | oad_dri ver/1,
with the name of the shared library as argument.

Theport isthen created usingtheBIFopen_port / 2 withthetuple{ spawn, Dri ver Name} asthefirst argument.
The string Shar edLi b isthe name of the port driver. The second argument is alist of options, none in this case.

- modul e(conpl ex5) .
-export([start/1, init/1]).

start (SharedLi b) ->
case erl _ddl|:|oad_driver(".", SharedLib) of
ok -> ok;
\O0lil{error, already_| oaded} -> ok;
\011_ -> exit({error, could_not_|oad_driver})
end,
spawn(?MODULE, init, [SharedLib]).

i ni t(SharedLib) ->
regi ster(conpl ex, self()),

246 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 Port drivers

Port = open_port ({spawn, SharedLib}, []),
| oop(Port).

Now it is possible to implement conpl ex5: f oo/ 1 and conpl ex5: bar/ 1. They both send a message to the
conpl ex process and receive the reply.

foo(X) ->
call _port({foo, X}).
bar (Y) ->

call _port({bar, Y}).

call _port(Msg) ->
conplex ! {call, self(), Mg},
receive
{conpl ex, Result} ->
Resul t
end.

The conpl ex process encodes the message into a sequence of bytes, sendsit to the port, waits for areply, decodes
the reply and sends it back to the caller.

| oop(Port) ->
receive
{call, Caller, Mg} ->
Port | {self(), {comuand, encode(Msqg)}},

receive
\011 {Port, {data, Data}} ->
Caller ! {conpl ex, decode(Data)}
end,
| oop(Port)

end.

Assuming that both the arguments and the results from the C functions will be less than 256, a very simple encoding/
decoding scheme is employed where f 00 is represented by the byte 1, bar is represented by 2, and the argument/
result is represented by a single byte aswell.

encode({foo, X}) ->[1, X;
encode({bar, Y}) ->[2, VY].

decode([Int]) -> Int.

The resulting Erlang program, including functionality for stopping the port and detecting port failuresis shown below.

- modul e(conpl ex5) .
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start (SharedLi b) ->
case erl _ddll:load_driver(".", SharedLib) of
ok -> ok;
{error, already_| oaded} -> ok;
_ ->exit({error, could_not_|oad_driver})
end,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 247

8.6 Port drivers

spawn(?MODULE, i

i ni t(SharedLib) ->

regi st er (conpl ex,
({spawn, Shar edLi b},

Port = open_port
| oop(Port).

stop() ->
conpl ex | stop.

foo(X) ->

cal | _port({foo,
bar(Y) ->

cal | _port({bar,

call _port(Msg) ->
conplex ! {call,

nit, [SharedLib]).

self()),

x) .
Y1).

sel f(), Mg},

(1.

receive
{ conpl ex,
Resul t
end.

Result} ->

| oop(Port) ->

recei ve

{call, Caller, Mg} ->
Port | {self(), {command,
receive

{Port, {data, Data}} ->

Caller ! {conpl ex,

end,

| oop(Port);
stop ->

Port | {self(),

recei ve

{Port, closed} ->
exit(nornal)
end;

{"EXIT', Port, Reason} ->
io:format("~p ~n", [Reason]),
exit(port_term nated)

end.

encode(Msg)}},

decode(Dat a) }

cl ose},

-> [l! x]!
->[2, V].

encode({f oo,
encode({ bar,

X})
Y})

decode([Int]) -> Int.

8.6.3 C Driver

The C driver isamodule that is compiled and linked into a shared library. It uses a driver structure, and includes the
header fileer| _dri ver. h.

The driver structure is filled with the driver name and function pointers. It is returned from the specia entry point,
declared with themacro DRI VER_| NI T(<dri ver _nane>).

Thefunctionsfor receiving and sending data, are combined into afunction, pointed out by the driver structure. The data
sent into the port isgiven as arguments, and the datathe port sendsback is sent with the C-functiondr i ver _out put .

Since the driver is a shared module, not a program, no main function should be present. All function pointers are not
used in our example, and the corresponding fieldsinthedr i ver _ent ry structure are set to NULL.

All functionsin the driver, takes a handle (returned from st ar t), that isjust passed along by the erlang process. This
must in some way refer to the port driver instance.

248 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 Port drivers

The example_drv_start, isthe only function that is called with a handle to the port instance, so we must savethis. It is
customary to use a allocated driver-defined structure for this one, and pass a pointer back as a reference.

It isnot agood ideato use a global variable; since the port driver can be spawned by multiple Erlang processes, this
driver-structure should be instantiated multiple times.

/* port_driver.c */

#i ncl ude <stdi o. h>
#i nclude "erl _driver.h"

typedef struct {
Erl DrvPort port;
} exanpl e_dat a;

static Erl DrvData exanpl e _drv_start(Erl DrvPort port, char *buff)

{
exanpl e_data* d = (exanpl e_data*)driver_all oc(sizeof (exanpl e_data));
d->port = port;
return (Erl DrvDat a)d;
}
static void exanpl e_drv_stop(Erl DrvData handl e)
{
driver_free((char*)handl e);
}

static void exanpl e_drv_out put (Erl DrvData handl e, char *buff, int bufflen)
{
exanpl e_data* d = (exanpl e_dat a*) handl e;
char fn = buff[0], arg = buff[1], res;
if (fn == 1) {
res = foo(arg);
} else if (fn == 2) {
res = bar(arg);
}

driver_out put (d->port, &res, 1);
}

Erl DrvEntry exanpl e_driver_entry = {
NULL, /* F_PTRinit, NA */
exanpl e_drv_start, /* L_PTR start, called when port is opened */
exanpl e_drv_stop, /* F_PTR stop, called when port is closed */
exanpl e_drv_output, /* F_PTR output, called when erlang has sent */
NULL, /* F_PTR ready_i nput, called when input descriptor ready */
NULL, /* F_PTR ready_output, called when output descriptor ready */
"exanpl e_drv", [/* char *driver_nane, the argunent to open_port */
NULL, /* F_PTR finish, called when unl oaded */
NULL, /* F_PTR control, port_command cal |l back */
NULL, /* F_PTR tinmeout, reserved */
NULL /* F_PTR outputv, reserved */

Ix
DRI VER I NI T(exanpl e_drv) /* nust natch nane in driver_entry */
{
return &exanpl e_driver_entry;
}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 249

8.7 C Nodes

8.6.4 Running the Example
1. Compilethe C code.

uni x> gcc -o exanpledrv -fpic -shared conplex.c port_driver.c
wi ndows> cl -LD -MD -Fe exanpledrv.dl|l conplex.c port_driver.c

2. Start Erlang and compile the Erlang code.

> erl
Erl ang (BEAM enul ator version 5.1

Eshell V5.1 (abort with "G
1> c(conpl ex5).
{ ok, conpl ex5}

3. Run the example.

2> conpl ex5: start ("exanpl e_drv").
<0. 34. 0>

3> conpl ex5: foo(3).

4

4> conpl ex5: bar (5) .

10

5> conpl ex5: stop().

st op

8.7 C Nodes

Thisis an example of how to solve the example problem by using a C node. Note that a C node would not typically
be used for solving a simple problem like this, a port would suffice.

8.7.1 Erlang Program

From Erlang's point of view, the C node is treated like a normal Erlang node. Therefore, calling the functions f oo
and bar only involves sending a message to the C node asking for the function to be called, and receiving the result.
Sending a message requires a recipient; a process which can be defined using either a pid or a tuple consisting of a
registered name and a node name. In this case atuple is the only alternative as no pid is known.

{RegNane, Node} ! Msg

The node name Node should be the name of the C node. If short node names are used, the plain name of the node will
be cNwhere Nis an integer. If long node names are used, there is no such restriction. An example of a C node name
using short node namesisthusc1@dri | , an example using long node namesiscnode@dri | . eri csson. se.

The registered name RegNane could be any atom. The name can be ignored by the C code, or it could be used for
example to distinguish between different types of messages. Below is an example of what the Erlang code could look
like when using short node names.

250 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

- modul e(conpl ex3) .
-export([foo/1, bar/1]).

foo(X) ->

call _cnode({foo, X}).
bar(Y) ->

call _cnode({bar, Y}).

call _cnode(Msg) ->

{any, cl@dril} ! {call, self(), Mg},
receive
{cnode, Result} ->
Resul t
end.

When using long node names the code is slightly different as shown in the following example:

- modul e(conpl ex4) .
-export([foo/1, bar/1]).

foo(X) ->

call _cnode({foo, X}).
bar(Y) ->

call _cnode({bar, Y}).

call _cnode(Msg) ->

{any, 'cnode@dril.du.uab.ericsson.se'} ! {call,
receive
{cnode, Result} ->
Resul t
end.

8.7.2 C Program

Setting Up the Communication

sel f(), Mg},

Before calling any other Erl_Interface function, the memory handling must be initiated.

erl _init(NULL, 0);

Now the C node can beinitiated. If short node names are used, thisisdone by callinger | _connect _init ().

erl _connect _init(1, "secretcookie", 0);

The first argument is the integer which is used to construct the node name. In the example the plain node name will

becl.
The second argument is a string defining the magic cookie.

The third argument is an integer which is used to identify a particular instance of a C node.

If long node node hames are used, initiation isdone by callinger | _connect _xinit ().

erl _connect _xinit("idril", "cnode",

"cnode@dril . ericsson. se",

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 251

8.7 C Nodes

&addr, "secretcookie", 0);

The first three arguments are the host name, the plain node name, and the full node name. The fourth argument is a
pointer to ani n_addr struct with the |P address of the host, and the fifth and sixth arguments are the magic cookie
and instance number.

The C node can act asa server or aclient when setting up the communication Erlang-C. If it actsasaclient, it connects
to an Erlang node by callinger | _connect () , which will return an open file descriptor at success.

fd = erl _connect ("el@dril");

If the C node acts as a server, it must first create a socket (call bi nd() and | i st en()) listening to a certain port
number por t . It then publishes its name and port number with epnd (the Erlang port mapper daemon, see the man
page for epnd).

erl _publish(port);

Now the C node server can accept connections from Erlang nodes.

fd = erl _accept(listen, &conn);

The second argument to er| _accept is a struct Er | Connect that will contain useful information when a
connection has been established; for example, the name of the Erlang node.

Sending and Receiving Messages

The C node can receive amessage from Erlang by callinger | _r ecei ve nsg() . Thisfunction reads datafrom the
open file descriptor f d into a buffer and putsthe result in an Er | Message struct ensg. Er | Message hasafield
t ype defining which kind of datawas received. In this case the type of interest is ERL_REG_SEND which indicates
that Erlang sent amessageto aregistered process at the C node. The actual message, an ETERM will beinthensg field.

Itisalso necessary to take care of the types ERL_ ERROR (an error occurred) and ERL_TI CK (alive check from other
node, should be ignored). Other possible types indicate process events such as link/unlink and exit.

while (loop) {

got = erl _receive_nsg(fd, buf, BUFSIZE, &ensg);
if (got == ERL_TICK) {
/* ignore */
} else if (got == ERL_ERROR) {
loop = 0; /* exit while |loop */
} else {
if (ensg.type == ERL_REG SEND) {

Since the message is an ETERMstruct, Erl_Interface functions can be used to manipulate it. In this case, the message
will be a 3-tuple (because that was how the Erlang code was written, see above). The second element will be the
pid of the caller and the third element will be the tuple { Funct i on, Ar g} determining which function to call with
which argument. The result of calling the function is made into an ETERMstruct as well and sent back to Erlang using
erl _send(), which takes the open file descriptor, a pid and a term as arguments.

252 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

fromp = erl _el ement (2, ensg.nsg);
tuplep = erl _el ement (3, ensg.nsg);
fnp = erl _elenent(1, tuplep);

argp = erl_elenment (2, tuplep);

if (strncnp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL_I NT_VALUE(argp));

} else if (strncnp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar (ERL_I NT_VALUE(argp));

}

resp = erl _format("{cnode, ~i}", res);

erl _send(fd, fronp, resp);

Finally, the memory allocated by the ETERMcreating functions (includinger | _recei ve_nsg() must be freed.

erl _free_term(ensg.fron); erl_free_term ensg. nsg);
erl _free_term(fromp); erl_free_tern(tupl ep);

erl _free_term(fnp); erl_free_term(argp);

erl _free_term(resp);

The resulting C programs can be found in looks like the following examples. First a C node server using short node
names.

/* cnode_s.c */

#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>

#include "erl _interface. h"
#i ncl ude "ei.h"

#def i ne BUFSI ZE 1000

int main(int argc, char **argv) {

int port; /* Listen port nunber */

int |isten; /* Listen socket */

int fd; /* fd to Erlang node */

Er | Connect conn; /* Connection data */

int loop = 1; /* Loop flag */

int got; /* Result of receive */

unsi gned char buf [BUFSI ZE] ; /* Buffer for incom ng nessage */
Er | Message ensg; /* 1 ncom ng nessage */

ETERM *fronp, *tuplep, *fnp, *argp, *resp;
int res;

port = atoi(argv[1]);
erl _init(NULL, 0);

if (erl _connect_init(1, "secretcookie", 0) == -1)
erl _err_quit("erl _connect_init");

/* Make a listen socket */

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 253

8.7 C Nodes

if ((listen = ny_listen(port)) <= 0)
erl _err_quit("ny_listen");

if (erl_publish(port) == -1)
erl _err_quit("erl_publish");

if ((fd = erl_accept(listen, &conn)) == ERL_ERROR)
erl _err_quit("erl_accept");
fprintf(stderr, "Connected to %\n\r", conn.nodenane);

while (loop) {

got = erl _receive_msg(fd, buf, BUFSIZE, &ensg);
if (got == ERL_TICK) {
/* ignore */
} else if (got == ERL_ERROR) {
loop = 0;
} else {

if (ensg.type == ERL_REG SEND) {
fromp = erl _el ement (2, emnsg.nsg);
tuplep = erl _element (3, ensg.nsg);
fnp = erl _elenent(1, tuplep);
argp = erl_element (2, tuplep);

if (strncnmp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL_I NT_VALUE(argp));

} else if (strncnp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar (ERL_I NT_VALUE(argp));

}

resp = erl _format("{cnode, ~i}", res);
erl _send(fd, fronp, resp);

erl _free_term(ensg.fron); erl_free_term ensg. nsg);
erl _free_term(fromp); erl_free_tern(tuplep);

erl _free_term(fnp); erl_free_term(argp);

erl _free_term(resp);

}

}
} /% while */
}

int ny_listen(int port) {
int listen_fd;
struct sockaddr i n addr;
int on = 1;

if ((listen_fd = socket (AF_|I NET, SOCK_STREAM 0)) < 0)
return (-1);

set sockopt (Iisten_fd, SO._SOCKET, SO REUSEADDR, &on, sizeof(on));
menset ((voi d*) &addr, 0, (size_t) sizeof(addr));

addr.sin_fam |y = AF_I NET;

addr.sin_port = htons(port);

addr . si n_addr.s_addr = htonl (| NADDR_ANY) ;

if (bind(listen_fd, (struct sockaddr*) &addr, sizeof(addr)) < 0)
return (-1);

listen(listen_fd, 5);
return listen_fd;

254 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

Below follows a C node server using long node names.

/* cnode_s2.c */

<stdi 0. h>
<sys/types. h>

#i ncl ude
#i ncl ude

#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#include "erl _interface. h"
#i ncl ude "ei.h"
#def i ne BUFSI ZE 1000
int main(int argc, char **argv) {
struct in_addr addr; /* 32-bit | P nunber of host */
int port; /* Listen port nunber */
int |isten; /* Listen socket */
int fd; /* fd to Erlang node */
Er | Connect conn; /* Connection data */
int loop = 1; /* Loop flag */
int got; /* Result of receive */
unsi gned char buf [BUFSI ZE] ; /* Buffer for incom ng nessage */

Er | Message ensg;

ETERM *fronp, *tuplep, *fnp,
int res;
port = atoi(argv[1]);

erl _init(NULL, O0);
addr.s_addr =
if (erl_connect_xinit("idri

&addr, "secretcookie", 0)

/* |l ncom ng nmessage */

*argp, *resp;

i net_addr ("134. 138. 177. 89");

"cnode",
1)

"cnode@dril . du. uab. eri csson. se",

erl _err_quit("erl _connect_xinit");

/* Make a |isten socket */

if ((listen = ny_listen(port)) <= 0)
erl _err_quit("ny_listen");

if (erl_publish(port)

== -l)

erl _err_quit("erl_publish");

if ((fd = erl _accept(listen,
erl _err_quit("erl_accept"

fprintf(stderr, "Connected

while (loop) {

got = erl _receive_nsg(fd,

if (got ERL_TI CK) {
/* ignore */

} else if (got
|l oop = 0;

} else {

&conn)) == ERL_ERROR)
IE
to %\n\r", conn.nodenane);
buf, BUFSI ZE, &ensg);

ERL_ERROR) {

if (ensg.type == ERL_REG SEND) {

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 255

8.7 C Nodes

fromp = erl _el ement (2, emsg.nsg);
tuplep = erl_element (3, ensg.nsg);
fnp = erl _elenent(1, tuplep);

argp = erl_element (2, tuplep);

if (strncnp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL_I NT_VALUE(argp));

} else if (strncnp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar (ERL_I NT_VALUE(argp));

}

resp = erl _format("{cnode, ~i}", res);
erl _send(fd, fronp, resp);

erl _free_term(ensg.fron); erl_free_term ensg. nsg);
erl _free_term(fromp); erl_free_tern(tuplep);
erl _free_term(fnp); erl_free_term(argp);
erl _free_term(resp);
}
}
}

int ny_listen(int port) {
int listen_fd;
struct sockaddr i n addr;
int on = 1;

if ((listen_fd = socket (AF_|I NET, SOCK_STREAM 0)) < 0)
return (-1);

set sockopt (Iisten_fd, SO._SOCKET, SO REUSEADDR, &on, sizeof(on));
menset ((voi d*) &addr, 0, (size_t) sizeof(addr));

addr.sin_fam |y = AF_I NET;

addr.sin_port = htons(port);

addr . si n_addr.s_addr = htonl (| NADDR_ANY) ;

if (bind(listen_fd, (struct sockaddr*) &addr, sizeof(addr)) < 0)
return (-1);

listen(listen_fd, 5);
return listen_fd;

And finally we have the code for the C node client.

/* cnode_c.c */

#i ncl ude <stdi o. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>

#include "erl _interface. h"
#i ncl ude "ei.h"

#def i ne BUFSI ZE 1000

int nmain(int argc, char **argv) {

256 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

int fd; [*
int loop = 1, /*
int got; [*
unsi gned char buf [BUFSI ZE] ; /*
Er | Message ensg; [*

ETERM *fronp, *tuplep, *fnp, *argp, *resp;
int res;

erl _ini t(NULL, O);

if (erl_connect_init(1, "secretcookie", 0
erl _err_quit("erl_connect_init");

if ((fd = erl _connect("el@dril")) < 0)
erl _err_quit("erl_connect");
fprintf(stderr, "Connected to ei @dril\n\r"

while (loop) {

fd to Erl ang node */
Loop flag */
Resul t of receive */

Buffer for incom ng nessage */
I ncom ng nmessage */

== _]_)

)

got = erl _receive_mnsg(fd, buf, BUFSIZE, &ensg);

if (got == ERL_TICK) {
/* ignore */

} else if (got == ERL_ERROR) {
loop = 0;

} else {

if (ensg.type == ERL_REG SEND) {
fromp = erl _el ement (2, ensg.nsg);
tuplep = erl _el ement (3, ensg.nsg);
fnp = erl _elenent(1, tuplep);
argp = erl_elenment (2, tuplep);

if (strncnp(ERL_ATOM PTR(fnp), "foo", 3) ==
res = foo(ERL_I NT_VALUE(argp));

} else if (strncnp(ERL_ATOM PTR(fnp), "bar",
res = bar (ERL_I NT_VALUE(argp));

}

resp = erl _format("{cnode, ~i}", res);
erl _send(fd, fronp, resp);

erl _free_term(ensg.fron); erl_free_termnensg
erl _free_term(fromp); erl_free_tern(tuplep);
erl _free_term(fnp); erl_free_term(argp);
er|l _free_term(resp);
}
}
}

8.7.3 Running the Example

0) {

3) ==0) {

. NBQ) ;

1. Compile the C code, providing the paths to the Erl_Interface include files and libraries, and to the socket and

nsl libraries.

In R5B and later versions of OTP, the i ncl ude and | i b directories are situated under OTPROOT/ | i b/
erl _interface- VSN, where OTPROOT isthe root directory of the OTP installation (/ usr/ | ocal / ot p inthe
example above) and VSN isthe version of theer | _i nt er f ace application (3.2.1 in the example above).

In R4B and earlier versions of OTP, i ncl ude and| i b are situated under OTPROOT/ usr .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 257

8.7 C Nodes

> gcc -0 cserver \\

-1 /usr/local/otp/libl/erl_interface-3.2.1/include \\
-L/usr/local/otp/libl/erl_interface-3.2.1/lib \\
conpl ex. ¢ cnode_s.c \\

-lerl _interface -lei -I|socket -Insl

uni x> gcc -o cserver2 \\

-1 /usr/local/otp/libl/erl_interface-3.2.1/include \\
-L/usr/local/otp/libl/erl_interface-3.2.1/lib \\
conpl ex. ¢ cnode_s2.c \\

-lerl _interface -lei -I|socket -Insl

uni x> gcc -o cclient \\

-1 /usr/local/otp/libl/erl_interface-3.2.1/include \\
-L/usr/local/otp/libl/erl_interface-3.2.1/lib \\
conpl ex.c cnode_c.c \\

-lerl _interface -lei -I|socket -Insl

2. Compile the Erlang code.

uni x> erl -conpil e conpl ex3 conpl ex4

3. Run the C node server example with short node names.

Start the C program cser ver and Erlang in different windows. cser ver takesaport number as argument and must
be started before trying to call the Erlang functions. The Erlang node should be given the short name el and must be
set to use the same magic cookie asthe C node, secr et cooki e.

uni x> cserver 3456

uni x> erl -snanme el -setcooki e secretcookie
Erlang (BEAM enul ator version 4.9.1.2

Eshell V4.9.1.2 (abort with "G
(el@dril)1> conpl ex3: foo(3).

4

(el@dril)2> conpl ex3: bar (5).

10

4. Run the C node client example. Terminate cser ver but not Erlang and start ccl i ent . The Erlang node must
be started before the C node client is.

uni x> cclient

(el@dril)3> conpl ex3:foo(3).
4

(el@dril)4> conpl ex3: bar (5).
10

5. Run the C node server, long node names, example.

uni x> cserver 2 3456

258 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.8 NIFs

uni x> erl -name el -setcookie secretcookie
Erl ang (BEAM) emnul ator version 4.9.1.2

Eshell V4.9.1.2 (abort with ~"Q
(el@dril.du.uab. ericsson. se)1> conpl ex4: foo(3).

4
(el@dril.du. uab. ericsson. se) 2> conpl ex4: bar (5) .
10

8.8 NIFs

This is an example of how to solve the example problem by using NIFs. NIFs where introduced in R13B03 as an
experimental feature. It is a simpler and more efficient way of calling C-code than using port drivers. NIFs are most
suitable for synchronous functions like f 0o and bar in the example, that does some relatively short calculations
without side effects and return the result.

8.8.1 NIFs

A NIF (Native Implemented Function) is a function that is implemented in C instead of Erlang. NIFs appear as any
other functions to the callers. They belong to a module and are called like any other Erlang functions. The NIFs of
amodule are compiled and linked into a dynamic loadable shared library (SO in Unix, DLL in Windows). The NIF
library must be loaded in runtime by the Erlang code of the module.

Since a NIF library is dynamically linked into the emulator process, this is the fastest way of calling C-code from
Erlang (alongside port drivers). Calling NIFs requires no context switches. But it is also the least safe, because acrash
in a NIF will bring the emulator down too.

8.8.2 Erlang Program

Even if al functions of amodule will be NIFs, you still need an Erlang module for two reasons. First, the NIF library
must be explicitly loaded by Erlang code in the same module. Second, all NIFs of a module must have an Erlang
implementation as well. Normally these are minimal stub implementations that throw an exception. But it can also be
used as fallback implementations for functions that do not have native implemenations on some architectures.

NIF libraries are loaded by calling er | ang: | oad_ni f/ 2, with the name of the shared library as argument. The
second argument can be any term that will be passed on to the library and used for initialization.

- modul e(conpl ex6) .
-export([foo/1, bar/1]).
-on_l oad(init/O0).

init() ->
ok = erlang:load_nif("./conplex6_nif", 0).

foo(_X) ->
exit(nif_library_not_| oaded).
bar(_Y) ->

exit(nif_library_not_| oaded).

We usethe directive on_| oad to get functioni ni t to be automatically called when the module isloaded. If i ni t
returns anything other than ok, such when the loading of the NIF library fails in this example, the module will be
unloaded and calls to functions within it will fail.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 259

8.8 NIFs

Loading the NIF library will override the stub implementations and cause callsto f 0o and bar to be dispatched to
the NIF implementations instead.

8.8.3 NIF library code

TheNIFsof themoduleare compiled and linked into ashared library. Each NIF isimplemented asanormal C function.
Themacro ERL_NI F_I NI T together with an array of structures defines the names, arity and function pointers of all
the NIFs in the module. The header file er I _ni f . h must be included. Since the library is a shared module, not a
program, no main function should be present.

The function arguments passed to a NIF appearsin an array ar gv, with ar gc as the length of the array and thus
the arity of the function. The Nth argument of the function can be accessed as ar gv[N- 1] . NIFs also takes an
environment argument that serves as an opague handle that is needed to be passed on to most API functions. The
environment contains information about the calling Erlang process.

#i nclude "erl _nif.h"

extern int foo(int x);
extern int bar(int y);

static ERL_NIF_TERM foo_nif(Erl Ni f Env* env, int argc, const ERL_N F_TERM argv[])
{

int x, ret;
if (lenif_get_int(env, argv[0], &)) {
return enif_nmake_badarg(env);

ret = foo(x);
return enif_make_int(env, ret);

}

static ERL_NIF_TERM bar _nif(Erl Ni f Env* env, int argc, const ERL_N F_TERM argv[])
{

int y, ret;
if (lenif_get_int(env, argv[0], &y)) {
return enif_nake_badarg(env);

}
ret = bar(y);
return enif_make_int(env, ret);

}

static ErINifFunc nif_funcs[] = {
{"foo", 1, foo_nif},
{"bar", 1, bar_nif}

iE

ERL_NIF_I NI T(conpl ex6, nif_funcs, NULL, NULL, NULL, NULL)

Thefirst argumentto ERL_NI F_I NI T must be the name of the Erlang module as a C-identifier. It will be stringified
by the macro. The second argument is the array of Er | Ni f Func structures containing name, arity and function
pointer of each NIF. The other arguments are pointers to callback functions that can be used to initialize the library.
We do not use them is this simple example so we set them all to NULL.

Function arguments and return values are represented as values of type ERL_N F_TERM We use functions like
eni f_get _int and eni f _nmake_i nt to convert between Erlang term and C-type. If the function argument
ar gv[0] isnot aninteger theneni f _get _i nt will return false, in which case we return by throwing abadar g-
exception with eni f _nmake_badar g.

260 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.8 NIFs

8.8.4 Running the Example
1. Compilethe C code.

uni x> gcc -o conpl ex6_nif.so -fpic -shared conpl ex.c conpl ex6_nif.c
wi ndows> cl -LD -MD -Fe conpl ex6_nif.dl |l conplex.c conplex6_nif.c

2. Start Erlang and compile the Erlang code.

> erl
Erl ang R13B04 (erts-5.7.5) [64-bit] [snp:4:4] [rqg:4] [async-threads: 0] [kernel-poll:false]

Eshell V5.7.5 (abort with *"Q
1> c(conpl ex6) .
{ ok, conpl ex6}

3. Run the example.

3> conpl ex6: foo(3).
4
4> conpl ex6: bar (5) .
10
5> conpl ex6: foo("not an integer").
** exception error: bad argunent

in function conpl ex6:foo/l

called as conl pex6: foo("not an integer")

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 261

9.1 Overview

9 User's Guide

9.1 Overview

The OTP Design Principles is a set of principles for how to structure Erlang code in terms of processes, modules
and directories.

9.1.1 Supervision Trees

A basic concept in Erlang/OTPisthe supervision tree. Thisisaprocess structuring model based on the idea of workers

and supervisors.

» Workers are processes which perform computations, that is, they do the actua work.

e Supervisors are processes which monitor the behaviour of workers. A supervisor can restart aworker if
something goes wrong.

» Thesupervision treeisahierarchical arrangement of code into supervisors and workers, making it possible to
design and program fault-tolerant software.

O b
Iche

Figure 1.1: Supervision Tree

In the figure above, square boxes represents supervisors and circles represent workers.

9.1.2 Behaviours

In a supervision tree, many of the processes have similar structures, they follow similar patterns. For example, the
supervisors are very similar in structure. The only difference between them is which child processes they supervise.
Also, many of the workers are serversin a server-client relation, finite state machines, or event handlers such as error
loggers.

Behaviours are formalizations of these common patterns. The ideaisto divide the code for a processin a generic part
(abehaviour module) and a specific part (a callback module).

The behaviour module is part of Erlang/OTP. To implement a process such as a supervisor, the user only has to
implement the callback module which should export a pre-defined set of functions, the callback functions.

262 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.1 Overview

An example to illustrate how code can be divided into a generic and a specific part: Consider the following code
(writtenin plain Erlang) for asimple server, which keepstrack of anumber of "channels'. Other processes can allocate
and free the channels by calling the functionsal | oc/ 0 and f r ee/ 1, respectively.

-modul e(chl).
-export([start/0]).
-export([alloc/0, free/l]).
-export([init/0]).

start() ->
spawn(chl, init, []).

alloc() ->
chl ! {self(), alloc},
receive
{chl, Res} ->
Res
end.
free(Ch) ->
chl ! {free, Ch},
ok.
init() ->

regi ster(chl, self()),
Chs = channel s(),
| oop(Chs).

| oop(Chs) ->
receive
{From alloc} ->
{Ch, Chs2} = alloc(Chs),
From! {chil, Ch},
| oop(Chs2);
{free, Ch} ->
Chs2 = free(Ch, Chs),
| oop(Chs2)
end.

The code for the server can be rewritten into a generic part server . erl :

- modul e(server).
-export([start/1]).
-export([call/2, cast/2]).
-export([init/1]).

start (Md) ->
spawn(server, init, [Md]).

call (Name, Req) ->
Name | {call, self(), Req},
receive
{Name, Res} ->
Res
end.

cast (Name, Req) ->

Name | {cast, Req},
ok.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 263

9.1 Overview

init(Md) ->
regi ster(Md, self()),
State = Mod:init(),
| oop(Mod, State).

| oop(Mod, State) ->
recei ve
{call, From Req} ->
{Res, State2} = Mod: handl e_call (Req, State),
From! {Mdd, Res},
| oop(Mod, State2);
{cast, Req} ->
State2 = Mod: handl e_cast (Req, State),
| oop(Mod, State?2)
end.

and acalback modulech?2. erl :

- modul e(ch2) .

-export([start/0]).

-export([alloc/0, free/l]).

-export([init/0, handle_call/2, handle_cast/2]).

start() ->
server:start(ch2).

alloc() ->
server:call (ch2, alloc).

free(Ch) ->
server: cast (ch2, {free, Ch}).

init() ->
channel s() .

handl e_cal | (all oc, Chs) ->
al loc(Chs). % => {Ch, Chs2}

handl e_cast ({free, Ch}, Chs) ->
free(Ch, Chs). % => Chs2

Note the following:

« Thecodeinserver canbere-used to build many different servers.

* Thename of the server, in this example the atom ch2, is hidden from the users of the client functions. This
means the name can be changed without affecting them.

» Theprotcol (messages sent to and received from the server) is hidden aswell. Thisis good programming
practice and allows us to change the protocol without making changes to code using the interface functions.

e Wecan extend the functionality of ser ver , without having to change ch2 or any other callback module.

(In chl.erl and ch2. erl above, the implementation of channel s/ 0, al l oc/ 1 and free/ 2 has been

intentionally left out, asit is not relevant to the example. For completeness, one way to write these functions are given

below. Note that this is an example only, a realistic implementation must be able to handle situations like running
out of channelsto alocate etc.)

channel s() ->
{ Allocated =[], _Free = lists:seq(1, 100)}.

264 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.1 Overview

alloc({Allocated, [HT] = _Free}) ->
{H {[H Allocated], T}}.

free(Ch, {Alloc, Free} = Channels) ->
case |ists: menmber (Ch, Alloc) of
true ->
{lists:delete(Ch, Alloc), [Ch|Free]};
fal se ->
Channel s
end.

Code written without making use of behaviours may be more efficient, but the increased efficiency will be at the
expense of generality. The ability to manage al applicationsin the system in a consistent manner is very important.

Using behaviours al so makesit easier to read and understand code written by other programmers. Ad hoc programming
structures, while possibly more efficient, are always more difficult to understand.

Themodule ser ver corresponds, greatly simplified, to the Erlang/OTP behaviour gen_ser ver .
The standard Erlang/OTP behaviours are:

gen_server
For implementing the server of aclient-server relation.
gen_fsm
For implementing finite state machines.
gen_event
For implementing event handling functionality.
super visor
For implementing a supervisor in a supervision tree.

The compiler understands the module attribute - behavi our (Behavi our) and issues warnings about missing
callback functions. Example:

- modul e(chs3)
- behavi our (gen_server).

3> c(chs3).
./chs3.erl:10: Warning: undefined call-back function handle_call/3
{ ok, chs3}

9.1.3 Applications

Erlang/OTP comes with a number of components, each implementing some specific functionality. Components are
with Erlang/OTP terminology called applications. Examples of Erlang/OTP applications are Mnesia, which has
everything needed for programming database services, and Debugger which is used to debug Erlang programs. The
minimal system based on Erlang/OTP consists of the applications Kernel and STDLIB.

The application concept applies both to program structure (processes) and directory structure (modules).

The simplest kind of application does not have any processes, but consists of a collection of functional modules. Such
an application is called alibrary application. An example of alibrary applicationis STDLIB.

An application with processesis easiest implemented as a supervision tree using the standard behaviours.

How to program applicationsis described in Applications.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 265

9.2 Gen_Server Behaviour

9.1.4 Releases

A release is a complete system made out from a subset of the Erlang/OTP applications and a set of user-specific
applications.

How to program releases is described in Releases.
How to install arelease in atarget environment is described in the chapter about Target Systemsin System Principles.

9.1.5 Release Handling

Release handling is upgrading and downgrading between different versions of arelease, in a(possibly) running system.
How to do thisis described in Release Handling.

9.2 Gen_Server Behaviour
This chapter should be read in conjunction with gen_server(3), where all interface functions and callback functions
are described in detail.

9.2.1 Client-Server Principles

Theclient-server model is characterized by acentral server and an arbitrary number of clients. The client-server model
isgenerally used for resource management operations, where severa different clientswant to share acommon resource.
The server is responsible for managing this resource.

Clients

The Client-server model

Figure 2.1: Client-Server Model

9.2.2 Example

An example of asimple server written in plain Erlang was given in Overview. The server can be re-implemented using
gen_ser ver, resulting in this callback module;

- modul e(ch3).
- behavi our (gen_server).

-export([start_link/0]).

-export([alloc/0, free/l]).
-export([init/1, handle_call/3, handle_cast/2]).

266 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.2 Gen_Server Behaviour

start_link() ->

gen_server:start_|ink({local, ch3}, ch3, [], []).

alloc() ->

gen_server:call (ch3, alloc).

free(Ch) ->

gen_server:cast(ch3, {free, Ch}).

init(_Args) ->

{ok, channels()}.

handl e_cal | (all oc, _From Chs) ->

{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2}.

handl e_cast ({free, Ch}, Chs) ->

Chs2 = free(Ch, Chs),
{noreply, Chs2}.

The codeis explained in the next sections.

9.2.3 Starting a Gen_Server

In the example in the previous section, the gen_server isstarted by callingch3: start i nk():

start_link() ->

gen_server:start_|ink({local, ch3}, ch3, [], []) => {ok, Pid}

start _|ink callsthefunctiongen_server:start | i nk/ 4. Thisfunction spawnsand linksto anew process,
agen_server.

The first argument { | ocal , ch3} specifies the name. In this case, the gen_server will be locally registered
asch3.

If the nameis omitted, the gen_server isnot registered. Instead its pid must be used. The name could also be given
as{gl obal , Nane},inwhich casethe gen server isregistered using gl obal : r egi st er _nane/ 2.

The second argument, ch3, is the name of the callback module, that is the module where the callback functions
arelocated.

In this case, the interface functions (st art _| i nk, al | oc and f r ee) are located in the same module as the
callback functions (i ni t, handl e_cal I and handl e_cast). Thisis normally good programming practice,
to have the code corresponding to one process contained in one module.

Thethird argument, [], isaterm which is passed as-is to the callback functioni ni t . Here, i ni t does not need
any indata and ignores the argument.

The fourth argument, [], isalist of options. Seegen_ser ver (3) for available options.

If name registration succeeds, the new gen_server process calls the callback function ch3:init([]).init is
expected to return { ok, St at e}, where St at e istheinternal state of the gen_server. In this case, the state isthe
available channels.

init(_Args) ->

{ok, channels()}.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 267

9.2 Gen_Server Behaviour

Notethat gen_server: start | i nk issynchronous. It does not return until the gen_server has been initialized
and is ready to receive requests.

gen_server:start _|ink must be used if the gen server is part of a supervision tree, i.e. is started by a
supervisor. Thereisanother functiongen_ser ver : st art to start astand-alonegen_server, i.e. agen_server which
isnot part of a supervision tree.

9.2.4 Synchronous Requests - Call

The synchronous request al |1 oc() isimplemented usinggen_server:cal |/ 2:

alloc() ->
gen_server:call (ch3, alloc).

ch3 isthe name of the gen_server and must agree with the name used to start it. al | oc isthe actual request.

The request is made into a message and sent to the gen_server. When the request is received, the gen_server calls
handl e_cal | (Request, From State) whichisexpectedtoreturnatuple{reply, Reply, Statel}.
Repl y isthereply which should be sent back to the client, and St at el isanew valuefor the state of the gen_server.

handl e_call (all oc, _From Chs) ->

{Ch, Chs2} = alloc(Chs),

{reply, Ch, Chs2}.
In this case, the reply isthe allocated channel Ch and the new state is the set of remaining available channels Chs 2.
Thus, thecall ch3: al | oc() returns the allocated channel Ch and the gen_server then waits for new requests, now

with an updated list of available channels.
9.2.5 Asynchronous Requests - Cast

The asynchronous request f r ee(Ch) isimplemented usinggen_ser ver : cast/ 2:

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).
ch3 isthe name of the gen_server. { f r ee, Ch} istheactua request.
The request is made into a message and sent to the gen_server. cast , and thusf r ee, then returns ok.

When therequest isreceived, thegen_server callshandl e_cast (Request, St at e) whichisexpectedtoreturn
atuple{noreply, Statel}.Statelisanew valuefor the state of the gen_server.

handl e_cast ({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

Inthiscase, the new stateisthe updated list of available channelsChs2. Thegen server isnow ready for new requests.

268 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.2 Gen_Server Behaviour

9.2.6 Stopping

In a Supervision Tree

If the gen_server is part of a supervision tree, no stop function is needed. The gen_server will automatically be
terminated by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

If it is necessary to clean up before termination, the shutdown strategy must be a timeout value and the gen_server
must be set to trap exit signalsin thei ni t function. When ordered to shutdown, the gen_server will then call the
callback functiont er m nat e(shut down, State):

init(Args) ->
process_flag(trap_exit, true),
{ok, State}.

term nat e(shutdown, State) ->

..code for cleaning up here..
ok.

Stand-Alone Gen_Servers

If the gen_server is not part of a supervision tree, a stop function may be useful, for example:

é%bort ([stop/0]).

stop() ->
gen_server: cast(ch3, stop).

handl e_cast (stop, State) ->
{stop, normal, State};
handl e_cast ({free, Ch}, State) ->

term nate(nornal, State) ->
ok.

The callback function handling the st op request returns atuple { st op, nornal, Statel}, wherenor nal
specifiesthat itisanormal termination and St at el isanew value for the state of the gen_server. Thiswill cause the
gen_servertocall t er m nat e(nor mal , St at el) and then terminate gracefully.

9.2.7 Handling Other Messages

If the gen server should be able to receive other messages than requests, the calback function
handl e_i nfo(l nfo, State) must be implemented to handle them. Examples of other messages are exit
messages, if the gen_server islinked to other processes (than the supervisor) and trapping exit signals.

handl e_info({'EXIT', Pid, Reason}, State) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 269

9.3 Gen_Fsm Behaviour

..code to handle exits here..
{noreply, Statel}.

The code_change method also has to be implemented.

code_change(d dVsn, State, Extra) ->
..code to convert state (and nore) during code change
{ok, NewState}.

9.3 Gen_Fsm Behaviour

This chapter should be read in conjunction with gen_f sm(3) , where all interface functions and callback functions
are described in detail.

9.3.1 Finite State Machines
A finite state machine, FSM, can be described as a set of relations of the form:

State(S) x Event(E) -> Actions(A), State(S)

These relations are interpreted as meaning:
If wearein state S and the event E occurs, we should perform the actions A and make atransition to the state S' .

For an FSM implemented using the gen_f smbehaviour, the state transition rules are written as a number of Erlang
functions which conform to the following convention:

St at eNane(Event, StateData) ->
. code for actions here ...
{next_state, StateNane', StateData'}

9.3.2 Example

A door with acode lock could be viewed asan FSM. Initially, the door islocked. Anytime someone presses a button,
this generates an event. Depending on what buttons have been pressed before, the sequence so far may be correct,
incomplete or wrong.

If it is correct, the door is unlocked for 30 seconds (30000 ms). If it is incomplete, we wait for another button to be
pressed. If it isiswrong, we start al over, waiting for a new button sequence.

Implementing the code lock FSM using gen_f smresultsin this callback module:

- modul e(code_| ock) .
- behavi our (gen_fsm.

-export([start _link/1]).
-export([button/1]).
-export([init/1, |ocked/2, open/2]).

start _|ink(Code) ->
gen_fsmstart_|ink({local, code_ | ock}, code_ |lock, Code, []).

270 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.3 Gen_Fsm Behaviour

button(Digit) ->

gen_fsm send_event (code_| ock, {button, Digit}).

init(Code) ->

{ok, locked, {[], Code}}.

| ocked({button, Digit}, {SoFar, Code}) ->

case [Digit]| SoFar] of
Code ->
do_unl ock(),
{next _state, open, {[], Code}, 3000};
I nconpl et e when | engt h(| nconpl et e) <l engt h(Code) ->
{next_state, |ocked, {lnconplete, Code}};
_Wong ->
{next_state, |ocked, {[], Code}}
end.

open(timeout, State) ->

do_Il ock(),
{next_state, |ocked, State}.

The codeis explained in the next sections.

9.3.3 Starting a Gen_Fsm

In the examplein the previous section, the gen_fsmis started by callingcode_| ock: start | i nk(Code) :

start _|ink(Code) ->

gen_fsmstart_link({local, code_| ock}, code_|lock, Code, []).

start _|ink calsthefunctiongen_fsm start | ink/ 4. Thisfunction spawns and links to a new process, a
gen_fsm.

The first argument {1 ocal , code_| ock} specifies the name. In this case, the gen_fsm will be locally
registered ascode_| ock.

If the name is omitted, the gen_fsmis not registered. Instead its pid must be used. The name could a so be given
as{gl obal , Nane},inwhich casethegen fsmisregistered using gl obal : r egi st er _nane/ 2.

The second argument, code_| ock, is the name of the callback module, that is the module where the callback
functions are located.

In this case, the interface functions (start | i nk and butt on) are located in the same module as the
callback functions (i ni t , | ocked and open). Thisis normally good programming practice, to have the code
corresponding to one process contained in one module.

The third argument, Code, is aterm which is passed as-is to the callback functioni ni t . Here, i ni t getsthe
correct code for the lock as indata.

The fourth argument, [], isalist of options. Seegen_f sn(3) for available options.

If name registration succeeds, the new gen_fsm process callsthe callback functioncode_| ock: i ni t (Code) . This
function is expected to return { ok, St at eNane, St at eDat a}, where St at eNane is the name of the initial
state of the gen_fsm. In this case | ocked, assuming the door is locked to begin with. St at eDat a is the internal
state of the gen_fsm. (For gen_fsms, the internal state is often referred to 'state data to distinguish it from the state
as in states of a state machine.) In this case, the state data is the button sequence so far (empty to begin with) and
the correct code of the lock.

i ni t(Code) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 271

9.3 Gen_Fsm Behaviour

{ok, l|ocked, {[], Code}}.

Notethat gen_fsm start | i nk issynchronous. It does not return until the gen_fsm has been initialized and is
ready to receive notifications.

gen_fsmstart _|ink must beused if the gen fsm is part of a supervision tree, i.e. is started by a supervisor.
There is another function gen_f sm st art to start a stand-alone gen_fsm, i.e. a gen_fsm which is not part of a
supervision tree.

9.3.4 Notifying About Events

The function notifying the code lock about a button event isimplemented using gen_f sm send_event / 2:

button(Digit) ->
gen_fsm send_event (code_| ock, {button, Digit}).

code_| ock isthe name of the gen_fsm and must agree with the name used to start it. { but t on, Di git} isthe
actual event.

The event is made into a message and sent to the gen fsm. When the event is received, the gen fsm calls
St at eNane(Event, St ateData) which is expected to return a tuple { next _state, StateNanel,
St at eDat al} . St at eNane isthe name of the current state and St at eNane1 is the name of the next state to go
to. St at eDat al isanew value for the state data of the gen_fsm.

| ocked({button, Digit}, {SoFar, Code}) ->
case [Digit]| SoFar] of
Code ->
do_unl ock(),
{next_state, open, {[], Code}, 30000};
I nconpl et e when | engt h(| nconpl et e) <l engt h(Code) ->
{next_state, |ocked, {lnconplete, Code}};
_Wong ->
{next_state, |ocked, {[], Code}};
end.

open(timeout, State) ->

do_Il ock(),
{next_state, |ocked, State}.

If the door is locked and a button is pressed, the complete button sequence so far is compared with the correct code
for the lock and, depending on the result, the door is either unlocked and the gen_fsm goesto state open, or the door
remainsin statel ocked.

9.3.5 Timeouts
When a correct code has been givened, the door is unlocked and the following tupleis returned from | ocked/ 2:
{next_state, open, {[], Code}, 30000};

30000 is a timeout value in milliseconds. After 30000 ms, i.e. 30 seconds, a timeout occurs. Then
St at eNane(ti neout, StateData) iscaled. In thiscase, the timeout occurs when the door has been in state
open for 30 seconds. After that the door is locked again:

272 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.3 Gen_Fsm Behaviour

open(timeout, State) ->
do_Il ock(),
{next_state, |ocked, State}.

9.3.6 All State Events

Sometimes an event can arrive at any state of the gen fsm. Instead of sending the message with
gen_fsm send_event/ 2 and writing one clause handling the event for each state function, the message can be
sentwithgen_fsm send _al | _state_event/ 2 and handled with Modul e: handl e_event/ 3:

- modul e(code_| ock) .
.-é;(port([stopIO]).

stop() ->
gen_fsmsend_all _state_event(code_ | ock, stop).

handl e_event (stop, _StateNane, StateData) ->
{stop, normal, StateData}.

9.3.7 Stopping

In a Supervision Tree

If thegen_fsm ispart of a supervision tree, no stop function is needed. The gen_fsm will automatically be terminated
by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

If it is necessary to clean up before termination, the shutdown strategy must be atimeout value and the gen_fsm must
be set to trap exit signalsin thei ni t function. When ordered to shutdown, the gen_fsm will then call the callback
functiont er m nat e(shut down, StateName, StateData):

init(Args) ->
process_flag(trap_exit, true),

{ok, StateNane, StateData}.

ter mi nat e(shut down, StateNane, StateData) ->
..code for cleaning up here..
ok.

Stand-Alone Gen_Fsms

If the gen_fsmisnot part of a supervision tree, a stop function may be useful, for example:

.-é;(port([stopIO]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 273

9.4 Gen_Event Behaviour

stop() ->
gen_fsmsend_al | _state_event (code_| ock, stop).

handl e_event (stop, _StateNane, StateData) ->
{stop, normal, StateData}.

term nate(nornal, _StateNane, _StateData) ->
ok.

The callback function handling the st op event returnsatuple { st op, nor el , St at eDat al}, where nor nal
specifiesthat it isanormal termination and St at eDat al isanew value for the state data of the gen_fsm. Thiswill
causethegen fsmtocall t er mi nat e(nor mal , St at eNane, St at eDat al) and then terminate gracefully:

9.3.8 Handling Other Messages

If the gen_fsm should be able to receive other messages than events, the callback function handl e_i nf o(I nf o,
St at eNane, St at eDat a) must beimplemented to handle them. Examples of other messages are exit messages,
if the gen_fsmislinked to other processes (than the supervisor) and trapping exit signals.

handl e_info({' EXIT', Pid, Reason}, StateNane, StateData) ->
..code to handle exits here..
{next _state, StateNanel, StateDatal}.

The code_change method also has to be implemented.

code_change(d dVsn, StateNane, StateData, Extra) ->
..code to convert state (and nore) during code change
{ok, Next StateNanme, NewStateDat a}

9.4 Gen_Event Behaviour

This chapter should beread in conjunctionwithgen_event (3) , whereall interface functionsand callback functions
are described in detail.

9.4.1 Event Handling Principles

In OTP, an event manager is a named object to which events can be sent. An event could be, for example, an error,
an alarm or some information that should be logged.

In the event manager, zero, one or several event handlers are installed. When the event manager is notified about an
event, the event will be processed by al the installed event handlers. For example, an event manager for handling
errors can by default have a handler installed which writes error messagesto the terminal . If the error messages during
a certain period should be saved to afile as well, the user adds another event handler which does this. When logging
to fileis no longer necessary, this event handler is deleted.

An event manager isimplemented as a process and each event handler isimplemented as a callback module.

The event manager essentially maintainsalist of { Modul e, St at e} pairs, whereeach Modul e isan event handler,
and St at e theinternal state of that event handler.

274 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.4 Gen_Event Behaviour

9.4.2 Example

The callback module for the event handler writing error messages to the terminal could look like:

-modul e(termn nal _| ogger).
- behavi our (gen_event) .

-export([init/1, handle_event/2, term nate/2]).

init(_Args) ->
{ok, [1}.

handl e_event (Error Msg, State) ->
io:format ("***Error*** ~p~n", [ErrorMsg]),
{ok, State}.

term nate(_Args, _State) ->

ok.

The callback module for the event handler writing error messages to afile could ook like:

-modul e(fil e_l ogger).
- behavi our (gen_event) .

-export([init/1, handl e_event/2, term nate/2]).

init(File) ->
{ok, Fd} = file:open(File, read),
{ok, Fd}.

handl e_event (Error Msg, Fd) ->
io:format (Fd, "***Error*** ~p~n", [ErrorMsg]),
{ok, Fd}.

term nate(_Args, Fd) ->
file:close(Fd).

The codeis explained in the next sections.

9.4.3 Starting an Event Manager

To start an event manager for handling errors, as described in the example above, call the following function:

gen_event:start _|ink({local, error_nan})

This function spawns and links to a new process, an event manager.

Theargument, {| ocal , error_man} specifiesthe name. Inthis case, the event manager will belocally registered
aserror_nan.

If the name is omitted, the event manager is not registered. Instead its pid must be used. The name could aso be given
as{gl obal , Nane}, inwhich case the event manager isregistered using gl obal : r egi st er _nane/ 2.

gen_event: start _|ink must be used if the event manager is part of a supervision tree, i.e. is started by a
supervisor. Thereisanother functiongen_event : st art to start astand-alone event manager, i.e. an event manager
which is not part of a supervision tree.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 275

9.4 Gen_Event Behaviour

9.4.4 Adding an Event Handler

Here is an example using the shell on how to start an event manager and add an event handler to it:

1> gen_event:start({local, error_man}).

{ ok, <0. 31. 0>}

2> gen_event: add_handl er (error _man, term nal _| ogger, []).
ok

This function sends a message to the event manager registered as er r or _ran, telling it to add the event handler
t erm nal _I ogger . The event manager will call the callback functiont er mi nal _| ogger:init([]),where
theargument [] isthe third argument to add_handl er . i ni t isexpectedtoreturn { ok, St ate},whereState
istheinternal state of the event handler.

init(_Args) ->
{ok, [1}.

Here, i ni t does not need any input data and ignoresits argument. Also, fort er m nal _| ogger theinterna state
isnotused. For fi | e_| ogger, theinternal stateis used to save the open file descriptor.

init(File) ->
{ok, Fd} = file:open(File, read),
{ok, Fd}.

9.4.5 Notifying About Events

3> gen_event:notify(error_man, no_reply).
Error no_reply
ok

er r or _man isthe name of the event manager and no_r epl y isthe event.

The event is made into a message and sent to the event manager. When the event is received, the event manager calls
handl e_event (Event, State) for each instaled event handler, in the same order as they were added. The
functionisexpectedtoreturnatuple{ ok, St at el},whereSt at el isanew vauefor the state of the event handler.

Interm nal _| ogger:

handl e_event (Error Msg, State) ->
io:format ("***Error*** ~p~n", [ErrorMsg]),
{ok, State}.

Infile_logger:

handl e_event (Error Msg, Fd) ->
io:format (Fd, "***Error*** ~p~n", [ErrorMsg]),
{ok, Fd}.

276 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.4 Gen_Event Behaviour

9.4.6 Deleting an Event Handler

4> gen_event: del ete_handl er (error_nman, term nal _| ogger, []).
ok

This function sends a message to the event manager registered as er r or _nan, telling it to delete the event handler
t erm nal _I ogger . The event manager will call the callback functiont er m nal _| ogger:terminate([],

St at e) , where the argument [] is the third argument to del et e_handl er .t er nmi nat e should be the opposite
of i ni t and do any necessary cleaning up. Its return value isignored.

Fort er mi nal _| ogger, no cleaning up is necessary:

term nate(_Args, _State) ->
ok.

Forfil e_| ogger, thefiledescriptor openedini ni t needsto be closed:

term nate(_Args, Fd) ->
file:close(Fd).

9.4.7 Stopping

When an event manager is stopped, it will give each of the installed event handlers the chance to clean up by calling
t er m nat e/ 2, the same way as when deleting a handler.

In a Supervision Tree

If the event manager is part of asupervision tree, no stop function is needed. The event manager will automatically be
terminated by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

Stand-Alone Event Managers
An event manager can also be stopped by caling:

> gen_event: stop(error_nan).
ok

9.4.8 Handling Other Messages

If the gen_event should be able to receive other messages than events, the callback function handl e_i nf o(I nf o,
St at eNane, St at eDat a) must beimplemented to handle them. Examples of other messages are exit messages,
if the gen_event islinked to other processes (than the supervisor) and trapping exit signals.

handl e_info({'EXIT', Pid, Reason}, State) ->
..code to handl e exits here..
{ok, NewState}.

The code_change method also has to be implemented.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 277

9.5 Supervisor Behaviour

code_change(d dVsn, State, Extra) ->
..code to convert state (and nore) during code change
{ok, NewSt at e}

9.5 Supervisor Behaviour

This section should be read in conjunction with super vi sor (3) , where al details about the supervisor behaviour
isgiven.

9.5.1 Supervision Principles

A supervisor isresponsible for starting, stopping and monitoring its child processes. The basic idea of a supervisor is
that it should keep its child processes alive by restarting them when necessary.

Which child processesto start and monitor is specified by alist of child specifications. The child processes are started
in the order specified by thislist, and terminated in the reversed order.
9.5.2 Example

The callback module for a supervisor starting the server from the gen_server chapter could look like this:

- modul e(ch_sup) .
- behavi our (supervi sor).

-export([start_Ilink/0]).
-export([init/1]).

start_link() ->
supervisor:start _|ink(ch_sup, []).

init(_Args) ->
{ok, {{one_for_one, 1, 60},

[{ch3, {ch3, start_link, []},
permanent, brutal _kill, worker, [ch3]}]}}.

one_f or _one istherestart strategy.
1 and 60 defines the maximum restart frequency.
Thetuple{ch3, ...} isachild specification.

9.5.3 Restart Strategy

one_for_one

If achild process terminates, only that processis restarted.

278 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Supervisor Behaviour

1 One for one supervision
If any child dies itis restarted

Figure 5.1: One_For_One Supervision

one_for_all

If a child process terminates, all other child processes are terminated and then all child processes, including the
terminated one, are restarted.

all-for—one supervision
If any child dies all children

a
; \ are terminated and all are restarted

Figure 5.2: One_For_All Supervision

rest_for_one

If achild process terminates, the 'rest' of the child processes -- i.e. the child processes after the terminated processin
start order -- are terminated. Then the terminated child process and the rest of the child processes are restarted.

9.5.4 Maximum Restart Frequency

The supervisors have a built-in mechanism to limit the number of restarts which can occur in a given time interval.
This is determined by the values of the two parameters MaxR and MaxT in the start specification returned by the
callback functioni ni t :

init(...) ->
{ok, {{RestartStrategy, MaxR MaxT},
[Chil dSpec, ...]}}.

If more than MaxR number of restarts occur in the last Max T seconds, then the supervisor terminates all the child
processes and then itself.

When the supervisor terminates, then the next higher level supervisor takes some action. It either restartsthe terminated
supervisor, or terminates itself.

The intention of the restart mechanism is to prevent a situation where a process repeatedly dies for the same reason,
only to be restarted again.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 279

9.5 Supervisor Behaviour

9.5.5 Child Specification
Thisisthe type definition for a child specification:

{1d, StartFunc, Restart, Shutdown, Type, Modul es}
Id = term()
Start Func = {M F, A}
M= F = atom()

A= [term)]
Restart = pernmanent | transient | tenporary
Shutdown = brutal _kill | integer() >=0 | infinity

Type = worker | supervisor
Modul es = [Modul e] | dynamic
Modul e = at om()

* | disanamethat isused to identify the child specification internally by the supervisor.
e Start Func defines the function call used to start the child process. It is a module-function-arguments tuple
usedasappl y(M F, A).

It should be (or result in) a cal to supervisor:start |ink, gen_server:start |ink,
gen_fsmstart _|inkorgen _event:start _|ink. (Orafunction compliant with these functions, see
super vi sor (3) for details.

* Restart defineswhen aterminated child process should be restarted.

« A permanent child processisaways restarted.
* Atenporary child processis never restarted.

e Atransi ent child processisrestarted only if it terminates abnormally, i.e. with another exit reason than
nor nal .

e Shut down defines how a child process should be terminated.

e brutal _kill meansthe child processisunconditionaly terminated usingexi t (Chi ld, kill).

* Aninteger timeout value means that the supervisor tells the child process to terminate by calling
exi t(Child, shutdown) andthen waitsfor an exit signal back. If no exit signal is received within
the specified time, the child process is unconditionally terminated usingexi t (Chi Il d, kil l).

e |f thechild processis another supervisor, it should be settoi nf i ni ty to give the subtree enough time to
shutdown.

* Type specifiesif the child processis a supervisor or aworker.

e Mbodul es should be alist with one element [Modul e] , where Mbdul e isthe name of the callback module, if
the child process is a supervisor, gen_server or gen_fsm. If the child processis a gen_event, Modul es should
bedynani c.

Thisinformation is used by the release handler during upgrades and downgrades, see Release Handling.
Example: The child specification to start the server ch3 in the example above looks like:

{ch3,
{ch3, start_link, []},
permanent, brutal _kill, worker, [ch3]}

Example: A child specification to start the event manager from the chapter about gen_event:

{error_nan,

280 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.5 Supervisor Behaviour

{gen_event, start_link, [{local, error_nman}]},
per manent, 5000, worker, dynam c}

Both the server and event manager are registered processes which can be expected to be accessible at al times, thus
they are specified to be per manent .

ch3 does not need to do any cleaning up before termination, thus no shutdown time is needed but br ut al _ki | |
should be sufficient. er r or _man may need some time for the event handlers to clean up, thus Shut down is set
to 5000 ms.

Example: A child specification to start another supervisor:

{sup,
{sup, start_link, []},
transient, infinity, supervisor, [sup]}

9.5.6 Starting a Supervisor

In the example above, the supervisor is started by callingch_sup: start _|i nk():

start_link() ->
supervisor:start _|ink(ch_sup, []).

ch_sup: start _|ink calsthefunction super vi sor: start _|ink/ 2. Thisfunction spawns and links to a
New Process, a supervisor.

e Thefirst argument, ch_sup, isthe name of the callback module, that is the module wherethei ni t callback
function is located.

* Thesecond argument, [], isaterm which is passed as-is to the callback functioni ni t . Here, i ni t does not
need any indata and ignores the argument.

In this case, the supervisor is not registered. Instead its pid must be used. A name can be
specified by caling supervisor:start_link({l ocal, Nane}, Modul e, Args) or
supervisor:start_link({gl obal, Nane}, Mdule, Args).

The new supervisor process calls the callback function ch_sup:init([]).init isexpected to return { ok,
St art Spec}:

init(_Args) ->
{ok, {{one_for_one, 1, 60},
[{ch3, {ch3, start_link, []},
per manent, brutal _kill, worker, [ch3]}]}}.

The supervisor then starts all its child processes according to the child specificationsin the start specification. In this
case there is one child process, ch3.

Notethat super vi sor: start _| i nk issynchronous. It does not return until al child processes have been started.

9.5.7 Adding a Child Process

In addition to the static supervision tree, we can also add dynamic child processes to an existing supervisor with the
following call:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 281

9.5 Supervisor Behaviour

supervi sor:start_chil d(Sup, Chil dSpec)

Sup isthe pid, or name, of the supervisor. Chi | dSpec is a child specification.

Child processes added using st art _chi | d/ 2 behave in the same manner as the other child processes, with the
following important exception: If a supervisor dies and is re-created, then all child processes which were dynamically
added to the supervisor will be lost.

9.5.8 Stopping a Child Process

Any child process, static or dynamic, can be stopped in accordance with the shutdown specification:

supervi sor:term nate_child(Sup, |d)

The child specification for a stopped child process is deleted with the following call:

super vi sor : del ete_chi | d(Sup, 1d)

Sup isthe pid, or name, of the supervisor. | d istheid specified in the child specification.

Aswith dynamically added child processes, the effects of deleting a static child processislost if the supervisor itself
restarts.

9.5.9 Simple-One-For-One Supervisors

A supervisor with restart strategy si npl e_one_f or _one isasimplified one for_one supervisor, where al child
processes are dynamically added instances of the same process.

Example of acallback module for asimple_one_for_one supervisor:

- modul e(si npl e_sup) .
- behavi our (supervi sor).

-export([start_link/0]).
-export([init/1]).

start_link() ->
supervi sor:start_|ink(sinmple_sup, []).

init(_Args) ->
{ok, {{sinple_one_for_one, 0, 1},

[{call, {call, start_link, []},
tenporary, brutal _kill, worker, [call]}]}}.

When started, the supervisor will not start any child processes. Instead, all child processes are added dynamically by
caling:

supervi sor:start_chil d(Sup, List)

282 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 Sys and Proc_Lib

Sup isthepid, or name, of the supervisor. Li st isanarbitrary list of termswhich will be added to thelist of arguments
specified in the child specification. If the start function is specifiedas{ M F, A}, thenthe child processis started
by callingappl y(M F, A++List).

For example, adding a child to si npl e_sup above:

supervisor:start_child(Pid, [idl])

resultsin the child process being started by calling appl y(cal |, start_link, []++[id1l]), oractualy:

call:start_link(idl)

9.5.10 Stopping

Since the supervisor is part of a supervision tree, it will automatically be terminated by its supervisor. When asked
to shutdown, it will terminate all child processes in reversed start order according to the respective shutdown
specifications, and then terminate itself.

9.6 Sys and Proc_Lib

Themodule sy s contains functions for simple debugging of processes implemented using behaviours.

There are also functions that, together with functions in the module pr oc_| i b, can be used to implement a special
process, a process which comply to the OTP design principles without making use of a standard behaviour. They can
also be used to implement user defined (non-standard) behaviours.

Both sys and proc_|I i b belong to the STDLIB application.

9.6.1 Simple Debugging

The module sys contains some functions for simple debugging of processes implemented using behaviours. We use
thecode_| ock example from the gen_event chapter to illustrate this:

% erl
Erl ang (BEAM emul ator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~"Q

1> code_l ock:start _link([1,2,3,4]).

{ ok, <0. 32. 0>}

2> sys:statistics(code_| ock, true).

ok

3> sys:trace(code_|l ock, true).

ok

4> code_| ock: button(4).

DBG code_l ock got event {button,4} in state cl osed
ok

DBG code_|l ock switched to state cl osed

5> code_| ock: button(3).

DBG code_l ock got event {button,3} in state cl osed
ok

DBG code_|l ock switched to state cl osed

6> code_| ock: button(2).

DBG code_l ock got event {button,2} in state cl osed
ok

DBG code_|l ock switched to state cl osed

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 283

9.6 Sys and Proc_Lib

7> code_| ock: button(1).

DBG code_l ock got event {button,1} in state cl osed

ok

OPEN DOOR

DBG code_|l ock switched to state open

DBG code_|l ock got event tineout in state open

CLOSE DOOR

DBG code_| ock switched to state cl osed

8> sys:statistics(code_| ock, get).

{ok, [{start_tinme, {{2003, 6, 12}, {14, 11, 40} }},
{current _time, {{2003, 6, 12}, {14, 12, 14}}},
{reducti ons, 333},

{nmessages_in, 5},
{messages_out, 0}]}

9> sys:statistics(code_|l ock, false).

ok

10> sys:trace(code_| ock, false).

ok

11> sys: get _status(code_| ock).

{status, <0. 32. 0>,

{nodul e, gen_f sn},
[[{" $ancestors’',[<0.30.0>]},
{"S$initial _call"',{gen,init_it,
[gen_fsm <0. 30. 0>, <0. 30. 0>,
{l ocal , code_| ock},
code_| ock,
[1,2,3,4],

(11331,
runni ng, <0. 30. 0>, [],
[code_l ock, cl osed, {[],[1,2,3,4]},code_lock,infinity]]}

9.6.2 Special Processes

This section describes how to write a process which comply to the OTP design principles, without making use of a
standard behaviour. Such a process should:

* bestarted in away that makes the processfit into a supervision tree,

» support the sy sdebug facilities, and

» takecare of system messages.

System messages are messages with special meaning, used in the supervision tree. Typical system messages are

requestsfor trace output, and requeststo suspend or resume process execution (used during release handling). Processes
implemented using standard behaviours automatically understand these messages.

Example

The simple server from the Overview chapter, implemented usingsys andpr oc_| i b soitfitsinto asupervisiontree:

- modul e(ch4) .

-export([start_link/0]).

-export([alloc/0, free/l]).

-export([init/1]).

-export ([systemcontinue/3, systemtermn nate/4,
write_debug/3]).

start_link() ->
proc_lib:start_link(ch4, init, [self()]).

alloc() ->

ch4a ' {self(), alloc},
receive

284 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 Sys and Proc_Lib

{ch4, Res} ->

Res
end.
free(Ch) ->
ch4 | {free, Ch},
ok.

init(Parent) ->
regi ster(ch4, self()),
Chs = channel s(),
Deb = sys: debug_options([]),
proc_lib:init_ack(Parent, {ok, self()}),
| oop(Chs, Parent, Deb).

| oop(Chs, Parent, Deb) ->
receive
{From alloc} ->
Deb2 = sys: handl e_debug(Deb, {ch4, wite_debug},
ch4, {in, alloc, Fron}),
{Ch, Chs2} = alloc(Chs),
From! {ch4, Ch},
Deb3 = sys: handl e_debug(Deb2, {ch4, wite_debug},
ch4, {out, {ch4, Ch}, Fron}),
| oop(Chs2, Parent, Deb3);
{free, Ch} ->
Deb2 = sys: handl e_debug(Deb, {ch4, wite_debug},
ch4, {in, {free, Ch}}),
Chs2 = free(Ch, Chs),
| oop(Chs2, Parent, Deb2);

{system From Request} ->
sys: handl e_syst em nmsg(Request, From Parent,
ch4, Deb, Chs)
end.

system conti nue(Parent, Deb, Chs) ->
| oop(Chs, Parent, Deb).

system term nat e(Reason, Parent, Deb, Chs) ->
exit (Reason).

wite_debug(Dev, Event, Nane) ->
io:format (Dev, "~p event = ~p~n", [Nane, Event]).

Example on how the simple debugging functionsin sys can be used for ch4 aswell:

% erl
Erl ang (BEAM enul ator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~"Q
1> ch4:start _|ink().

{ ok, <0. 30. 0>}

2> sys:statistics(ch4, true).

ok

3> sys:trace(ch4, true).

ok

4> ch4:al l oc().

ch4 event = {in,alloc,<0.25.0>}
ch4 event = {out, {ch4, chl}, <0. 25. 0>}
chl

5> ch4: free(chl).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 285

9.6 Sys and Proc_Lib

ch4 event = {in,{free,chl}}
ok
6> sys:statistics(ch4, get)
{ok,[{start_tine, {{2003, 6, 13},{9, 47,5}}},
{current _time, {{2003, 6, 13}, {9, 47,56}}},
{reductions, 109},
{nmessages_in, 2},
{nmessages_out, 1}]}
7> sys:statistics(ch4, false)
ok
8> sys:trace(ch4, false)
ok
9> sys: get _status(ch4)
{ st at us, <0. 30. 0>
{ nodul e, ch4}
[[{" $ancestors',[<0.25.0>]},{ ' $initial _call',{ch4,init,[<0.25.0>]}}],
runni ng, <0. 25.0>,[],
[ch1, ch2,ch3]]}

Starting the Process

A function in the proc_| i b module should be used to start the process. There are several possible functions, for
examplespawn_I| i nk/ 3, 4 for asynchronous start and st art _| i nk/ 3, 4, 5 for synchronous start.

A process started using one of these functions will storeinformation that is needed for a processin a supervision tree,
for example about the ancestors and initial call.

Also, if the process terminates with another reason than nor mal or shut down, a crash report (see SASL User's
Guide) is generated.

In the example, synchronous start is used. The processis started by callingch4: start _l i nk():

start_link() ->
proc_lib:start_link(ch4, init, [self()]).

ch4: start _|ink calsthefunctionproc_I|ib: start | i nk. Thisfunction takes a module name, a function
name and an argument list as arguments and spawns and links to a new process. The new process starts by executing
the given function, in this case ch4: i ni t (Pi d), where Pi d isthe pid (sel f ()) of the first process, that is the
parent process.

Ininit, al initialization including name registration is done. The new process must also acknowledge that it has
been started to the parent:

init(Parent) ->

b&éc_lib:init_ack(Parent, {ok, self()}),
loop(...).

proc_lib:start_|ink issynchronousand doesnot returnuntil proc_|i b:init_ack hasbeen caled.

Debugging

To support the debug facilites in sys, we need a debug structure, a term Deb which is initialized using
sys: debug_options/1:

init(Parent) ->

286 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 Sys and Proc_Lib

Deb = sys: debug_options([]),

| oop(Chs, Parent, Deb).

sys: debug_opti ons/ 1 takesalist of options as argument. Here the list is empty, which means no debugging is
enabled initially. Seesys(3) for information about possible options.

Then for each system event that we want to be logged or traced, the following function should be called.

sys: handl e_debug(Deb, Func, Info, Event) => Debl

« Deb isthe debug structure.

* Funcisatuple{ Modul e, Nane} (or afun) and should specify a (user defined) function used to format trace
output. For each system event, the format functioniscalled asModul e: Name(Dev, Event, | nfo),where

e Dev isthelO device to which the output should be printed. Seei o(3) .
* Event and | nf o are passed as-isfrom handl e_debug.
e | nf o isused to pass additional information to Func, it can be any term and is passed as-is.

* Event isthe system event. It isup to the user to define what a system event is and how it should be represented,
but typically at least incoming and outgoing messages are considered system events and represented by the tuples
{in, Msg[, Fronm } and{out, Msg, To}, respectively.

handl e_debug returns an updated debug structure Deb1.

In the example, handl e_debug is called for each incoming and outgoing message. The format function Func is
thefunctionch4: wri t e_debug/ 3 which prints the message usingi o: f or mat / 3.

| oop(Chs, Parent, Deb) ->
receive
{From alloc} ->
Deb2 = sys: handl e_debug(Deb, {ch4, wite_debug},
ch4, {in, alloc, Fron}),
{Ch, Chs2} = alloc(Chs),
From! {ch4, Ch},
Deb3 = sys: handl e_debug(Deb2, {ch4, wite_debug},
ch4, {out, {ch4, Ch}, Fron}),
| oop(Chs2, Parent, Deb3);
{free, Ch} ->
Deb2 = sys: handl e_debug(Deb, {ch4, wite_debug},
ch4, {in, {free, Ch}}),
Chs2 = free(Ch, Chs),
| oop(Chs2, Parent, Deb2);

end.

write _debug(Dev, Event, Nane) ->
io:format (Dev, "~p event = ~p~n", [Nane, Event]).

Handling System Messages

System messages are received as:

{system From Request}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 287

9.6 Sys and Proc_Lib

The content and meaning of these messages do not need to beinterpreted by the process. Instead the following function
should be called:

sys: handl e_system nsg(Request, From Parent, Modul e, Deb, State)

This function does not return. It will handle the system message and then call:

Modul e: syst em conti nue(Parent, Deb, State)

if process execution should continue, or:

Mbdul e: syst em t er mi nat e(Reason, Parent, Deb, State)

if the process should terminate. Note that a process in asupervision treeis expected to terminate with the same reason
asits parent.

* Request and Fr omshould be passed as-is from the system message to the call to handl e_syst em nsg.
* Parent isthepid of the parent.

e Mbodul e isthe name of the module.

e Deb isthe debug structure.

e St at e isaterm describing the internal state and ispassedto syst em cont i nue/system t er m nat e.

In the example:

| oop(Chs, Parent, Deb) ->
receive

{system From Request} ->
sys: handl e_syst em nmsg(Request, From Parent,
ch4, Deb, Chs)
end

system conti nue(Parent, Deb, Chs) ->
| oop(Chs, Parent, Deb)

system term nat e(Reason, Parent, Deb, Chs) ->
exit (Reason).

If the special processis set to trap exits, note that if the parent process terminates, the expected behavior isto terminate
with the same reason:

init(...) ->
b?ééess_flag(trap_exit, true),
loop(...).

Ioop(...) ->
recei ve

288 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.6 Sys and Proc_Lib

{"EXIT, Parent, Reason} ->
.. maybe some cl eaning up here..
exit (Reason);

end.

9.6.3 User-Defined Behaviours

To implement a user-defined behaviour, write code similar to code for a special process but calling functionsin a
callback module for handling specific tasks.

If it is desired that the compiler should warn for missing callback functions, as it does for the OTP behaviours,
implement and export the function:

behavi our _i nfo(cal | backs) ->
[{Nanmel, Arityl}, ..., {NanmeN, ArityN}].

where each { Narre, Ari ty} specifiesthe name and arity of a callback function.

When the compiler encounters the module attribute - behavi our (Behavi our) . in a module Mod, it will call
Behavi our : behavi our _i nfo(cal | backs) and comparetheresult with the set of functions actually exported
from Mod, and issue awarning if any callback function is missing.

Example:

%% User - def i ned behavi our nodul e
- modul e(si npl e_server).
-export([start_link/2,...]).
-export ([behavi our_info/1]).
behavi our _i nf o(cal | backs) ->
[{init, 1},
{handl e_req, 1},
{term nate, 0}].

start_|ink(Name, Mdule) ->
proc_lib:start |ink(?MODULE, init, [self(), Nanme, Mdule]).

init(Parent, Nanme, Mdule) ->

regi ster(Nane, self()),
Dbg = sys: debug_options([]),
proc_lib:init_ack(Parent, {ok, self()}),
| oop(Parent, Mdule, Deb, ...).

In acallback module:

- modul e(db) .
- behavi our (si npl e_server).

-export([init/0, handle_reqg/1, term nate/0]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 289

9.7 Applications

9.7 Applications
This chapter should be read in conjunction with app(4) and appl i cati on(3).

9.7.1 Application Concept

When we have written code implementing some specific functionality, we might want to make the code into an
application, that is a component that can be started and stopped as a unit, and which can be re-used in other systems
aswell.

To do this, we create an application callback module, where we describe how the application should be started and
stopped.

Then, an application specification is needed, which is put in an application resource file. Among other things, we
specify which modules the application consists of and the name of the callback module.

If weusesyst ool s, the Erlang/OTP toolsfor packaging code (see Releases), the code for each application is placed
in a separate directory following a pre-defined directory structure.

9.7.2 Application Callback Module

How to start and stop the code for the application, i.e. the supervision tree, is described by two callback functions:

start(Start Type, StartArgs) -> {ok, Pid} | {ok, Pid, State}
stop(St ate)

start iscaled when starting the application and should create the supervision tree by starting the top supervisor.
It is expected to return the pid of the top supervisor and an optional term St at e, which defaultsto []. Thisterm is
passed as-isto st op.

St art Type isusualy theatomnor rral . It hasother values only in the case of atakeover or failover, see Distributed
Applications. St ar t Ar gs is defined by the key nod in the application resourcefilefile.

stop/ 1 is called after the application has been stopped and should do any necessary cleaning up. Note that the
actual stopping of the application, that is the shutdown of the supervision tree, is handled automatically as described
in Starting and Stopping Applications.

Example of an application callback module for packaging the supervision tree from the Supervisor chapter:

- modul e(ch_app) .
- behavi our (appl i cati on) .

-export([start/2, stop/1]).

start(_Type, _Args) ->
ch_sup:start_link().

stop(_State) ->
ok.

A library application, which can not be started or stopped, does not need any application callback module.

290 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.7 Applications

9.7.3 Application Resource File

To define an application, we create an application specification which is put in an application resource file, or in
short . app file:

{application, Application, [Optd,..., Opt N }.

Appl i cati on, an atom, isthe name of the application. The file must be named Appl i cat i on. app.

Each Opt isatuple{ Key, Val ue} whichdefineacertain property of the application. All keysare optional. Default
values are used for any omitted keys.

The contents of aminimal . app filefor alibrary application | i bapp looks like this:

{application, |ibapp, []}.

The contents of aminimal . app filech_app. app for asupervision tree application like ch_app looks like this:

{application, ch_app,
[{rod, {ch_app,[1}}]1}.

The key nod defines the callback module and start argument of the application, in this case ch_app and [],
respectively. This means that

ch_app:start(normal, [])

will be called when the application should be started and

ch_app: stop([])

will be called when the application has been stopped.

When using syst ool s, the Erlang/OTP tools for packaging code (see Releases), the keys descri pti on, vsn,
nmodul es, regi st ered andappl i cati ons should aso be specified:

{application, ch_app,
[{description, "Channel allocator"},
{vsn, "1"},
{nodul es, [ch_app, ch_sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasl]},
]irmd, {ch_app, [1}}

description

A short description, astring. Defaultsto "".
vsn

Version number, astring. Defaultsto "".

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 291

9.7 Applications

nodul es
All modulesintroduced by this application. syst ool s usesthislist when generating boot scripts and tar files.
A module must be defined in one and only one application. Defaultsto [].

regi stered
All names of registered processes in the application. syst ool s usesthislist to detect name clashes between
applications. Defaultsto [].

applications
All applications which must be started before this application is started. syst ool s usesthislist to generate
correct boot scripts. Defaultsto [], but note that all applications have dependenciesto at least ker nel and
stdlib.

The syntax and contents of of the application resource file are described in detail inapp(4) .

9.7.4 Directory Structure

When packaging code using syst ool s, the code for each application is placed in a separate directory | i b/
Appl i cati on- Vsn, where Vsn isthe version number.

Thismay be useful to know, evenif syst ool s isnot used, since Erlang/OTP itself is packaged according to the OTP
principles and thus comes with this directory structure. The code server (see code(3)) will automatically use code
from the directory with the highest version number, if there are more than one version of an application present.

The application directory structure can of course be used in the devel opment environment aswell. The version number
may then be omitted from the name.

The application directory have the following sub-directories:

e src
e ebin
e priv
e include
src
Contains the Erlang source code.
ebi n
Contains the Erlang object code, the beamfiles. The . app fileisaso placed here.
priv

Used for application specific files. For example, C executables are placed here. The function
code: pri v_di r/ 1 should be used to access this directory.

i ncl ude
Used for include files.

9.7.5 Application Controller

When an Erlang runtime system is started, a number of processes are started as part of the Kernel application. One of
these processes is the application controller process, registered asappl i cati on_control | er.

All operations on applications are coordinated by the application controller. It is interfaced through the functionsin
themoduleappl i cati on,seeappl i cati on(3).Inparticular, applications can be loaded, unloaded, started and
stopped.

9.7.6 Loading and Unloading Applications

Before an application can be started, it must be loaded. The application controller reads and stores the information
fromthe. app file.

292 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.7 Applications

1> application: | oad(ch_app)

ok

2> application: | oaded_appl i cations()
[{kernel ,"ERTS CXC 138 10","2.8.1.3"},
{stdlib, "ERTS CXC 138 10","1.11.4.3"},
{ch_app, "Channel allocator","1"}]

An application that has been stopped, or hasnever been started, can be unloaded. Theinformation about the application
is erased from the internal database of the application controller.

3> application: unl oad(ch_app) .

ok

4> application: | oaded_applications().
[{kernel ,"ERTS CXC 138 10","2.8.1.3"},
{stdlib,"ERTS CXC 138 10","1.11.4.3"}]

Note:

L oading/unloading an application does not |oad/unload the code used by the application. Code loading is done
the usual way.

9.7.7 Starting and Stopping Applications
An application is started by calling:

5> application:start(ch_app).

ok

6> appl i cation: whi ch_applications().
[{kernel ,"ERTS CXC 138 10","2.8.1.3"},
{stdlib,"ERTS CXC 138 10","1.11.4.3"},
{ch_app, "Channel allocator","1"}]

If the application is not already loaded, the application controller will first load it using appl i cati on: | oad/ 1.
It will check the value of the appl i cat i ons key, to ensure that all applications that should be started before this
application are running.

The application controller then creates an application master for the application. The application master is the group
leader of all the processes in the application. The application master starts the application by calling the application
callback function st ar t / 2 in the module, and with the start argument, defined by the nod key inthe . app file.

An application is stopped, but not unloaded, by calling:

7> application: stop(ch_app).
ok

The application master stops the application by telling the top supervisor to shutdown. The top supervisor tells al its
child processes to shutdown etc. and the entire tree is terminated in reversed start order. The application master then
callsthe application callback function st op/ 1 in the module defined by the nod key.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 293

9.7 Applications

9.7.8 Configuring an Application

An application can be configured using configuration parameters. These arealist of { Par, Val } tuples specified
by akey env inthe. app file

{application, ch_app,
[{description, "Channel allocator"},
{vsn, "1"},
{nodul es, [ch_app, ch_sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasl]},

{mod, {ch_app,[]}},
{env, [{file, "/usr/local/log"}]}

I}

Par should bean atom, Val isany term. The application can retrieve the value of aconfiguration parameter by calling
application: get_env(App, Par) oranumberof similar functions, seeappl i cati on(3).

Example:

% erl
Erl ang (BEAM emul ator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~"Q

1> application:start(ch_app).

ok

2> application: get_env(ch_app, file).
{ok,"/usr/local/log"}

The valuesin the . app file can be overridden by values in a system configuration file. Thisis afile which contains
configuration parameters for relevant applications:

[{Applicationl, [{Parll, Val11},...]},
{.AbblicationN, [{ParNL, Val N1}, ...]}].

The system configuration should be called Nane. confi g and Erlang should be started with the command line
argument - confi g Name. Seeconfi g(4) for moreinformation.

Example: A filet est . confi g iscreated with the following contents:

[{ch_app, [{file, "testlog"}]}].

Thevalueof fi | e will overridethevalueof fi | e asdefinedinthe. app file:

%erl -config test
Erl ang (BEAM emul ator version 5.2.3.6 [hipe] [threads:0]

Eshell V5.2.3.6 (abort with ~Q

1> application:start(ch_app).

ok

2> application: get_env(ch_app, file).

294 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.8 Included Applications

{ok, "testl og"}

If release handling is used, exactly one system configuration file should be used and that file should be called
sys.config

Thevaluesin the . app file, aswell asthe valuesin a system configuration file, can be overridden directly from the
command line:

% erl -ApplName Parl Vall ... ParN Val N

Example:

%erl -ch_app file '"testlog"'
Erl ang (BEAM enul ator version 5.2.3.6 [hipe] [threads: 0]

Eshell V5.2.3.6 (abort with ~"Q

1> application:start(ch_app).

ok

2> application: get_env(ch_app, file).
{ok, "testl og"}

9.7.9 Application Start Types
A start type is defined when starting the application:

application:start (Application, Type)

application:start(Application) is the same as calling application:start(Application,
t enpor ary) . Thetype can also be per nanent ortransi ent:

* If apermanent application terminates, al other applications and the runtime system are also terminated.

e |f atransient application terminates with reason nor mal , thisis reported but no other applications are
terminated. If atransient application terminates abnormally, that is with any other reason than nor mal , al
other applications and the runtime system are also terminated.

* If atemporary application terminates, this is reported but no other applications are terminated.

It is always possible to stop an application explicitly by calling appl i cat i on: st op/ 1. Regardless of the mode,
no other applications will be affected.

Note that transient mode is of little practical use, since when a supervision tree terminates, the reason is set to
shut down, not nor mal .

9.8 Included Applications

9.8.1 Definition

An application can include other applications. An included application has its own application directory and . app
file, but it is started as part of the supervisor tree of another application.

An application can only be included by one other application.
An included application can include other applications.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 295

9.8 Included Applications

An application which is not included by any other application is called a primary application.

Primary application

Included applications

Included applications
Figure 8.1: Primary Application and Included Applications.

The application controller will automatically load any included applications when loading a primary application, but
not start them. Instead, the top supervisor of the included application must be started by a supervisor in the including
application.

This means that when running, an included application is in fact part of the primary application and a processin an
included application will consider itself belonging to the primary application.

9.8.2 Specifying Included Applications
Which applications to include is defined by thei ncl uded_appl i cat i ons key inthe. app file.

{application, primapp,
[{description, "Tree application"},
{vsn, "1"},
{nodul es, [primapp_cb, primapp_sup, primapp_server]},
{registered, [primapp_server]},
{included_applications, [incl_app]},
{applications, [kernel, stdlib, sasl]},

{rmod, {primapp_cb,[]}},
{env, [{file, "/usr/local/log"}]}

1}.

9.8.3 Synchronizing Processes During Startup

The supervisor tree of an included application is started as part of the supervisor tree of the including application. If
thereisaneed for synchronization between processes in the including and included applications, this can be achieved
by using start phases.

Start phases are defined by the st art _phases key inthe. app fileasalist of tuples{ Phase, PhaseAr gs},
where Phase is an atom and PhaseAr gs is aterm. Also, the value of the nod key of the including application
must besetto{ appl i cati on_starter, [Modul e, Start Args]},where Modul e asusual isthe application
callback moduleand St ar t Ar gs aterm provided as argument to the callback function Modul e: start/ 2.

{application, primapp,
[{description, "Tree application"},
{vsn, "1"},

296 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.9 Distributed Applications

{nodul es, [primapp_cb, primapp_sup, primapp_server]},
{registered, [primapp_server]},

{included_applications, [incl_app]},

{start_phases, [{init,[]}, {g9o0,[]1}]},

{applications, [kernel, stdlib, sasl]},

{nod, {application_starter,[primapp_cb,[]]}},

{env, [{file, "/usr/local/log"}]}

1}
{application, incl_app,
[{description, "Included application"},
{vsn, "1"},

{nodul es, [incl_app_cb, incl_app_sup, incl_app_server]},
{registered, []},

{start_phases, [{go,[]1}]},
{applications, [kernel, stdlib, sasl]},

{nmod, {incl_app_cb,[]}}
It

When starting a primary application with included applications, the primary application is started the normal
way: The application controller creates an application master for the application, and the application master calls
Modul e: start (nornal , Start Args) to start the top supervisor.

Then, for the primary application and each included application in top-down, left-to-right order, the application
master callshbdul e: st art _phase(Phase, Type, PhaseArgs) for each phase defined for for the primary
application, in that order. Note that if a phase is not defined for an included application, the function is not called for
this phase and application.

The following requirements apply to the . app file for an included application:

e The{nod, {Module, Start Args}} option must beincluded. This option is used to find the callback
module Mbdul e of the application. St art Ar gs isignored, asMbdul e: st art/ 2 iscaled only for the
primary application.

« |If theincluded application itself contains included applications, instead the option { nod,
{application_starter, [Mdule, StartArgs]}} mustbeincluded.

e The{start_phases, [{Phase, PhaseArgs}]} option must beincluded, and the set of specified
phases must be a subset of the set of phases specified for the primary application.

When starting pr i m_app asdefined above, the application controller will call thefollowing callback functions, before
application:start(primapp) returnsavalue:

application:start(primapp)
=> primapp_chbh:start(normal, [])
=> primapp_ch: start_phase(init, normal, [
=> primapp_ch: start_phase(go, nornmal, [])
=> incl _app_ch: start_phase(go, normal, [])
ok

1

9.9 Distributed Applications

9.9.1 Definition

In adistributed system with several Erlang nodes, there may be aneed to control applicationsin adistributed manner.
If the node, where a certain application is running, goes down, the application should be restarted at another node.

Such an applicationis called adistributed application. Notethat it isthe control of the application which is distributed,
all applications can of course be distributed in the sense that they, for example, use services on other nodes.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 297

9.9 Distributed Applications

Because a distributed application may move between nodes, some addressing mechanism is required to ensure that
it can be addressed by other applications, regardless on which node it currently executes. Thisissue is not addressed
here, but the Kernel module gl obal or STDLIB module pg can be used for this purpose.

9.9.2 Specifying Distributed Applications

Distributed applications are controlled by both the application controller and a distributed application controller
process, di st _ac. Both these processes are part of the ker nel application. Therefore, distributed applications
are specified by configuring the ker nel application, using the following configuration parameter (see also
ker nel (6)):

distributed = [{Application, [Tinmeout,] NodeDesc}]

Specifies where the application Appli cation = atom() may execute. NodeDesc = [Node |
{Node, . .., Node}] isalist of node namesin priority order. The order between nodesin atupleisundefined.
Ti meout = i nteger () specifieshow many millisecondsto wait before restarting the application at another

node. Defaultsto O.

For distribution of application control to work properly, the nodes where a distributed application may run must
contact each other and negotiate whereto start the application. Thisisdone using thefollowing ker nel configuration
parameters:

sync_nodes_mandat ory = [Node]

Specifies which other nodes must be started (within the timeout specified by sync_nodes_ti nmeout .
sync_nodes_optional = [Node]

Specifies which other nodes can be started (within the timeout specified by sync_nodes_ti nmeout .
sync_nodes _tinmeout = integer() | infinity

Specifies how many milliseconds to wait for the other nodes to start.

When started, the node will wait for all nodes specified by sync_nodes_mandatory and
sync_nodes_opti onal tocome up. When al nodes have come up, or when all mandatory nodes have come up
and the time specified by sync_nodes_ti meout haselapsed, al applicationswill be started. If not all mandatory
nodes have come up, the node will terminate.

Example: An application myapp should run at the node cpl@ave. If this node goes down, myapp should be
restarted at cp2@ave or cp3@ave. A system configuration filecpl. confi g forcpl@ave could look like:

[{kernel,
[{distributed, [{nyapp, 5000, [cpl@ave, {cp2@ave, cp3@ave}]}]},
{sync_nodes_nandatory, [cp2@ave, cp3@ave]},
{sync_nodes_ti neout, 5000}
]
}
].

The system configuration files for cp2@ave and cp3@ave are identical, except for the list of mandatory nodes
which should be[cpl@ave, cp3@ave] forcp2@ave and[cpl@ave, cp2@ave] forcp3@ave.

Note:

All involved nodes must have the same value for di stri buted and sync_nodes_ti neout, or the
behaviour of the system is undefined.

298 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.9 Distributed Applications

9.9.3 Starting and Stopping Distributed Applications

When all involved (mandatory) nodes have been started, the distributed application can be started by calling
application:start(Application) atall of these nodes.

It isof course also possible to use a boot script (see Releases) which automatically starts the application.

The application will be started at the first node, specified by the di st ri but ed configuration parameter, which is
up and running. The application is started as usual. That is, an application master is created and calls the application
callback function:

Modul e: start (normal, StartArgs)

Example: Continuing the example from the previous section, the three nodes are started, specifying the system
configuration file:

> erl -sname cpl -config cpl
> erl -sname cp2 -config cp2
> erl -sname cp3 -config cp3

When al nodes are up and running, nyapp can be stated. This is achieved by caling
application:start(myapp) atal threennodes. Itisthen started at cpl, as shown in the figure below.

myapp

Figure 9.1: Application myapp - Situation 1

Similarly, the application must be stopped by callingappl i cat i on: st op(Appl i cati on) atall involved nodes.

9.9.4 Failover

If the node where the application is running goes down, the application is restarted (after the specified timeout) at the
first node, specified by thedi st ri but ed configuration parameter, whichisup and running. Thisiscalled afailover.

The application is started the normal way at the new node, that is, by the application master calling:

Modul e: start (normal , StartArgs)

Exception: If the application hasthe st art _phases key defined (see Included Applications), then the application
isinstead started by calling:

Modul e: start ({fail over, Node}, StartArgs)

where Node isthe terminated node.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 299

9.9 Distributed Applications

Example: If cp1 goes down, the system checks which one of the other nodes, cp2 or cp3, has the least number of
running applications, but waitsfor 5 secondsfor cpl torestart. If cp1 doesnot restart and cp2 runsfewer applications
than cp3, thennyapp isrestarted oncp2.

Jagole

3 5e0s.

nyapp

Figure 9.2: Application myapp - Situation 2
Suppose now that cp2 goes down as well and does not restart within 5 seconds. nyapp isnow restarted on cp3.

@

myapp

3 5e0s.

ryapp

Figure 9.3: Application myapp - Situation 3

9.9.5 Takeover

If a node is started, which has higher priority according to di st ri but ed, than the node where a distributed
application is currently running, the application will be restarted at the new node and stopped at the old node. This
is called atakeover.

The application is started by the application master calling:

Modul e: start ({takeover, Node}, StartArgs)

where Node isthe old node.

300 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.10 Releases

Example: If myapp isrunning at cp3, and if cp2 now restarts, it will not restart myapp, because the order between
nodes cp2 and cp3 is undefined.

myapp

Figure 9.4: Application myapp - Situation 4

However, if cpl restarts aswell, the function appl i cati on: t akeover/ 2 movesnyapp tocpl, becausecpl
has a higher priority than cp3 for this application. In this case, Modul e: st art ({t akeover, cp3@ave},
St art Args) isexecuted at cpl to start the application.

OO
-

cpl: application-takeov er(inyapp, pemanent)

e

myapp

Figure 9.5: Application myapp - Situation 5

9.10 Releases
This chapter should be read in conjuction withr el (4),syst ool s(3) andscri pt(4).

9.10.1 Release Concept

When we have written one or more applications, we might want to create a complete system consisting of these
applications and a subset of the Erlang/OTP applications. Thisis called arelease.

To do this, we create a release resource file which defines which applications are included in the rel ease.

The release resource file is used to generate boot scripts and release packages. A system which is transfered to and
installed at another siteis called a target system. How to use a release package to create a target system is described
in System Principles.

9.10.2 Release Resource File

To define arelease, we create arelease resource file, or in short . r el file, where we specify the name and version
of the release, which ERTS version it is based on, and which applications it consists of:

{rel ease, {Nane, Vsn}, {erts, EVsn},
[{Applicationl, AppVsnl},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 301

9.10 Releases

{ApplicationN, AppVsnN}]}.

Thefile must be named Rel . r el , where Rel isaunique name.
Name, Vsn and Evsn are strings.

Each Appl i cat i on (atom) and AppVsn (string) is the name and version of an application included in the release.
Note the the minimal release based on Erlang/OTP consists of the ker nel and st dl i b applications, so these
applications must be included in the list.

Example: We want to make arelease of ch_app from the Applications chapter. It hasthe following . app file:

{application, ch_app,
[{description, "Channel allocator"},
{vsn, "1"},
{nodul es, [ch_app, ch_sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasl]},
]im)d, {ch_app, [1}}

The . rel filemust also contain ker nel , stdl i b and sasl , since these applications are required by ch_app.
Wecal thefilech_rel -1.rel:

{rel ease,
{"ch_rel", "A"},
{erts, "5.3"},
[{kernel, "2.9"},
{stdlib, "1.12"},
{sasl, "1.10"},

! {ch_app, "1"}]

9.10.3 Generating Boot Scripts

There aretoolsin the SASL module syst ool s available to build and check releases. The functions read the . r el
and. app filesand performs syntax and dependency checks. Thefunctionsyst ool s: make_scri pt/ 1, 2 isused
to generate a boot script (see System Principles).

1> systool s: make_script("ch_rel-1", [local]).
ok

This creates aboot script, both thereadableversionch_r el - 1. scri pt and the binary version used by the runtime
system, ch_rel -1. boot."ch_rel -1" isthe name of the . r el file, minusthe extension. | ocal isan option
that means that the directories where the applications are found are used in the boot script, instead of $ROOT/ | i b.
($ROOT istheroot directory of the installed release.) Thisis a useful way to test a generated boot script locally.

When starting Erlang/OTP using the boot script, all applications from the . r el file are automatically loaded and
started:

% erl -boot ch_rel-1
Erl ang (BEAM enul ator version 5.3

302 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.10 Releases

Eshell V5.3 (abort with ~"Q

1>
=PROGRESS REPORT==== 13- Jun-2003::12: 01: 15 ===
supervisor: {local, sasl _safe_sup}
started: [{pid, <0.33.0>},
{nane, al ar m handl er},
{nfa, {alarmhandl er,start_link,[]}},
{restart _type, permanent},
{ shut down, 2000},
{child_type, worker}]
=PROGRESS REPORT==== 13- Jun-2003::12: 01: 15 ===
appl i cation: sasl
started_at: nonode@ohost
=PROGRESS REPORT==== 13- Jun-2003::12: 01: 15 ===

appl i cati on: ch_app
started_at: nonode@ohost

9.10.4 Creating a Release Package

Thereisafunctionsyst ool s: make_tar/ 1, 2 whichtakesa. r el fileasinput and creates azipped tar-file with
the code for the specified applications, arelease package.

1> syst ool s: make_script("ch_rel -1").
ok

2> systool s: make_tar("ch_rel -1").

ok

The release package by default contains the . app files and object code for all applications, structured according to
the application directory structure, the binary boot script renamedto st art . boot , andthe. r el file

%tar tf ch_rel-1.tar
I'i b/ kernel - 2. 9/ ebi n/ ker nel . app
I'i b/ kernel -2. 9/ ebi n/ appl i cati on. beam

lib/stdlib-1.12/ebin/stdlib.app
l'ib/stdlib-1.12/ebin/beam.]|ib. beam

I'i b/ sasl -1. 10/ ebi n/ sasl . app
l'i b/ sasl -1. 10/ ebi n/ sasl . beam

I'i b/ ch_app- 1/ ebi n/ ch_app. app
I'i b/ ch_app- 1/ ebi n/ ch_app. beam
I'i b/ ch_app- 1/ ebi n/ ch_sup. beam
I'i b/ ch_app- 1/ ebi n/ ch3. beam

rel eases/ Al start. boot

rel eases/ch_rel-1.rel

Note that a new boot script was generated, without thel ocal option set, before the rel ease package was made. In the
release package, al application directories are placed under | i b. Also, we do not know where the release package
will beinstalled, so we do not want any hardcoded absol ute paths in the boot script here.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 303

9.10 Releases

If ar el up fileand/or asystem configurationfilecalled sys. conf i g isfound, thesefilesareincluded intherelease
package as well. See Release Handling.

Options can be set to make the release package include source code and the ERTS binary as well.

Refer to System Principles for how to install the first target system, using a release package, and to Release Handling
for how to install a new release package in an existing system.

9.10.5 Directory Structure

Directory structure for the code installed by the release handler from a release package:

$ROOT/ | i b/ Appl- AVsnl/ ebin
/priv

/ App2- AVsn2/ ebi n

/priv

/ AppN- AVsnN ebi n
/priv
/erts-EVsn/ bin
/rel eases/ Vsn
/bin

lib
Application directories.
erts-EVsn/ bin
Erlang runtime system executables.
rel eases/ Vsn
. rel fileand boot script st art . boot .
If present in the release package,
r el up and/or sys. confi g.
bin
Top level Erlang runtime system executabl es.
Applications are not required to be located under the $ROOT/ | i b directory. Accordingly, several installation
directories may exist which contain different parts of a system. For example, the previous example could be extended
asfollows:

$SECOND_ROOT/ . . . / SAppl- SAVsnl/ ebin
/priv

| SApp2- SAVsn2/ ebi n

/priv

| SAppN- SAVsnN ebi n
/priv

$TH RD_ROOT/ TAppl1- TAVsn1/ ebi n
/priv

| TApp2- TAVsn2/ ebi n

/priv

[TAppN- TAVsnN ebi n
/priv

The $SECOND ROOT and $THI RD ROOT are introduced as variables in the cal to the
syst ool s: make_scri pt/ 2 function.

304 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

Disk-Less and/or Read-Only Clients

If acomplete system consists of some disk-less and/or read-only client nodes, acl i ent s directory should be added
to the $ROOT directory. By aread-only node we mean a node with a read-only file system.

Thecl i ent s directory should have one sub-directory per supported client node. The name of each client directory
should be the name of the corresponding client node. Asaminimum, each client directory should contain the bi n and
r el eases sub-directories. These directories are used to store information about installed rel eases and to appoint the
current release to the client. Accordingly, the $ROOT directory contains the following:

$ROOT/ . . .
/clients/dientNanmel/ bin
/rel eases/ Vsn
/ d i ent Name2/ bi n
/rel eases/ Vsn

)dientNarreN/bi n
/rel eases/ Vsn

This structure should be used if @l clients are running the same type of Erlang machine. If there are clients running
different types of Erlang machines, or on different operating systems, thecl i ent s directory could be divided into
one sub-directory per type of Erlang machine. Alternatively, you can set up one $ROOT per type of machine. For each
type, some of the directories specified for the $ROOT directory should be included:

$ROOT/ . . .
/clients/Typel/lib
/erts-EVsn
/bin

/ Ci ent Nanel/ bi n

/ rel eases/ Vsn
/ C i ent Nane2/ bi n

/ rel eases/ Vsn

/ C i ent NaneN bi n
/ rel eases/ Vsn

[/ TypeN lib
/erts-EVsn
/bin

With this structure, the root directory for clients of Typel is$ROOT/ cl i ent s/ Typel.

9.11 Release Handling
9.11.1 Release Handling Principles

An important feature of the Erlang programming language is the ability to change module code in run-time, code
replacement, as described in Erlang Reference Manual.

Based on this feature, the OTP application SASL provides a framework for upgrading and downgrading between
different versions of an entire release in run-time. Thisis what we call release handling.

Theframework consists of off-line support (syst ool s) for generating scripts and building rel ease packages, and on-
line support (r el ease_handl er) for unpacking and installing release packages.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 305

9.11 Release Handling

Note that the minimal system based on Erlang/OTP, enabling rel ease handling, thus consists of Kernel, STDLIB and
SASL.

A releaseis created as described in the previous chapter Releases. The release is transferred to and installed at
target environment. Refer to System Principles for information of how to install the first target system.
* Maodifications, for example error corrections, are made to the code in the devel opment environment.

» At somepoint it istimeto make anew version of release. Therelevant . app files are updated and anew . r el
fileiswritten.

« For each modified application, an application upgrade file, . appup, is created. In thisfile, it is described how
to upgrade and/or downgrade between the old and new version of the application.

* Basedonthe. appup files, arelease upgrade file called r el up, is created. This file describes how to upgrade
and/or downgrade between the old and new version of the entire release.

* A new release package is made and transferred to the target system.

* The new release package is unpacked using the rel ease handler.

» Thenew version of thereleaseisinstalled, also using therelease handler. Thisisdoneby evaluating theinstructions
inr el up. Modules may be added, deleted or re-loaded, applications may be started, stopped or re-started etc. In
some cases, it is even necessary to restart the entire emulator.

If the installation fails, the system may be rebooted. The old release version is then automatically used.

» If the installation succeeds, the new version is made the default version, which should now be used in case of

a system reboot.

The next chapter, Appup Cookbook, contains examplesof . appup filesfor typical cases of upgrades/downgrades that
arenormally easy to handlein run-time. However, there areamany aspectsthat can makerel ease handling complicated.
To name afew examples:

» Complicated or circular dependencies can make it difficult or even impossible to decide in which order things
must be done without risking run-time errors during an upgrade or downgrade. Dependencies may be:
e between nodes,
» between processes, and
e between modules.

» During release handling, non-affected processes continue normal execution. This may lead to timeouts or other
problems. For example, new processes created in the time window between suspending processes using a certain
module and loading a new version of this module, may execute old code.

It istherefore recommended that codeis changed in as small steps as possible, and always kept backwards compatible.

9.11.2 Requirements

For release handling to work properly, the runtime system needs to have knowledge about which releaseit is currently
running. It must also be able to change (in run-time) which boot script and system configuration file should be used
if the system is rebooted, for example by hear t after afailure. Therefore, Erlang must be started as an embedded
system, see Embedded System for information on how to do this.

For system reboots to work properly, it is also required that the system is started with heart beat monitoring, see
erl (1) andheart (3).

Other requirements:

» Theboot script included in arelease package must be generated from the same.. r el file as the release package
itself.

Information about applications are fetched from the script when an upgrade or downgrade is performed.
e The system must be configured using one and only one system configuration file, called sys. confi g.

306 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

If found, thisfile is automatically included when a rel ease package is created.
« All versions of arelease, except the first one, must contain ar el up file.

If found, thisfileis automatically included when a rel ease package is created.

9.11.3 Distributed Systems

If the system consists of several Erlang nodes, each node may use its own version of the release. The release handler
is alocally registered process and must be caled at each node where an upgrade or downgrade is required. There
is arelease handling instruction that can be used to synchronize the release handler processes at a number of nodes:
sync_nodes. Seeappup(4).

9.11.4 Release Handling Instructions

OTP supports a set of release handling instructions that is used when creating . appup files. The release handler
understands asubset of these, the low-level instructions. To makeit easier for the user, there are also anumber of high-
level instructions, which are translated to low-level instructions by syst ool s: nake_r el up.

Here, some of the most frequently used instructions are described. The complete list of instructions is found in
appup(4) .

First, some definitions:

Residence module

The module where a process has its tail-recursive loop function(s). If the tail-recursive loop functions are
implemented in several modules, al those modules are residence modules for the process.

Functional module
A module which is not aresidence module for any process.

Note that for a process implemented using an OTP behaviour, the behaviour module is the residence module for that
process. The callback module is afunctional module.

load_module

If a simple extension has been made to a functional module, it is sufficient to simply load the new version of the
module into the system, and remove the old version. Thisis called simple code replacement and for this the following
instruction is used:

{l oad_nodul e, Mdul e}

update

If a more complex change has been made, for example a change to the format of the internal state of a gen_server,
simple code replacement is not sufficient. Instead it is necessary to suspend the processes using the module (to avoid
that they try to handle any requests before the code replacement is completed), ask them to transform the internal state
format and switch to the new version of the module, remove the old version and last, resume the processes. Thisis
called synchronized code replacement and for this the following instructions are used:

{updat e, Mddul e, {advanced, Extra}}
{updat e, Modul e, supervisor}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 307

9.11 Release Handling

updat e with argument { advanced, Ext r a} isused when changing the internal state of a behaviour as described
above. It will cause behaviour processes to call the callback function code_change, passing the term Ext r a and
some other information as arguments. See the man pages for the respective behaviours and Appup Cookbook.

updat e with argument super vi sor is used when changing the start specification of a supervisor. See Appup
Cookbook.

The release handler finds the processes using a module to update by traversing the supervision tree of each running
application and checking all the child specifications:

{1d, StartFunc, Restart, Shutdown, Type, Modul es}

A processisusing amoduleif the nameislisted in Modul es in the child specification for the process.

If Modul es=dynam c, whichisthe casefor event managers, the event manager process informstherelease handler
about thelist of currently installed event handlers (gen_fsm) and it is checked if the module nameisin thislist instead.

The release handler suspends, asks for code change, and resumes processes by caling the functions
sys:suspend/ 1, 2,sys: change_code/ 4, 5 andsys: resune/ 1, 2 respectively.

add_module and delete_module

If anew moduleisintroduced, the following instruction is used:

{add_nodul e, Modul e}

Theinstruction loads the module and is absolutely necessary when running Erlang in embedded mode. It isnot strictly
required when running Erlang in interactive (default) mode, since the code server automatically searchesfor and loads
unloaded modules.

The opposite of add_nodul e isdel et e_nodul e which unloads a module:

{del et e_nopdul e, Modul e}

Notethat any process, inany application, with Modul e asresidence module, iskilled whentheinstructioniseval uated.
The user should therefore ensure that all such processes are terminated before del eting the module, to avoid a possible
situation with failing supervisor restarts.

Application Instructions
Instruction for adding an application:

{add_appl i cation, Application}

Adding an application means that the modules defined by the modul es key in the . app file are loaded using a
number of add_nodul e instructions, then the application is started.

Instruction for removing an application:

{renmove_application, Application}

308 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

Removing an application means that the application is stopped, the modules are unloaded using a number of
del et e_nodul e instructions and then the application specification is unloaded from the application controller.

Instruction for removing an application:

{restart_application, Application}

Restarting an application means that the application is stopped and then started again similar to using the instructions
renmove_appl i cationandadd_appl i cati on in sequence.

apply (low-level)

To call an arbitrary function from the release handler, the following instruction is used:

{apply, {M F, A}}

Therelease handler will evaluteappl y(M F, A).

restart_new_emulator (low-level)

This instruction is used when changing to a new emulator version, or if a system reboot is needed for some other
reason. Requires that the system is started with heart beat monitoring, seeer | (1) andheart (3).

When the rel ease handler encounters theinstruction, it shuts down the current emulator by callingi ni t : r eboot (),
seei ni t (3) . All processes are terminated gracefully and the system can then be rebooted by the heart program, using
the new release version. This new version must still be made permanent when the new emulator is up and running.
Otherwise, the old version isused in case of a new system reboot.

On UNIX, the release handler tells the heart program which command to use to reboot the system. Note that the
environment variable HEART _COVMAND, normally used by the heart program, in this case isignored. The command
instead defaults to $ROOT/ bi n/ st ar t . Another command can be set by using the SASL configuration parameter
start_prg,seesasl (6).

9.11.5 Application Upgrade File

To define how to upgrade/downgrade between the current version and previous versions of an application, we create
an application upgrade file, or in short . appup file. The file should be caled Appl i cati on. appup, where
Appl i cat i on isthe name of the application:

{Vsn,
[{UpFronVsnl, |nstructionsUl},

{UpFronVsnK, InstructionsUK}],
[{DownToVsnl, |nstructionsDl},

{DownToVsnK, InstructionsDK}]}.

Vsn, astring, is the current version of the application, as defined in the . app file. Each UpFr omVsn is a previous
version of the application to upgrade from, and each Down ToVsn isapreviousversion of the application to downgrade
to. Each | nstructi ons isalist of release handling instructions.

The syntax and contents of the appup file are described in detail inappup(4) .
In the chapter Appup Cookbook, examples of . appup filesfor typical upgrade/downgrade cases are given.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 309

9.11 Release Handling

Example: Consider the release ch_rel -1 from the Releases chapter. Assume we want to add a function
avai | abl e/ 0 to the server ch3 which returns the number of available channels:

(Hint: When trying out the example, make the changes in a copy of the original directory, so that the first versions
are still available.)

- modul e(ch3).
- behavi our (gen_server).

-export([start_Ilink/0]).

-export([alloc/0, free/l]).

-export([avail able/0]).

-export([init/1, handle_call/3, handle_cast/2]).

start_link() ->
gen_server:start _|ink({local, ch3}, ch3, [], []).

alloc() ->
gen_server:call (ch3, alloc).

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

avail abl e() ->
gen_server:call (ch3, available).

init(_Args) ->
{ok, channels()}.

handl e_call (alloc, _From Chs) ->
{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2};

handl e_cal | (avai | able, _From Chs) ->
N = avail abl e(Chs),
{reply, N, Chs}.

handl e_cast ({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

A new version of thech_app. app file must now be created, where the version is updated:

{application, ch_app,
[{description, "Channel allocator"},
{vsn, "2"},
{nodul es, [ch_app, ch_sup, ch3]},
{registered, [ch3]},
{applications, [kernel, stdlib, sasl]},
]im)d, {ch_app, [1}}

Toupgradech_app from" 1" to" 2" (and to downgrade from" 2" to" 1"), we simply need to load the new (old)
version of the ch3 callback module. We create the application upgrade filech_app. appup intheebi n directory:

2",
[{"1", [{load_nodule, ch3}]}],
[{"1 [{l oad_nodul e, ch3}]}]

310 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

9.11.6 Release Upgrade File

To define how to upgrade/downgrade between the new version and previous versions of arelease, we create arelease
upgradefile, or in short r el up file.

Thisfile does not need to be created manually, it can be generated by syst ool s: nake_rel up/ 3, 4. Therelevant
versions of the . rel file, . app filesand . appup files are used as input. It is deducted which applications should
be added and deleted, and which applications that need to be upgraded and/or downgraded. The instructions for this
isfetched from the . appup filesand transformed into asingle list of low-level instructionsin the right order.

If ther el up fileis relatively simple, it can be created manually. Remember that it should only contain low-level
instructions.

The syntax and contents of the release upgrade file are described in detail inr el up(4) .

Example, continued from the previous section. We have anew version 2" of ch_app and an. appup file. We also
need a new version of the . rel file. Thistimethefileiscalledch_rel - 2. rel and the release version string is
changed changed from "A" to "B":

{rel ease,
{"ch_rel", "B"},
{erts, "5.3"},
[{kernel, "2.9"},
{stdlib, "1.12"},
{sasl, "1.10"},

! {ch_app, "2"}]

Now ther el up file can be generated:

1> systool s: make_relup("ch_rel -2", ["ch_rel-1"], ["ch_rel-1"]).
ok

This will generate a r el up file with instructions for how to upgrade from version "A" ("ch_rel-1") to version
"B" ("ch_rel-2") and how to downgrade from version "B" to version "A".

Note that both the old and new versions of the. app and. r el filesmust bein the code path, aswell asthe. appup
and (new) . beamfiles. It is possible to extend the code path by using the option pat h:

1> systool s: make_rel up("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"],
[{path,["../ch_rel-1",

“..lch_rel-1/1ib/ch_app-1/ebin"]}]).

ok

9.11.7 Installing a Release

When we have made anew version of arelease, arelease package can be created with this new version and transferred
to the target environment.

To install the new version of the release in run-time, the release handler is used. This is a process belonging to the
SASL application, that handles unpacking, installation, and removal of release packages. It is interfaced through the
moduler el ease_handl er, which isdescribed in detail inr el ease_handl er (3) .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 311

9.11 Release Handling

Assuming thereis atarget system up and running with installation root directory $ROOT, the rel ease package with the
new version of the release should be copied to SROOT/ r el eases.

Thefirst action isto unpack the release package, the files are then extracted from the package:

rel ease_handl er: unpack_r el ease(Rel easeNane) => {ok, Vsn}

Rel easeNane isthename of therelease packageexcept the. t ar . gz extension. Vsn istheversion of the unpacked
release, asdefined inits. r el file.

A directory $ROOT/ | i b/ r el eases/ Vsn will be created, where the . r el file, the boot script st art . boot
the system configuration filesys. confi g andr el up are placed. For applications with new version numbers, the
application directories will be placed under $ROOT/ | i b. Unchanged applications are not affected.

An unpacked release can be installed. The release handler then evaluates theinstructionsinr el up, step by step:

rel ease_handl er:install _rel ease(Vsn) => {ok, FronVsn, []}

If an error occurs during the installation, the system is rebooted using the old version of the release. If installation
succeeds, the system is afterwards using the new version of the release, but should anything happen and the system is
rebooted, it would start using the previous version again. To be made the default version, the newly installed release
must be made permanent, which means the previous version becomes old:

rel ease_handl er: make_per manent (Vsn) => ok

The system keeps information about which versions are old and permanent in the files $ROOT/ r el eases/
RELEASES and $ROOT/ r el eases/ start _erl . dat a.

To downgrade from Vsn to Fr omsn, i nstal | _r el ease must be called again:

rel ease_handl er:install _rel ease(Fromvsn) => {ok, Vsn, []}

Aninstalled, but not permanent, release can be removed. Information about the release is then deleted from $ROOT/
r el eases/ RELEASES and the release specific code, that is the new application directories and the $ROCT/
r el eases/ Vsn directory, are removed.

rel ease_handl er: renove_r el ease(Vsn) => ok

Example, continued from the previous sections:

1) Create a target system as described in System Principles of the first version " A" of ch_r el from the Releases
chapter. Thistimesys. conf i g must beincluded intherel ease package. If no configuration is needed, thefile should
contain the empty list:

312 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.11 Release Handling

2) Start the system asasimpletarget system. Notethat inredlity, it should be started as an embedded system. However,
using er | with the correct boot script and . conf i g fileis enough for illustration purposes:

% cd $ROOT
% bin/erl -boot $ROOT/rel eases/ Alstart -config $ROOT/rel eases/ Al sys

$ROOT istheinstalation directory of the target system.

3) In another Erlang shell, generate start scripts and create a release package for the new version " B" . Remember to
include (a possible updated) sys. conf i g and ther el up file, see Release Upgrade File above.

1> syst ool s: make_script("ch_rel -2").
ok

2> systool s: make_tar("ch_rel -2").

ok

The new release package now contains version "2" of ch_app and ther el up fileaswell:

%tar tf ch_rel-2.tar
I'i b/ kernel - 2. 9/ ebi n/ ker nel . app
I'i b/ kernel -2. 9/ ebi n/ appl i cati on. beam

lib/stdlib-1.12/ebin/stdlib.app
lib/stdlib-1.12/ebin/beam|ib. beam

i b/ sasl -1. 10/ ebi n/ sasl . app
l'i b/ sasl -1. 10/ ebi n/ sasl . beam

I'i b/ ch_app- 2/ ebi n/ ch_app. app
i b/ ch_app- 2/ ebi n/ ch_app. beam
i b/ ch_app- 2/ ebi n/ ch_sup. beam
I'i b/ ch_app- 2/ ebi n/ ch3. beam

rel eases/ B/ start. boot

rel eases/ B/ rel up

rel eases/ B/ sys. config

rel eases/ch_rel -2.rel

4) Copy therelease packagech_rel - 2. t ar. gz tothe SROOT/ r el eases directory.
5) In the running target system, unpack the rel ease package:

1> rel ease_handl er: unpack_rel ease("ch_rel -2").
{ok, "B"}

The new application version ch_app- 2 isinstalled under $ROOT/ | i b nexttoch_app- 1. Theker nel ,stdlib
and sas| directories are not affected, as they have not changed.

Under $ROOT/ r el eases, a new directory B is created, containing ch_rel-2.rel, start. boot,
sys. configandrel up.

6) Check if thefunction ch3: avai | abl e/ 0 isavailable:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 313

9.11 Release Handling

2> ch3: avai |l abl e()
** exception error: undefined function ch3: avail able/0

7) Install the new release. The instructionsin $ROOT/ r el eases/ B/ r el up are executed one by one, resulting in
the new version of ch3 being loaded. The function ch3: avai | abl e/ 0 isnow available:

3> rel ease_handler:install_rel ease("B").

{ok,"A", [}
4> ch3: avai |l abl e() .
3

5> code: whi ch(ch3).
".../liblch_app-2/ebin/ch3. beant

6> code: whi ch(ch_sup).
".../lib/ch_app-1/ebin/ch_sup. beant

Note that processesin ch_app for which code have not been updated, for example the supervisor, are still evaluating
codefromch_app- 1.

8) If the target system is now rebooted, it will use version "A" again. The "B" version must be made permanent, in
order to be used when the system is rebooted.

7> rel ease_handl er: make_permanent ("B").
ok

9.11.8 Updating Application Specifications

When a new version of arelease isinstalled, the application specifications are automatically updated for al loaded
applications.

Note:

The information about the new application specifications are fetched from the boot script included in the release
package. It is therefore important that the boot script is generated from the same . r el file asis used to build
the rel ease package itself.

Specifically, the application configuration parameters are automatically updated according to (in increasing priority
order):

» Thedatain the boot script, fetched from the new application resource file App. app
e Thenewsys. config
e Command line arguments- App Par Val

This means that parameter values set in the other system configuration files, as well as values set using
application: set_env/ 3, aredisregarded.

When an installed release is made permanent, the system processi ni t is set to point out the new sys. confi g.

After theinstallation, the application controller will compare the old and new configuration parametersfor all running
applications and call the callback function:

314 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

Modul e: confi g_change(Changed, New, Renopved)

Modul e isthe application callback module as defined by the mod key in the. app file. Changed and Neware lists
of { Par, Val } for al changed and added configuration parameters, respectively. Renoved isalist of al parameters
Par that have been removed.

The function is optional and may be omitted when implementing an application callback module.

9.12 Appup Cookbook

This chapter contains examples of . appup filesfor typical cases of upgrades/downgrades done in run-time.

9.12.1 Changing a Functional Module

When a change has been made to a functional module, for example if a new function has been added or a bug has
been corrected, simple code replacement is sufficient.

Example:

{
oad_nodul e, nm]}],

[|’||
[oad_nodul e, n}]}]

1, [{l
"1, [

~—— N

}

9.12.2 Changing a Residence Module

In a system implemented according to the OTP Design Principles, all processes, except system processes and special
processes, reside in one of the behaviourssuper vi sor, gen_server, gen_f smor gen_event . These belong
to the STDLIB application and upgrading/downgrading normally requires an emulator restart.

OTP thus provides no support for changing residence modules except in the case of special processes.

9.12.3 Changing a Callback Module

A callback moduleis afunctional module, and for code extensions simple code replacement is sufficient.

Example: When adding a function to ch3 as described in the example in Release Handling, ch_app. appup looks
asfollows:

[{l oad_nodul e, ch3}]}],
", [{load_nodul e, ch3}]1}]

OTP also supports changing the internal state of behaviour processes, see Changing Internal Sate below.

9.12.4 Changing Internal State

In this case, simple code replacement is not sufficient. The process must explicitly transform its state using the
callback function code_change before switching to the new version of the callback module. Thus synchronized
code replacement is used.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 315

9.12 Appup Cookbook

Example: Consider the gen_server ch3 from the chapter about the gen_server behaviour. The internal stateisaterm
Chs representing the available channels. Assume we want add a counter Nwhich keepstrack of the number of al | oc
requests so far. This means we need to change the format to { Chs, N} .

The. appup file could look as follows:

2",
[{"1", [{update, ch3, {advanced, []}}]}],
[{"1", [{update, ch3, {advanced, []}}]}]

Thethird element of theupdat e instruction isatuple{ advanced, Ext r a} which saysthat the affected processes
should do a state transformation before loading the new version of the module. This is done by the processes calling
the callback function code_change (seegen_server (3)). Theterm Extr a, in thiscase[], is passed as-isto
the function:

- nmodul e(ch3).

.-é;<port ([code_change/ 3]) .

;:;);je_change({down, _Vsn}, {Chs, N}, _Extra) ->
{ok, Chs};

code_change(_Vsn, Chs, _Extra) ->
{ok, {Chs, 0}}.

Thefirst argument is { down, Vsn} in case of adowngrade, or Vsn in case of an upgrade. The term Vsn isfetched
from the 'origina’ version of the module, i.e. the version we are upgrading from, or downgrading to.

Theversionisdefined by the module attribute vsn, if any. Thereisno such attributein ch3, soin thiscasethe version
is the checksum (a huge integer) of the BEAM file, an uninteresting value which isignored.

(The other callback functions of ch3 need to be modified as well and perhaps a new interface function added, this
is not shown here).

9.12.5 Module Dependencies

Assume we extend a module by adding a new interface function, as in the example in Release Handling, where a
functionavai | abl e/ 0 isadded toch3.

If we also add a call to thisfunction, say in the module mL, a run-time error could occur during release upgrade if the
new version of nl isloaded first and callsch3: avai | abl e/ 0 before the new version of ch3 isloaded.

Thus, ch3 must be loaded before L is, in the upgrade case, and vice versain the downgrade case. We say that nlis
dependent onch3. In arelease handling instruction, thisis expressed by the element DepMods:

{l oad_nodul e, Mdul e, DepMdds}
{updat e, Mddul e, {advanced, Extra}, DepMbdds}

DepMods isalist of modules, on which Modul e is dependent.

Example: The module ml in the application myapp is dependent on ch3 when upgrading from "1" to "2", or
downgrading from "2" to "1":

316 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

nyapp. appup:

{
oad_nodul e, mi, [ch3]}]}],

oad_nodul e, ml, [ch3]}]}]

~—— N

({1, [{
({1, [{l
}.

ch_app. appup:
{

oad_nodul e, ch3}]}],
oad_nodul e, ch3}]}]

~—— N

{1, [{l
[{"1". [{

}

If mL and ch3 had belonged to the same application, the . appup file could have looked like this:

{"2",
[{"1,
[{! oad_nodul e, ch3},
{l oad_nodul e, nmi, [ch3]}]}],
[{"1,
[{! oad_nodul e, ch3},
{l oad_nodul e, ni, [ch3]}]}]
}.

Note that it is il that is dependent on ch3 also when downgrading. syst ool s knows the difference between up-
and downgrading and will generateacorrectr el up, wherech3 isloaded before mlL when upgrading but ml isloaded
before ch3 when downgrading.

9.12.6 Changing Code For a Special Process

Inthis case, simple code replacement is not sufficient. When anew version of aresidence modulefor aspecial process
isloaded, the process must make afully qualified call to itsloop function to switch to the new code. Thus synchronized
code replacement must be used.

Note:

The name(s) of the user-defined residence module(s) must belistedinthe Modul es part of the child specification
for the special process, in order for the release handler to find the process.

Example. Consider the example ch4 from the chapter about sysand proc_lib. When started by a supervisor, the child
specification could look like this:

{ch4, {ch4, start_link, []},
permanent, brutal _kill, worker, [ch4]}

If ch4 is part of the application sp_app and a new version of the module should be loaded when upgrading from
version "1" to "2" of this application, sp_app. appup could look like this:

{"2",
[{"1", [{update, ch4, {advanced, []}}]}].

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 317

9.12 Appup Cookbook

[{"1", [{update, ch4, {advanced, []}}]}]
}.

Theupdat e instruction must contain thetuple{ advanced, Ext r a} . Theinstruction will makethe special process
call thecallback functionsyst em code_change/ 4, afunction the user must implement. Theterm Ext r a, inthis
case[], ispassed as-istosyst em code_change/ 4:

- modul e(ch4) .

-export ([system code_change/ 4]).

system code_change(Chs, _Mddule, _ddVsn, _Extra) ->
{ok, Chs}.

Thefirst argument isthe internal state St at e passed from the functionsys: handl e_syst em nmsg(Request,
From Parent, Modul e, Deb, State), caled by the special process when a system message is received.
Inch4, theinterna state isthe set of available channels Chs.

The second argument is the name of the module (ch4).
Thethird argument isVsn or { down, Vsn} asdescribed for gen_server:code_change/3.

In this case, al arguments but the first are ignored and the function simply returns the internal state again. Thisis
enough if the code only has been extended. If we had wanted to change the internal state (similar to the example in
Changing Internal State), it would have been done in this function and { ok, Chs2} returned.

9.12.7 Changing a Supervisor

The supervisor behaviour supports changing the internal state, i.e. changing restart strategy and maximum restart
frequency properties, as well as changing existing child specifications.

Adding and deleting child processes are also possible, but not handled automatically. Instructions must be given by
inthe. appup file.

Changing Properties

Since the supervisor should change its internal state, synchronized code replacement is required. However, a special
updat e instruction must be used.

The new version of the callback module must be loaded first both in the case of upgrade and downgrade. Then the
new return value of i ni t / 1 can be checked and the internal state be changed accordingly.

Thefollowing upgr ade instruction is used for supervisors:

{update, Modul e, supervisor}

Example: Assume we want to change the restart strategy of ch_sup from the Supervisor Behaviour chapter from
one_for_oneto one for_all. We change the callback functioni nit/ 1inch_sup. erl:

- modul e(ch_sup) .

init(_Args) ->
{ok, {{one_for_all, 1, 60}, ...}}.

318 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

Thefilech_app. appup:

{2,
[{"1", [{update, ch_sup, supervisor}]}],
[{"1", [{update, ch_sup, supervisor}]}]

}.

Changing Child Specifications

Theinstruction, and thusthe. appup file, when changing an existing child specification, isthe same aswhen changing
properties as described above:

{"2",
[{"1", [{update, ch_sup, supervisor}]}],
[{"1", [{update, ch_sup, supervisor}]}]
1.

The changes do not affect existing child processes. For example, changing the start function only specifies how the
child process should be restarted, if needed later on.

Note that the id of the child specification cannot be changed.

Note also that changing the Modul es field of the child specification may affect the release handling processitself, as
thisfield is used to identify which processes are affected when doing a synchronized code replacement.

Adding And Deleting Child Processes

As stated above, changing child specifications does not affect existing child processes. New child specifications are
automatically added, but not deleted. Also, child processes are not automatically started or terminated. Instead, this
must be done explicitly using appl y instructions.

Example: Assume we want to add anew child processmil toch_sup whenupgradingch_app from"1" to"2". This
means nil should be deleted when downgrading from "2" to "1":

{"2",
[{"1",

[{update, ch_sup, supervisor},

{apply, {supervisor, restart_child, [ch_sup, nl]}}

1.

({1,

[{apply, {supervisor, terminate_child, [ch_sup, nl]}},
{apply, {supervisor, delete child, [ch_sup, nl]}},
{updat e, ch_sup, supervisor}

1}]

}.

Note that the order of the instructionsisimportant.

Note also that the supervisor must be registered asch_sup for the script to work. If the supervisor is not registered,
it cannot be accessed directly from the script. Instead a help function that finds the pid of the supervisor and calls
supervi sor:restart_chil d etc. must be written, and it is this function that should be called from the script
using theappl y instruction.

If the module nL isintroduced in version "2" of ch_app, it must also be loaded when upgrading and deleted when
downgrading:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 319

9.12 Appup Cookbook

{"2",
[{"1,
[{add_nodul e, mi},
{updat e, ch_sup, supervisor},
{apply, {supervisor, restart_child, [ch_sup, nl]}}
131,
[{r1,

[{apply, {supervisor, terminate_child, [ch_sup, nl]}},
{apply, {supervisor, delete_child, [ch_sup, nl]}},
{updat e, ch_sup, supervisor},

{del ete_nodul e, mi}

1}]
}.

Note again that the order of the instructions is important. When upgrading, mlL must be loaded and the supervisor's
child specification changed, before the new child process can be started. When downgrading, the child process must
be terminated before child specification is changed and the module is del eted.

9.12.8 Adding or Deleting a Module

Example: A new functional module misadded to ch_app:

{"2",
[{"1", [{add_npdule, n}]}],
[{"1", [{delete_nodule, n}]}]

9.12.9 Starting or Terminating a Process

In a system structured according to the OTP design principles, any process would be a child process belonging to a
supervisor, see Adding and Deleting Child Processes above.

9.12.10 Adding or Removing an Application
When adding or removing an application, no . appup file is needed. When generating r el up, the . rel filesare
compared and add_appl i cati on andrenove_appl i cati on instructions are added automatically.

9.12.11 Restarting an Application

Restarting an application is useful when a change is too complicated to be made without restarting the processes, for
example if the supervisor hierarchy has been restructured.

Example: When adding anew child ml to ch_sup, asin the example above, an alternative to updating the supervisor
isto restart the entire application:

{

o
[{"1", [{restart_application, ch_app}]}],
[{"1", [{restart_application, ch_app}]}]

}

9.12.12 Changing an Application Specification

When installing arelease, the application specifications are automatical ly updated before evaluating ther el up script.
Hence, no instructions are needed in the . appup file:

320 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

9.12.13 Changing Application Configuration

Changing an application configuration by updating the env key in the . app file is an instance of changing an
application specification, see above.

Alternatively, application configuration parameters can be added or updated in sys. confi g.

9.12.14 Changing Included Applications

The release handling instructions for adding, removing and restarting applications apply to primary applications only.
There are no corresponding instructions for included applications. However, since an included application isreally a
supervision tree with a topmost supervisor, started as a child process to a supervisor in the including application, a
r el up file can be manually created.

Example: Assume we have a release containing an application pri m app which have a supervisor pri m sup in
its supervision tree.

In a new version of the release, our example application ch_app should be included in pri m app. That is, its
topmost supervisor ch_sup should be started as a child processto pri m sup.

1) Edit the code for pri m sup:

init(...) ->
{ok, {..
[

.supervisor flags...,
{ch_sup, {ch_sup,start _link,[]},

per manent, i nfinity, supervisor,[ch_sup]},

13

2) Edit the. app filefor pri m app:

{application, primapp,
[oooc

{vsn, "2"},

{| ncI uded_appl i cations, [ch_app]},
1

3) Createanew . r el file including ch_app:

{rel ease,

[
{primapp, "2"},
{ch_app, "1"}]}.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 321

9.12 Appup Cookbook

Application Restart

4a) Oneway to start theincluded applicationisto restart the entire pr i m_app application. Normally, we would then
usether estart _appli cati on instructioninthe. appup filefor pri m app.

However, if we did this and then generated ar el up file, not only would it contain instructions for restarting (i.e.
removing and adding) pri m_app, it would also contain instructionsfor starting ch_app (and stopping it, in the case
of downgrade). Thisis dueto the fact that ch_app isincluded inthenew . r el file, but not in the old one.

Instead, a correct r el up file can be created manually, either from scratch or by editing the generated version. The
instructions for starting/stopping ch_app are replaced by instructions for |oading/unloading the application:

{"B",
[{"A",

[1,
[{] oad_obj ect _code, {ch_app, "1",[ch_sup, ch3]}},

{| oad_obj ect _code, {pri m app, “2",[pri m app, pri msup] }},

poi nt _of _no_return

{apply, {application,stop,[pri mapp]}},

{renove, { pri m app, brut al _purge, brutal purge}},

{renove, { pri m sup, brutal _purge, brutal _purge}},

{purge, [primapp, pri msup]}

{l oad, {pri m app, brutal purge, brutal purge}},

{l oad, {pri m sup, brutal purge, brutal purge}},

{l oad, {ch_sup, brutal purge, brutal purge}},

{l oad, {ch3, brutal purge, brutal purge}},

{apply, {application,load, [ch_app]}},

{apply, {application,start,[pri mapp, permanent]}}]}],
[{"A",

[1,

[{] oad_obj ect code, {pri m app, 1", [pri m app, pri msup]}},

poi nt _of _no_return

{apply, {application,stop,[pri mapp]}},

{apply, {application, unl oad, [ch_app]}},

{renove, {ch_sup, brutal purge, brutal purge}},

{renove, {ch3, brutal purge, brutal purge}}

{purge, [ch_sup, ch3]}

{renove, { pri m app, brutal _purge, brutal purge}},

{renove, { pri m sup, brutal _purge, brutal _purge}},

{purge, [pri m app, pri msup]}

{l oad, {pri m app, brutal purge, brutal purge}},

{l oad, {pri m sup, brutal purge, brutal purge}},

{apply, {application,start,[primapp, permanent]}}]}]

Supervisor Change

4b) Another way to start the included application (or stop it in the case of downgrade) is by combining instructionsfor
adding and removing child processes to/from pr i m_sup with instructions for loading/unloading al ch_app code
and its application specification.

Again, ther el up file is created manually. Either from scratch or by editing a generated version. Load all code
for ch_app first, and also load the application specification, before pri m sup is updated. When downgrading,
pri m sup should be updated first, before the code for ch_app and its application specification are unloaded.

e
[

>

[
[{!] oad_obj ect _code, {ch_app, "1", [ch_sup, ch3]}},

~~——

322 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.12 Appup Cookbook

{| oad_obj ect _code, {pri m app, “2",[pri msup]}},

poi nt _of _no_return

{l oad, {ch_sup, brutal _purge, brutal _purge}},

{l oad, {ch3, brut al _purge, brutal _purge}},

{apply, {application,load,[ch_app]}},
{suspend, [pri m sup] },

{l oad, {pri m sup, brutal _purge, brutal _purge}},
{code_change, up, [{pri msup,[]1}]}.
{resune, [pri msup]}

{apply, {supervisor,restart_child,[primsup,ch_sup]}}]}],

[{"A,

(1,
[{l oad_obj ect _code, {pri m app, "1", [pri m sup]}},

poi nt _of _no_return

{apply, {supervisor,term nate_child,[primsup,ch_sup]}},
{apply, {supervisor,del ete_child,[pri msup,ch_sup]}},
{suspend, [pri m sup] },

{l oad, {pri m sup, brutal _purge, brutal _purge}},
{code_change, down, [{pri msup,[]}]1},
{resune, [pri msup]}

{renove, {ch_sup, brutal _purge, brutal _purge}},
{renove, {ch3, brutal _purge, brutal _purge}}

{purge, [ch_sup, ch3]}

{apply, {application, unl oad, [ch_app]}}]}]

9.12.15 Changing Non-Erlang Code

Changing code for a program written in another programming language than Erlang, for example a port program, is
very application dependent and OTP provides no specia support for it.

Example, changing codefor aport program: Assumethat the Erlang process controlling the portisagen server port c
and that the port is opened in the callback functioni ni t/ 1:

init(...) ->

PortPrg = fil enane:joi n(code: priv_dir(App), "portc"),
Port = open_port({spawn, PortPrg}, [...]),

{ok, #state{port=Port, ...}}.

If the port program should be updated, we can extend the code for the gen_server with a code_change function
which closes the old port and opens a new port. (If necessary, the gen_server may first request data that needs to be
saved from the port program and pass this data to the new port):

code_change(_Q dVsn, State, port) ->
St ate#state. port ! close,
receive
{Port,cl ose} ->
true
end
PortPrg = fil enane: joi n(code: priv_dir(App), "portc")
Port = open_port ({spawn, PortPrg} [...1),
{ ok, #state{port =Port,

Update the application version number in the . app fileand writean . appup file:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 323

9.12 Appup Cookbook

["2",
[{"1", [{update, portc, {advanced, port}}]1}],
[{"1", [{update, portc, {advanced, port}}]}]

]

Make surethe pri v directory where the C program islocated isincluded in the new release package:

1> systool s: make_tar("my_rel ease", [{dirs,[priv]}]).

9.12.16 Emulator Restart

If the emulator can or should be restarted, the very simple. r el up file can be created manually:

e,
[{"A,
[,

[restart_new enul ator]}],
[{'[']A",

[restart_new emnul ator]}]

}.

This way, the release handler framework with automatic packing and unpacking of release packages, automatic path
updates etc. can be used without having to specify . appup files.

If some transformation of persistent data, for example database contents, needs to be done before installing the new
release version, instructions for this can be added to the . r el up fileaswell.

324 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.1 Introduction

10 User's Guide

10.1 Introduction

The operation and maintenance support in OTP consists of a generic model for management subsystemsin OTP, and
some components to be used in these subsystems. This document describes the model.

The main idea in the model is that it is management protocol independent. Thus, it is not tied to any specific
management protocol. An API is defined which can be used to write adaptations for specific management protocols.

Each OAM component in OTP is implemented as one sub application, which can be included in a management
application for the system. Note that such a complete management application is not in the scope of this generic
functionality. Examplesillustrating how such an application can be built are included however.

10.1.1 Terminology

The protocol independent architectural model on the network level is the well-known Client-Server model for
management operations. Thismodel isbased on the client-server principle, where the manager (client) sends A request
is sent from a manager to an agent when it accesses management information.to the agent (server), the agent sends
A reply is sent from the agent as a response to a request from a manager.back to the manager. There are two main
differences to the normal client-server model. First, there are usualy a few managers that communicate with many
agents; and second, the agent may spontaneously send A notification is sent spontaneously from an agent to amanager,
e.g. an alarm.to the manager. The picture below illustrates the idea.

NMS

M.
AMAEEr T +_ 5688
NET ! MIB
' ,+ sees
Agent
Resl Res2

Figure 1.1: Terminology

The manager is often referred to as the , to emphasize that it usualy is realized as a program that presents data to
an operator.

The agent is an entity that executeswithin a. In OTP, the network element may be a distributed system, meaning that
the distributed system is managed as one entity. Of course, the agent may be configured to be able to run on one of
several nodes, making it a distributed OTP application.

The management informationisdefinedinan. It isaformal definition of which information the agent makes available
to the manager. The manager accesses the MIB through a management protocol, such as SNMP, CMIP, HTTP or
CORBA.. Each of these protocols have their own MIB definition language. In SNMP, it isasubset of ASN.1, in CMIP
itisGDMO, in HTTP it isimplicit, and using CORBA, it isIDL. Usually, the entities defined in the MIB are called ,
although these objects do not have to be objects in the OO way,for example, a simple scalar variable defined in an

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 325

10.1 Introduction

MIB is called aManaged Object. The Managed Objects are logical objects, not necessarily with aone-to-one mapping
to the resources.

10.1.2 Model

In this section, the generic protocol independent model for use within an OTP based network element is presented.
Thismodel isused by all operation and maintenance components, and may be used by the applications. The advantage
of the model is that it clearly separates the resources from the management protocol. The resources do not need to
be aware of which management protocol is used to manage the system. This makes it possible to manage the same
resources with different protocols.

The different entities involved in this model are the which terminates the management protocol, and the which
is to be managed, i.e. the actual application entities. The resources should in general have no knowledge of the
management protocol used, and the agent should have no knowledge of the managed resources. Thisimpliesthat some
sort of tranglation mechanism must be used, to trandate the management operations to operations on the resources.
This translation mechanism is usually caled instrumentation, and the function that implements it is called . The
instrumentation functions are written for each combination of management protocol and resource to be managed. For
example, if an application is to be managed by SNMP and HTTP, two sets of instrumentation functions are defined;
one that maps SNM P requests to the resources, and one that e.g. generatesan HTML page for some resources.

When a manager makes a request to the agent, we have the following picture:

NET g

Agzent
NE

Instnumentation Instnumentation

Resl Res2 Res3

Figure 1.2: Request to an agent by a manager

Note that the mapping between instrumentation function and resource is not necessarily 1-1. It isalso possibleto write
one instrumentation function for each resource, and use that function from different protocols.

The agent receives a request and maps this request to calls to one or severa instrumentation functions. The
instrumentati on functi ons perform operations on the resourcesto implement the semantics associ ated with the managed
object.

For example, a system that is managed with SNMP and HTTP may be structured in the following way:

326 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.1 Introduction

flovr
SNMF HTTP
Server Server
Instnumentation Instnumentation
Resl Res2 Res3

Figure 1.3: Structure of a system managed with SNMP and HTTP

The resources may send notifications to the manager as well. Examples of notifications are events and alarms. There
is a need for the resource to generate protocol independent notifications. The following picture illustrates how this
is achieved:

flowe
SNMP L
e Server
Instrumentation Instrumentation
Zen_event
ezl Resl Rezd

Figure 1.4: Notification handling

Themain ideaisthat the resource sends the notfications as Erlang termsto adedicated gen_event process. Into this
process, handlers for the different management protocols are installed. When an event is received by this process, it
is forwarded to each installed handler. The handlers are responsible for tranglating the event into a notification to be
sent over the management protocol. For example, a handler for SNMP would translate each event into an SNMP trap.

10.1.3 SNMP based OAM
For all OAM components, SNM P adaptations are provided. Other adaptations may be defined in the future.

The OAM components, and some other OTP applications, define SNMP MIBs. All these MIBsarewrittenin SNMPv2
SMI syntax, as defined in RFC1902. For convenience we also deliver the SNMPv1 SMI equivalent. All MIBs are
designed to be v1/v2 compatible, i.e. the v2 MIBs do not use any construct not availablein v1.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 327

10.1 Introduction

MIB structure

The top-level OTP MIB is caled OTP- REG, and it isincluded in the sas| application. All other OTP mibs import
some objects from this MIB.

Each MIB is contained in one application. The MIB text files are stored under m bs/ <M B>. ni b in the application
directory. The generated . hr | files with constant declarations are stored under i ncl ude/ <M B>. hr |, and the
compiled MIBs are stored under pri v/ m bs/ <M B>. bi n. For example, the OTP- M B isincluded in the sasl
application:

sasl-1.3/m bs/ OTP-M B. mi b
i ncl ude/ OTP-M B. hr |
priv/ m bs/ OTP-M B. bi n

An application that needsto IMPORT this mib into another MIB, should usethei | option to the snmp mib compiler:

snnp: c("MY-MB", [{il, ["sasl/priv/mbs"]}]).

If the application needs to include the generated . hr | file, it should usethe- i ncl ude_I i b directiveto the Erlang
compiler.

- modul e(ny_mi b) .

-include_lib("sasl/include/ OTP-MB. hrl").

The following MIBs are defined in the OTP system:
OTP-REG (sad)

This MIB contains the top-level OTP registration objects, used by all other MIBs.
OTP-TC (sad)

This MIB contains the general Textual Conventions, which can be used by any other MIB.
OTP-MIB (sad)

This MIB contains objects for instrumentation of the Erlang nodes, the Erlang machines and the applicationsin
the system.

OTP-OS-MON-MIB (0s_mon)
This MIB contains objects for instrumentation of disk, memory and cpu usage of the nodes in the system.
OTP-SNMPEA-MIB (shmp)

ThisMIB contains objects for instrumentation and control of the extensible snmp agent itself. Note that the agent
also implements the standard SNMPv2-MIB (or v1 part of MIB-II, if SNMPv1 is used).

OTP-EVA-MIB (eva)

This MIB contains objects for instrumentation and control of the events and alarms in the system.
OTP-LOG-MIB (eva)

This MIB contains objects for instrumentation and control of the logs and FTP transfer of logs.

328 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

10.1 Introduction

OTP-EVA-LOG-MIB (eva)

This MIB contains objects for instrumentation and control of the events and alarm logs in the system.
OTP-SNMPEA-LOG-MIB (eva)

This MIB contains objects for instrumentation and control of the snmp audit trail log in the system.

The different applications use different strategies for loading the MIBs into the agent. Some MIB implementations are
cade-only, while others need a server. One way, used by the code-only mib implementations, is for the user to call a
function such asot p_mi b: i ni t (Agent) toload the MIB, and ot p_ni b: st op(Agent) to unload the MIB.
See the application manual page for each application for a description of how to load each MIB.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 329

	Erlang/OTP System Documentation
	User's Guide
	Installing the Binary Release
	UNIX
	Introduction
	Installation Procedure

	Windows
	Introduction
	Installation Procedure

	Installation Verification
	UNIX
	Windows

	Building and Installing Erlang/OTP
	Introduction
	Daily Build and Test
	Versions Known NOT to Work
	Required Utilities
	Unpacking
	Building
	Installing

	How to Build and Install Erlang/OTP
	Unpacking
	Configuring
	Building
	Installing
	A Closer Look at the individual Steps
	Symbolic Links in --bindir
	Pre-built Source Release
	Building in Git
	make and $ERL_TOP

	The Erlang/OTP Documentation
	How to Build the Documentation
	How to Install the Pre-formatted Documentation

	Support for SMP (Symmetric Multi Processing)
	GS (Graphic System)
	Using HiPE
	Mac OS X (Darwin)
	How to Build a Debug Enabled Erlang RunTime System
	Authors
	Copyright and License
	More Information
	Modifying This Document

	Cross Compiling Erlang/OTP
	Introduction
	otp_build Versus configure/make
	Cross Configuration
	What can be Cross Compiled?
	Compatibility
	Patches

	Build and Install Procedure
	Building With configure/make Directly
	Building With the otp_build Script

	Currently Used Configuration Variables
	Variables for otp_build Only
	Cross Compiler and Other Tools
	Cross System Root Locations
	Optional Feature, and Bug Tests

	Copyright and License
	Modifying This Document

	How to Build Erlang/OTP on Windows
	Introduction
	Frequently Asked Questions
	Tools you Need and Their Environment
	The Shell Environment
	Building and Installing
	Development
	Final Words
	Copyright and License
	Modifying This Document

	System Principles
	Starting the System
	Restarting and Stopping the System
	Boot Scripts
	Default Boot Scripts
	User-Defined Boot Scripts

	Code Loading Strategy
	File Types

	Error Logging
	Error Information From the Runtime System
	SASL Error Logging

	Creating a First Target System
	Introduction
	Creating a Target System
	Installing a Target System
	Starting a Target System
	System Configuration Parameters
	Differences from the Install Script
	Listing of target_system.erl

	Embedded Solaris
	Memory Usage
	Disk Space Usage
	Installation
	Creation of User and Installation Directory
	Installation of an Embedded System
	Configuration for Automatic Start at Boot
	Hardware Watchdog
	Changing Permissions for Reboot
	The TERM Environment Variable
	Patches
	Installation of Module os_sup in Application OS_Mon
	Installation
	Testing the Application Configuration File
	Related Documents

	Installation Problems

	Starting Erlang
	Programs
	start
	run_erl
	to_erl
	start_erl

	Windows NT
	Introduction
	Memory Usage
	Disk Space Usage
	Installation
	Hardware Watchdog

	Starting Erlang

	VxWorks
	Introduction
	Memory Usage
	Disk Usage
	Installation
	OS Specific Functionality/Information
	Starting Erlang

	Introduction
	Introduction
	Things Left Out

	Sequential Programming
	The Erlang Shell
	Modules and Functions
	Atoms
	Tuples
	Lists
	Standard Modules and Manual Pages
	Writing Output to a Terminal
	A Larger Example
	Matching, Guards and Scope of Variables
	More About Lists
	If and Case
	Built In Functions (BIFs)
	Higher Order Functions (Funs)

	Concurrent Programming
	Processes
	Message Passing
	Registered Process Names
	Distributed Programming
	A Larger Example

	Robustness
	Timeouts
	Error Handling
	The Larger Example with Robustness Added

	Records and Macros
	The Larger Example Divided into Several Files
	Header Files
	Records
	Macros

	Introduction
	Purpose
	Prerequisites
	Document Conventions
	Complete List of BIFs
	Reserved Words
	Character Set

	Data Types
	Terms
	Number
	Atom
	Bit Strings and Binaries
	Reference
	Fun
	Port Identifier
	Pid
	Tuple
	List
	String
	Record
	Boolean
	Escape Sequences
	Type Conversions

	Pattern Matching
	Pattern Matching

	Modules
	Module Syntax
	Module Attributes
	Pre-Defined Module Attributes
	Behaviour Module Attribute
	Record Definitions
	The Preprocessor
	Setting File and Line
	Types and function specifications

	Comments
	The module_info/0 and module_info/1 functions
	module_info/0
	module_info/1

	Functions
	Function Declaration Syntax
	Function Evaluation
	Tail recursion
	Built-In Functions, BIFs

	Types and Function Specifications
	Introduction of Types
	Types and their Syntax
	Type declarations of user-defined types
	Type information in record declarations
	Specifications for functions

	Expressions
	Expression Evaluation
	Terms
	Variables
	Patterns
	Match Operator = in Patterns
	String Prefix in Patterns
	Expressions in Patterns

	Match
	Function Calls
	Local Function Names Clashing With Auto-imported BIFs

	If
	Case
	Send
	Receive
	Term Comparisons
	Arithmetic Expressions
	Boolean Expressions
	Short-Circuit Expressions
	List Operations
	Bit Syntax Expressions
	Fun Expressions
	Catch and Throw
	Try
	Parenthesized Expressions
	Block Expressions
	List Comprehensions
	Bit String Comprehensions
	Guard Sequences
	Operator Precedence

	The Preprocessor
	File Inclusion
	Defining and Using Macros
	Predefined Macros
	Macros Overloading
	Flow Control in Macros
	Stringifying Macro Arguments

	Records
	Defining Records
	Creating Records
	Accessing Record Fields
	Updating Records
	Records in Guards
	Records in Patterns
	Nested records
	Internal Representation of Records

	Errors and Error Handling
	Terminology
	Exceptions
	Handling of Run-Time Errors in Erlang
	Error Handling Within Processes
	Error Handling Between Processes

	Exit Reasons

	Processes
	Processes
	Process Creation
	Registered Processes
	Process Termination
	Message Sending
	Links
	Error Handling
	Emitting Exit Signals
	Receiving Exit Signals

	Monitors
	Process Dictionary

	Distributed Erlang
	Distributed Erlang System
	Nodes
	Node Connections
	epmd
	Hidden Nodes
	C Nodes
	Security
	Distribution BIFs
	Distribution Command Line Flags
	Distribution Modules

	Compilation and Code Loading
	Compilation
	Code Loading
	Code Replacement
	Running a function when a module is loaded

	Ports and Port Drivers
	Ports
	Port Drivers
	Port BIFs

	Records
	Records vs Tuples
	Defining a Record
	Creating a Record
	Accessing a Record Field
	Updating a Record
	Type Testing
	Pattern Matching
	Nested Records
	Example

	Funs
	Example 1 - map
	Example 2 - foreach
	The Syntax of Funs
	Variable Bindings Within a Fun
	Funs and the Module Lists
	map
	any
	all
	foreach
	foldl
	mapfoldl
	filter
	takewhile
	dropwhile
	splitwith

	Funs Which Return Funs
	Simple Higher Order Functions
	Infinite Lists
	Parsing

	List Comprehensions
	Simple Examples
	Quick Sort
	Permutations
	Pythagorean Triplets
	Simplifications with List Comprehensions
	Variable Bindings in List Comprehensions

	Bit Syntax
	Introduction
	Examples

	A Lexical Note
	Segments
	Defaults
	Constructing Binaries and Bitstrings
	Including Literal Strings

	Matching Binaries
	Getting the Rest of the Binary or Bitstring

	Appending to a Binary

	Introduction
	Purpose
	Prerequisites

	The Eight Myths of Erlang Performance
	Myth: Funs are slow
	Myth: List comprehensions are slow
	Myth: Tail-recursive functions are MUCH faster
 than recursive functions
	Myth: '++' is always bad
	Myth: Strings are slow
	Myth: Repairing a Dets file is very slow
	Myth: BEAM is a stack-based byte-code virtual machine (and therefore slow)
	Myth: Use '_' to speed up your program when a variable is not used

	Common Caveats
	The regexp module
	The timer module
	list_to_atom/1
	length/1
	setelement/3
	size/1
	split_binary/2
	The '--' operator

	Constructing and matching binaries
	How binaries are implemented
	Constructing binaries
	Circumstances that force copying

	Matching binaries
	The bin_opt_info option
	Unused variables

	List handling
	Creating a list
	List comprehensions
	Deep and flat lists
	Why you should not worry about recursive lists functions

	Functions
	Pattern matching
	Function Calls
	Notes and implementation details

	Memory usage in recursion

	Tables and databases
	Ets, Dets and Mnesia
	Select/Match operations
	Deleting an element
	Data fetching
	Non-persistent data storage
	tab2list
	Ordered_set tables

	Ets specific
	Utilizing the keys of the Ets table

	Mnesia specific
	Secondary index
	Transactions

	Processes
	Creation of an Erlang process
	Initial heap size

	Process messages
	The constant pool
	Loss of sharing

	The SMP emulator

	Drivers
	Drivers and concurrency
	Avoiding copying of binaries when calling a driver
	Returning small binaries from a driver
	Returning big binaries without copying from a driver

	Advanced
	Memory
	System limits

	Profiling
	Do not guess about performance - profile
	Big systems
	What to look for
	Tools
	fprof
	cover
	cprof
	Tool summarization

	Benchmarking

	Introduction
	Purpose
	Prerequisites

	Overview
	Built-In Mechanisms
	Distributed Erlang
	Ports and Linked-In Drivers

	C and Java Libraries
	Erl_Interface
	C Nodes
	Jinterface

	Standard Protocols
	Sockets

	IC
	Old Applications

	Problem Example
	Description

	Ports
	Erlang Program
	C Program
	Running the Example

	Erl_Interface
	Erlang Program
	C Program
	Running the Example

	Port drivers
	Port Drivers
	Erlang Program
	C Driver
	Running the Example

	C Nodes
	Erlang Program
	C Program
	Setting Up the Communication
	Sending and Receiving Messages

	Running the Example

	NIFs
	NIFs
	Erlang Program
	NIF library code
	Running the Example

	Overview
	Supervision Trees
	Behaviours
	Applications
	Releases
	Release Handling

	Gen_Server Behaviour
	Client-Server Principles
	Example
	Starting a Gen_Server
	Synchronous Requests - Call
	Asynchronous Requests - Cast
	Stopping
	In a Supervision Tree
	Stand-Alone Gen_Servers

	Handling Other Messages

	Gen_Fsm Behaviour
	Finite State Machines
	Example
	Starting a Gen_Fsm
	Notifying About Events
	Timeouts
	All State Events
	Stopping
	In a Supervision Tree
	Stand-Alone Gen_Fsms

	Handling Other Messages

	Gen_Event Behaviour
	Event Handling Principles
	Example
	Starting an Event Manager
	Adding an Event Handler
	Notifying About Events
	Deleting an Event Handler
	Stopping
	In a Supervision Tree
	Stand-Alone Event Managers

	Handling Other Messages

	Supervisor Behaviour
	Supervision Principles
	Example
	Restart Strategy
	one_for_one
	one_for_all
	rest_for_one

	Maximum Restart Frequency
	Child Specification
	Starting a Supervisor
	Adding a Child Process
	Stopping a Child Process
	Simple-One-For-One Supervisors
	Stopping

	Sys and Proc_Lib
	Simple Debugging
	Special Processes
	Example
	Starting the Process
	Debugging
	Handling System Messages

	User-Defined Behaviours

	Applications
	Application Concept
	Application Callback Module
	Application Resource File
	Directory Structure
	Application Controller
	Loading and Unloading Applications
	Starting and Stopping Applications
	Configuring an Application
	Application Start Types

	Included Applications
	Definition
	Specifying Included Applications
	Synchronizing Processes During Startup

	Distributed Applications
	Definition
	Specifying Distributed Applications
	Starting and Stopping Distributed Applications
	Failover
	Takeover

	Releases
	Release Concept
	Release Resource File
	Generating Boot Scripts
	Creating a Release Package
	Directory Structure
	Disk-Less and/or Read-Only Clients

	Release Handling
	Release Handling Principles
	Requirements
	Distributed Systems
	Release Handling Instructions
	load_module
	update
	add_module and delete_module
	Application Instructions
	apply (low-level)
	restart_new_emulator (low-level)

	Application Upgrade File
	Release Upgrade File
	Installing a Release
	Updating Application Specifications

	Appup Cookbook
	Changing a Functional Module
	Changing a Residence Module
	Changing a Callback Module
	Changing Internal State
	Module Dependencies
	Changing Code For a Special Process
	Changing a Supervisor
	Changing Properties
	Changing Child Specifications
	Adding And Deleting Child Processes

	Adding or Deleting a Module
	Starting or Terminating a Process
	Adding or Removing an Application
	Restarting an Application
	Changing an Application Specification
	Changing Application Configuration
	Changing Included Applications
	Application Restart
	Supervisor Change

	Changing Non-Erlang Code
	Emulator Restart

	Introduction
	Terminology
	Model
	SNMP based OAM
	MIB structure

