
Erlang Run-Time System Application
(ERTS)

Copyright © 1997-2011 Ericsson AB. All Rights Reserved.
Erlang Run-Time System Application (ERTS) 5.8.3

March 28 2011

Copyright © 1997-2011 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 28 2011

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 1

1.1 Match specifications in Erlang

2 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1 User's Guide

The Erlang Runtime System Application ERTS.

1.1 Match specifications in Erlang
A "match specification" (match_spec) is an Erlang term describing a small "program" that will try to match something
(either the parameters to a function as used in the erlang:trace_pattern/2 BIF, or the objects in an ETS
table.). The match_spec in many ways works like a small function in Erlang, but is interpreted/compiled by the Erlang
runtime system to something much more efficient than calling an Erlang function. The match_spec is also very limited
compared to the expressiveness of real Erlang functions.

Match specifications are given to the BIF erlang:trace_pattern/2 to execute matching of function arguments
as well as to define some actions to be taken when the match succeeds (the MatchBody part). Match specifications
can also be used in ETS, to specify objects to be returned from an ets:select/2 call (or other select calls). The
semantics and restrictions differ slightly when using match specifications for tracing and in ETS, the differences are
defined in a separate paragraph below.

The most notable difference between a match_spec and an Erlang fun is of course the syntax. Match specifications
are Erlang terms, not Erlang code. A match_spec also has a somewhat strange concept of exceptions. An exception
(e.g., badarg) in the MatchCondition part, which resembles an Erlang guard, will generate immediate failure,
while an exception in the MatchBody part, which resembles the body of an Erlang function, is implicitly caught and
results in the single atom 'EXIT'.

1.1.1 Grammar
A match_spec used in tracing can be described in this informal grammar:

• MatchExpression ::= [MatchFunction, ...]

• MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

• MatchHead ::= MatchVariable | '_' | [MatchHeadPart, ...]

• MatchHeadPart ::= term() | MatchVariable | '_'

• MatchVariable ::= '$<number>'

• MatchConditions ::= [MatchCondition, ...] | []

• MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }

• BoolFunction ::= is_atom | is_constant | is_float | is_integer | is_list | is_number |
is_pid | is_port | is_reference | is_tuple | is_binary | is_function | is_record |
is_seq_trace | 'and' | 'or' | 'not' | 'xor' | andalso | orelse

• ConditionExpression ::= ExprMatchVariable | { GuardFunction } | { GuardFunction, ConditionExpression, ... }
| TermConstruct

• ExprMatchVariable ::= MatchVariable (bound in the MatchHead) | '$_' | '$$'

• TermConstruct = {{}} | {{ ConditionExpression, ... }} | [] | [ConditionExpression, ...] | NonCompositeTerm |
Constant

• NonCompositeTerm ::= term() (not list or tuple)

• Constant ::= {const, term()}

1.1 Match specifications in Erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 3

• GuardFunction ::= BoolFunction | abs | element | hd | length | node | round | size | tl | trunc | '+'
| '-' | '*' | 'div' | 'rem' | 'band' | 'bor' | 'bxor' | 'bnot' | 'bsl' | 'bsr' | '>' | '>=' | '<' |
'=<' | '=:=' | '==' | '=/=' | '/=' | self | get_tcw

• MatchBody ::= [ActionTerm]

• ActionTerm ::= ConditionExpression | ActionCall

• ActionCall ::= {ActionFunction} | {ActionFunction, ActionTerm, ...}

• ActionFunction ::= set_seq_token | get_seq_token | message | return_trace |
exception_trace | process_dump | enable_trace | disable_trace | trace | display |
caller | set_tcw | silent

A match_spec used in ets can be described in this informal grammar:

• MatchExpression ::= [MatchFunction, ...]

• MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

• MatchHead ::= MatchVariable | '_' | { MatchHeadPart, ... }

• MatchHeadPart ::= term() | MatchVariable | '_'

• MatchVariable ::= '$<number>'

• MatchConditions ::= [MatchCondition, ...] | []

• MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }

• BoolFunction ::= is_atom | is_constant | is_float | is_integer | is_list | is_number |
is_pid | is_port | is_reference | is_tuple | is_binary | is_function | is_record |
is_seq_trace | 'and' | 'or' | 'not' | 'xor' | andalso | orelse

• ConditionExpression ::= ExprMatchVariable | { GuardFunction } | { GuardFunction, ConditionExpression, ... }
| TermConstruct

• ExprMatchVariable ::= MatchVariable (bound in the MatchHead) | '$_' | '$$'

• TermConstruct = {{}} | {{ ConditionExpression, ... }} | [] | [ConditionExpression, ...] | NonCompositeTerm |
Constant

• NonCompositeTerm ::= term() (not list or tuple)

• Constant ::= {const, term()}

• GuardFunction ::= BoolFunction | abs | element | hd | length | node | round | size | tl | trunc | '+'
| '-' | '*' | 'div' | 'rem' | 'band' | 'bor' | 'bxor' | 'bnot' | 'bsl' | 'bsr' | '>' | '>=' | '<' |
'=<' | '=:=' | '==' | '=/=' | '/=' | self | get_tcw

• MatchBody ::= [ConditionExpression, ...]

1.1.2 Function descriptions

Functions allowed in all types of match specifications

The different functions allowed in match_spec work like this:

is_atom, is_constant, is_float, is_integer, is_list, is_number, is_pid, is_port, is_reference, is_tuple, is_binary,
is_function: Like the corresponding guard tests in Erlang, return true or false.

is_record: Takes an additional parameter, which SHALL be the result of record_info(size,
<record_type>), like in {is_record, '$1', rectype, record_info(size, rectype)}.

'not': Negates its single argument (anything other than false gives false).

'and': Returns true if all its arguments (variable length argument list) evaluate to true, else false. Evaluation
order is undefined.

'or': Returns true if any of its arguments evaluates to true. Variable length argument list. Evaluation order is
undefined.

1.1 Match specifications in Erlang

4 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

andalso: Like 'and', but quits evaluating its arguments as soon as one argument evaluates to something else than
true. Arguments are evaluated left to right.

orelse: Like 'or', but quits evaluating as soon as one of its arguments evaluates to true. Arguments are evaluated
left to right.

'xor': Only two arguments, of which one has to be true and the other false to return true; otherwise 'xor' returns
false.

abs, element, hd, length, node, round, size, tl, trunc, '+', '-', '*', 'div', 'rem', 'band', 'bor', 'bxor', 'bnot', 'bsl', 'bsr',
'>', '>=', '<', '=<', '=:=', '==', '=/=', '/=', self: Work as the corresponding Erlang bif's (or operators). In case of
bad arguments, the result depends on the context. In the MatchConditions part of the expression, the test fails
immediately (like in an Erlang guard), but in the MatchBody, exceptions are implicitly caught and the call results
in the atom 'EXIT'.

Functions allowed only for tracing

is_seq_trace: Returns true if a sequential trace token is set for the current process, otherwise false.

set_seq_token: Works like seq_trace:set_token/2, but returns true on success and 'EXIT' on error or bad
argument. Only allowed in the MatchBody part and only allowed when tracing.

get_seq_token: Works just like seq_trace:get_token/0, and is only allowed in the MatchBody part when
tracing.

message: Sets an additional message appended to the trace message sent. One can only set one additional message
in the body; subsequent calls will replace the appended message. As a special case, {message, false} disables
sending of trace messages ('call' and 'return_to') for this function call, just like if the match_spec had not matched,
which can be useful if only the side effects of the MatchBody are desired. Another special case is {message,
true} which sets the default behavior, as if the function had no match_spec, trace message is sent with no extra
information (if no other calls to message are placed before {message, true}, it is in fact a "noop").

Takes one argument, the message. Returns true and can only be used in the MatchBody part and when tracing.

return_trace: Causes a return_from trace message to be sent upon return from the current function. Takes no
arguments, returns true and can only be used in the MatchBody part when tracing. If the process trace flag silent
is active the return_from trace message is inhibited.

NOTE! If the traced function is tail recursive, this match spec function destroys that property. Hence, if a match
spec executing this function is used on a perpetual server process, it may only be active for a limited time, or the
emulator will eventually use all memory in the host machine and crash. If this match_spec function is inhibited using
the silent process trace flag tail recursiveness still remains.

exception_trace: Same as return_trace, plus; if the traced function exits due to an exception, an exception_from
trace message is generated, whether the exception is caught or not.

process_dump: Returns some textual information about the current process as a binary. Takes no arguments and is
only allowed in the MatchBody part when tracing.

enable_trace: With one parameter this function turns on tracing like the Erlang call erlang:trace(self(),
true, [P2]), where P2 is the parameter to enable_trace. With two parameters, the first parameter should
be either a process identifier or the registered name of a process. In this case tracing is turned on for the designated
process in the same way as in the Erlang call erlang:trace(P1, true, [P2]), where P1 is the first and P2
is the second argument. The process P1 gets its trace messages sent to the same tracer as the process executing the
statement uses. P1 can not be one of the atoms all, new or existing (unless, of course, they are registered names).
P2 can not be cpu_timestamp nor {tracer,_}. Returns true and may only be used in the MatchBody part
when tracing.

disable_trace: With one parameter this function disables tracing like the Erlang call erlang:trace(self(),
false, [P2]), where P2 is the parameter to disable_trace. With two parameters it works like the Erlang call

1.1 Match specifications in Erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 5

erlang:trace(P1, false, [P2]), where P1 can be either a process identifier or a registered name and is
given as the first argument to the match_spec function. P2 can not be cpu_timestamp nor {tracer,_}. Returns
true and may only be used in the MatchBody part when tracing.

trace: With two parameters this function takes a list of trace flags to disable as first parameter and a list of trace
flags to enable as second parameter. Logically, the disable list is applied first, but effectively all changes are applied
atomically. The trace flags are the same as for erlang:trace/3 not including cpu_timestamp but including
{tracer,_}. If a tracer is specified in both lists, the tracer in the enable list takes precedence. If no tracer is specified
the same tracer as the process executing the match spec is used. With three parameters to this function the first is either
a process identifier or the registered name of a process to set trace flags on, the second is the disable list, and the third
is the enable list. Returns true if any trace property was changed for the trace target process or false if not. It may
only be used in the MatchBody part when tracing.

caller: Returns the calling function as a tuple {Module, Function, Arity} or the atom undefined if the calling
function cannot be determined. May only be used in the MatchBody part when tracing.

Note that if a "technically built in function" (i.e. a function not written in Erlang) is traced, the caller function will
sometimes return the atom undefined. The calling Erlang function is not available during such calls.

display: For debugging purposes only; displays the single argument as an Erlang term on stdout, which is seldom what
is wanted. Returns true and may only be used in the MatchBody part when tracing.

get_tcw: Takes no argument and returns the value of the node's trace control word. The same is done by
erlang:system_info(trace_control_word).

The trace control word is a 32-bit unsigned integer intended for generic trace control. The trace control word can be
tested and set both from within trace match specifications and with BIFs. This call is only allowed when tracing.

set_tcw: Takes one unsigned integer argument, sets the value of the node's trace control
word to the value of the argument and returns the previous value. The same is done by
erlang:system_flag(trace_control_word, Value). It is only allowed to use set_tcw in the
MatchBody part when tracing.

silent: Takes one argument. If the argument is true, the call trace message mode for the current process is set to
silent for this call and all subsequent, i.e call trace messages are inhibited even if {message, true} is called in
the MatchBody part for a traced function.

This mode can also be activated with the silent flag to erlang:trace/3.

If the argument is false, the call trace message mode for the current process is set to normal (non-silent) for this
call and all subsequent.

If the argument is neither true nor false, the call trace message mode is unaffected.

Note that all "function calls" have to be tuples, even if they take no arguments. The value of self is the atom() self,
but the value of {self} is the pid() of the current process.

1.1.3 Variables and literals
Variables take the form '$<number>' where <number> is an integer between 0 (zero) and 100000000 (1e+8), the
behavior if the number is outside these limits is undefined. In the MatchHead part, the special variable '_' matches
anything, and never gets bound (like _ in Erlang). In the MatchCondition/MatchBody parts, no unbound
variables are allowed, why '_' is interpreted as itself (an atom). Variables can only be bound in the MatchHead part.
In the MatchBody and MatchCondition parts, only variables bound previously may be used. As a special case,
in the MatchCondition/MatchBody parts, the variable '$_' expands to the whole expression which matched
the MatchHead (i.e., the whole parameter list to the possibly traced function or the whole matching object in the ets
table) and the variable '$$' expands to a list of the values of all bound variables in order (i.e. ['$1','$2', ...]).

In the MatchHead part, all literals (except the variables noted above) are interpreted as is. In the
MatchCondition/MatchBody parts, however, the interpretation is in some ways different. Literals in the

1.1 Match specifications in Erlang

6 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

MatchCondition/MatchBody can either be written as is, which works for all literals except tuples, or by using
the special form {const, T}, where T is any Erlang term. For tuple literals in the match_spec, one can also use
double tuple parentheses, i.e., construct them as a tuple of arity one containing a single tuple, which is the one to be
constructed. The "double tuple parenthesis" syntax is useful to construct tuples from already bound variables, like in
{{'$1', [a,b,'$2']}}. Some examples may be needed:

Expression Variable bindings Result

{{'$1','$2'}} '$1' = a, '$2' = b {a,b}

{const, {'$1', '$2'}} doesn't matter {'$1', '$2'}

a doesn't matter a

'$1' '$1' = [] []

['$1'] '$1' = [] [[]]

[{{a}}] doesn't matter [{a}]

42 doesn't matter 42

"hello" doesn't matter "hello"

$1 doesn't matter
49 (the ASCII value for the character
'1')

Table 1.1: Literals in the MatchCondition/MatchBody parts of a match_spec

1.1.4 Execution of the match
The execution of the match expression, when the runtime system decides whether a trace message should be sent,
goes as follows:

For each tuple in the MatchExpression list and while no match has succeeded:

• Match the MatchHead part against the arguments to the function, binding the '$<number>' variables
(much like in ets:match/2). If the MatchHead cannot match the arguments, the match fails.

• Evaluate each MatchCondition (where only '$<number>' variables previously bound in the
MatchHead can occur) and expect it to return the atom true. As soon as a condition does not evaluate to
true, the match fails. If any BIF call generates an exception, also fail.

• • If the match_spec is executing when tracing:
Evaluate each ActionTerm in the same way as the MatchConditions, but completely ignore the
return values. Regardless of what happens in this part, the match has succeeded.

• If the match_spec is executed when selecting objects from an ETS table:
Evaluate the expressions in order and return the value of the last expression (typically there is only one
expression in this context)

1.1.5 Differences between match specifications in ETS and tracing
ETS match specifications are there to produce a return value. Usually the MatchBody contains one single
ConditionExpression which defines the return value without having any side effects. Calls with side effects
are not allowed in the ETS context.

1.1 Match specifications in Erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 7

When tracing there is no return value to produce, the match specification either matches or doesn't. The effect when
the expression matches is a trace message rather then a returned term. The ActionTerm's are executed as in an
imperative language, i.e. for their side effects. Functions with side effects are also allowed when tracing.

In ETS the match head is a tuple() (or a single match variable) while it is a list (or a single match variable) when
tracing.

1.1.6 Examples
Match an argument list of three where the first and third arguments are equal:

[{['$1', '_', '$1'],
 [],
 []}]

Match an argument list of three where the second argument is a number greater than three:

[{['_', '$1', '_'],
 [{ '>', '$1', 3}],
 []}]

Match an argument list of three, where the third argument is a tuple containing argument one and two or a list beginning
with argument one and two (i. e. [a,b,[a,b,c]] or [a,b,{a,b}]):

[{['$1', '$2', '$3'],
 [{orelse,
 {'=:=', '$3', {{'$1','$2'}}},
 {'and',
 {'=:=', '$1', {hd, '$3'}},
 {'=:=', '$2', {hd, {tl, '$3'}}}}}],
 []}]

The above problem may also be solved like this:

[{['$1', '$2', {'$1', '$2}], [], []},
 {['$1', '$2', ['$1', '$2' | '_']], [], []}]

Match two arguments where the first is a tuple beginning with a list which in turn begins with the second argument
times two (i. e. [{[4,x],y},2] or [{[8], y, z},4])

[{['$1', '$2'],[{'=:=', {'*', 2, '$2'}, {hd, {element, 1, '$1'}}}],
 []}]

Match three arguments. When all three are equal and are numbers, append the process dump to the trace message, else
let the trace message be as is, but set the sequential trace token label to 4711.

1.2 How to interpret the Erlang crash dumps

8 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

[{['$1', '$1', '$1'],
 [{is_number, '$1'}],
 [{message, {process_dump}}]},
 {'_', [], [{set_seq_token, label, 4711}]}]

As can be noted above, the parameter list can be matched against a single MatchVariable or an '_'. To replace the
whole parameter list with a single variable is a special case. In all other cases the MatchHead has to be a proper list.

Match all objects in an ets table where the first element is the atom 'strider' and the tuple arity is 3 and return the
whole object.

[{{strider,'_','_'},
 [],
 ['$_']}]

Match all objects in an ets table with arity > 1 and the first element is 'gandalf', return element 2.

[{'$1',
 [{'==', gandalf, {element, 1, '$1'}},{'>=',{size, '$1'},2}],
 [{element,2,'$1'}]}]

In the above example, if the first element had been the key, it's much more efficient to match that key in the
MatchHead part than in the MatchConditions part. The search space of the tables is restricted with regards to
the MatchHead so that only objects with the matching key are searched.

Match tuples of 3 elements where the second element is either 'merry' or 'pippin', return the whole objects.

[{{'_',merry,'_'},
 [],
 ['$_']},
 {{'_',pippin,'_'},
 [],
 ['$_']}]

The function ets:test_ms/2 can be useful for testing complicated ets matches.

1.2 How to interpret the Erlang crash dumps
This document describes the erl_crash.dump file generated upon abnormal exit of the Erlang runtime system.

Important: For OTP release R9C the Erlang crash dump has had a major facelift. This means that the information in
this document will not be directly applicable for older dumps. However, if you use the Crashdump Viewer tool on
older dumps, the crash dumps are translated into a format similar to this.

The system will write the crash dump in the current directory of the emulator or in the file pointed out by the
environment variable (whatever that means on the current operating system) ERL_CRASH_DUMP. For a crash dump
to be written, there has to be a writable file system mounted.

1.2 How to interpret the Erlang crash dumps

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 9

Crash dumps are written mainly for one of two reasons: either the builtin function erlang:halt/1 is called
explicitly with a string argument from running Erlang code, or else the runtime system has detected an error that cannot
be handled. The most usual reason that the system can't handle the error is that the cause is external limitations, such
as running out of memory. A crash dump due to an internal error may be caused by the system reaching limits in the
emulator itself (like the number of atoms in the system, or too many simultaneous ets tables). Usually the emulator
or the operating system can be reconfigured to avoid the crash, which is why interpreting the crash dump correctly
is important.

The erlang crash dump is a readable text file, but it might not be very easy to read. Using the Crashdump Viewer tool
in the observer application will simplify the task. This is an HTML based tool for browsing Erlang crash dumps.

1.2.1 General information
The first part of the dump shows the creation time for the dump, a slogan indicating the reason for the dump, the
system version, of the node from which the dump originates, the compile time of the emulator running the originating
node and the number of atoms in the atom table.

Reasons for crash dumps (slogan)

The reason for the dump is noted in the beginning of the file as Slogan: <reason> (the word "slogan" has historical
roots). If the system is halted by the BIF erlang:halt/1, the slogan is the string parameter passed to the BIF,
otherwise it is a description generated by the emulator or the (Erlang) kernel. Normally the message should be enough to
understand the problem, but nevertheless some messages are described here. Note however that the suggested reasons
for the crash are only suggestions. The exact reasons for the errors may vary depending on the local applications and
the underlying operating system.

• "<A>: Cannot allocate <N> bytes of memory (of type "<T>")." - The system has run out of memory. <A> is
the allocator that failed to allocate memory, <N> is the number of bytes that <A> tried to allocate, and <T>
is the memory block type that the memory was needed for. The most common case is that a process stores
huge amounts of data. In this case <T> is most often heap, old_heap, heap_frag, or binary. For more
information on allocators see erts_alloc(3).

• "<A>: Cannot reallocate <N> bytes of memory (of type "<T>")." - Same as above with the exception that
memory was being reallocated instead of being allocated when the system ran out of memory.

• "Unexpected op code N" - Error in compiled code, beam file damaged or error in the compiler.

• "Module Name undefined" | "Function Name undefined" | "No function Name:Name/1" | "No function
Name:start/2" - The kernel/stdlib applications are damaged or the start script is damaged.

• "Driver_select called with too large file descriptor N" - The number of file descriptors for sockets exceed 1024
(Unix only). The limit on file-descriptors in some Unix flavors can be set to over 1024, but only 1024 sockets/
pipes can be used simultaneously by Erlang (due to limitations in the Unix select call). The number of open
regular files is not affected by this.

• "Received SIGUSR1" - The SIGUSR1 signal was sent to the Erlang machine (Unix only).

• "Kernel pid terminated (Who) (Exit-reason)" - The kernel supervisor has detected a failure, usually that the
application_controller has shut down (Who = application_controller, Why = shutdown).
The application controller may have shut down for a number of reasons, the most usual being that the node
name of the distributed Erlang node is already in use. A complete supervisor tree "crash" (i.e., the top
supervisors have exited) will give about the same result. This message comes from the Erlang code and not
from the virtual machine itself. It is always due to some kind of failure in an application, either within OTP or a
"user-written" one. Looking at the error log for your application is probably the first step to take.

• "Init terminating in do_boot ()" - The primitive Erlang boot sequence was terminated, most probably because
the boot script has errors or cannot be read. This is usually a configuration error - the system may have been
started with a faulty -boot parameter or with a boot script from the wrong version of OTP.

• "Could not start kernel pid (Who) ()" - One of the kernel processes could not start. This is probably due to
faulty arguments (like errors in a -config argument) or faulty configuration files. Check that all files are in

1.2 How to interpret the Erlang crash dumps

10 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

their correct location and that the configuration files (if any) are not damaged. Usually there are also messages
written to the controlling terminal and/or the error log explaining what's wrong.

Other errors than the ones mentioned above may occur, as the erlang:halt/1 BIF may generate any message. If
the message is not generated by the BIF and does not occur in the list above, it may be due to an error in the emulator.
There may however be unusual messages that I haven't mentioned, that still are connected to an application failure.
There is a lot more information available, so more thorough reading of the crash dump may reveal the crash reason.
The size of processes, the number of ets tables and the Erlang data on each process stack can be useful for tracking
down the problem.

Number of atoms

The number of atoms in the system at the time of the crash is shown as Atoms: <number>. Some ten thousands atoms is
perfectly normal, but more could indicate that the BIF erlang:list_to_atom/1 is used to dynamically generate
a lot of different atoms, which is never a good idea.

1.2.2 Memory information
Under the tag =memory you will find information similar to what you can obtain on a living node with
erlang:memory().

1.2.3 Internal table information
The tags =hash_table:<table_name> and =index_table:<table_name> presents internal tables. These are mostly of
interest for runtime system developers.

1.2.4 Allocated areas
Under the tag =allocated_areas you will find information similar to what you can obtain on a living node with
erlang:system_info(allocated_areas).

1.2.5 Allocator
Under the tag =allocator:<A> you will find various information about allocator <A>. The information is similar
to what you can obtain on a living node with erlang:system_info({allocator, <A>}). For more information see the
documentation of erlang:system_info({allocator, <A>}), and the erts_alloc(3) documentation.

1.2.6 Process information
The Erlang crashdump contains a listing of each living Erlang process in the system. The process information for one
process may look like this (line numbers have been added):

The following fields can exist for a process:

=proc:<pid>
Heading, states the process identifier

State

The state of the process. This can be one of the following:

• Scheduled - The process was scheduled to run but not currently running ("in the run queue").

• Waiting - The process was waiting for something (in receive).

• Running - The process was currently running. If the BIF erlang:halt/1 was called, this was the
process calling it.

• Exiting - The process was on its way to exit.

• Garbing - This is bad luck, the process was garbage collecting when the crash dump was written, the rest
of the information for this process is limited.

1.2 How to interpret the Erlang crash dumps

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 11

• Suspended - The process is suspended, either by the BIF erlang:suspend_process/1 or because it
is trying to write to a busy port.

Registered name
The registered name of the process, if any.

Spawned as
The entry point of the process, i.e., what function was referenced in the spawn or spawn_link call that
started the process.

Last scheduled in for | Current call
The current function of the process. These fields will not always exist.

Spawned by
The parent of the process, i.e. the process which executed spawn or spawn_link.

Started
The date and time when the process was started.

Message queue length
The number of messages in the process' message queue.

Number of heap fragments
The number of allocated heap fragments.

Heap fragment data
Size of fragmented heap data. This is data either created by messages being sent to the process or by the Erlang
BIFs. This amount depends on so many things that this field is utterly uninteresting.

Link list
Process id's of processes linked to this one. May also contain ports. If process monitoring is used, this field also
tells in which direction the monitoring is in effect, i.e., a link being "to" a process tells you that the "current"
process was monitoring the other and a link "from" a process tells you that the other process was monitoring
the current one.

Reductions
The number of reductions consumed by the process.

Stack+heap
The size of the stack and heap (they share memory segment)

OldHeap
The size of the "old heap". The Erlang virtual machine uses generational garbage collection with two
generations. There is one heap for new data items and one for the data that have survived two garbage
collections. The assumption (which is almost always correct) is that data that survive two garbage collections
can be "tenured" to a heap more seldom garbage collected, as they will live for a long period. This is a quite
usual technique in virtual machines. The sum of the heaps and stack together constitute most of the process's
allocated memory.

Heap unused, OldHeap unused
The amount of unused memory on each heap. This information is usually useless.

Stack
If the system uses shared heap, the fields Stack+heap, OldHeap, Heap unused and OldHeap unused do not
exist. Instead this field presents the size of the process' stack.

Program counter
The current instruction pointer. This is only interesting for runtime system developers. The function into which
the program counter points is the current function of the process.

CP
The continuation pointer, i.e. the return address for the current call. Usually useless for other than runtime
system developers. This may be followed by the function into which the CP points, which is the function
calling the current function.

Arity
The number of live argument registers. The argument registers, if any are live, will follow. These may contain
the arguments of the function if they are not yet moved to the stack.

1.2 How to interpret the Erlang crash dumps

12 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

See also the section about process data.

1.2.7 Port information
This section lists the open ports, their owners, any linked processed, and the name of their driver or external process.

1.2.8 ETS tables
This section contains information about all the ETS tables in the system. The following fields are interesting for each
table:

=ets:<owner>
Heading, states the owner of the table (a process identifier)

Table
The identifier for the table. If the table is a named_table, this is the name.

Name
The name of the table, regardless of whether it is a named_table or not.

Buckets
This occurs if the table is a hash table, i.e. if it is not an ordered_set.

Ordered set (AVL tree), Elements
This occurs only if the table is an ordered_set. (The number of elements is the same as the number of
objects in the table.)

Objects
The number of objects in the table

Words
The number of words (usually 4 bytes/word) allocated to data in the table.

1.2.9 Timers
This section contains information about all the timers started with the BIFs erlang:start_timer/3 and
erlang:send_after/3. The following fields exists for each timer:

=timer:<owner>
Heading, states the owner of the timer (a process identifier) i.e. the process to receive the message when the
timer expires.

Message
The message to be sent.

Time left
Number of milliseconds left until the message would have been sent.

1.2.10 Distribution information
If the Erlang node was alive, i.e., set up for communicating with other nodes, this section lists the connections that
were active. The following fields can exist:

=node:<node_name>
The name of the node

no_distribution
This will only occur if the node was not distributed.

=visible_node:<channel>
Heading for a visible nodes, i.e. an alive node with a connection to the node that crashed. States the channel
number for the node.

=hidden_node:<channel>
Heading for a hidden node. A hidden node is the same as a visible node, except that it is started with the "-
hidden" flag. States the channel number for the node.

1.2 How to interpret the Erlang crash dumps

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 13

=not_connected:<channel>
Heading for a node which is has been connected to the crashed node earlier. References (i.e. process or port
identifiers) to the not connected node existed at the time of the crash. exist. States the channel number for the
node.

Name
The name of the remote node.

Controller
The port which controls the communication with the remote node.

Creation
An integer (1-3) which together with the node name identifies a specific instance of the node.

Remote monitoring: <local_proc> <remote_proc>
The local process was monitoring the remote process at the time of the crash.

Remotely monitored by: <local_proc> <remote_proc>
The remote process was monitoring the local process at the time of the crash.

Remote link: <local_proc> <remote_proc>
A link existed between the local process and the remote process at the time of the crash.

1.2.11 Loaded module information
This section contains information about all loaded modules. First, the memory usage by loaded code is summarized.
There is one field for "Current code" which is code that is the current latest version of the modules. There is also a
field for "Old code" which is code where there exists a newer version in the system, but the old version is not yet
purged. The memory usage is in bytes.

All loaded modules are then listed. The following fields exist:

=mod:<module_name>
Heading, and the name of the module.

Current size
Memory usage for the loaded code in bytes

Old size
Memory usage for the old code, if any.

Current attributes
Module attributes for the current code. This field is decoded when looked at by the Crashdump Viewer tool.

Old attributes
Module attributes for the old code, if any. This field is decoded when looked at by the Crashdump Viewer tool.

Current compilation info
Compilation information (options) for the current code. This field is decoded when looked at by the Crashdump
Viewer tool.

Old compilation info
Compilation information (options) for the old code, if any. This field is decoded when looked at by the
Crashdump Viewer tool.

1.2.12 Fun information
In this section, all funs are listed. The following fields exist for each fun:

=fun
Heading

Module
The name of the module where the fun was defined.

Uniq, Index
Identifiers

1.3 How to implement an alternative carrier for the Erlang distribution

14 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Address
The address of the fun's code.

Native_address
The address of the fun's code when HiPE is enabled.

Refc
The number of references to the fun.

1.2.13 Process Data
For each process there will be at least one =proc_stack and one =proc_heap tag followed by the raw memory
information for the stack and heap of the process.

For each process there will also be a =proc_messages tag if the process' message queue is non-empty and a
=proc_dictionary tag if the process' dictionary (the put/2 and get/1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. You will then be able to see the stack
dump, the message queue (if any) and the dictionary (if any).

The stack dump is a dump of the Erlang process stack. Most of the live data (i.e., variables currently in use) are placed
on the stack; thus this can be quite interesting. One has to "guess" what's what, but as the information is symbolic,
thorough reading of this information can be very useful. As an example we can find the state variable of the Erlang
primitive loader on line (5) in the example below:

(1) 3cac44 Return addr 0x13BF58 (<terminate process normally>)
(2) y(0) ["/view/siri_r10_dev/clearcase/otp/erts/lib/kernel/ebin","/view/siri_r10_dev/
(3) clearcase/otp/erts/lib/stdlib/ebin"]
(4) y(1) <0.1.0>
(5) y(2) {state,[],none,#Fun<erl_prim_loader.6.7085890>,undefined,#Fun<erl_prim_loader.7.9000327>,#Fun<erl_prim_loader.8.116480692>,#Port<0.2>,infinity,#Fun<erl_prim_loader.9.10708760>}
(6) y(3) infinity

When interpreting the data for a process, it is helpful to know that anonymous function objects (funs) are given a name
constructed from the name of the function in which they are created, and a number (starting with 0) indicating the
number of that fun within that function.

1.2.14 Atoms
Now all the atoms in the system are written. This is only interesting if one suspects that dynamic generation of atoms
could be a problem, otherwise this section can be ignored.

Note that the last created atom is printed first.

1.2.15 Disclaimer
The format of the crash dump evolves between releases of OTP. Some information here may not apply to your version.
A description as this will never be complete; it is meant as an explanation of the crash dump in general and as a help
when trying to find application errors, not as a complete specification.

1.3 How to implement an alternative carrier for the Erlang distribution
This document describes how one can implement ones own carrier protocol for the Erlang distribution. The distribution
is normally carried by the TCP/IP protocol. What's explained here is the method for replacing TCP/IP with another
protocol.

The document is a step by step explanation of the uds_dist example application (seated in the kernel applications
examples directory). The uds_dist application implements distribution over Unix domain sockets and is written

1.3 How to implement an alternative carrier for the Erlang distribution

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 15

for the Sun Solaris 2 operating environment. The mechanisms are however general and applies to any operating system
Erlang runs on. The reason the C code is not made portable, is simply readability.

Note:
This document was written a long time ago. Most of it is still valid, but some things have changed since it was
first written. Most notably the driver interface. There have been some updates to the documentation of the driver
presented in this documentation, but more could be done and are planned for the future. The reader is encouraged
to also read the erl_driver, and the driver_entry documentation.

1.3.1 Introduction
To implement a new carrier for the Erlang distribution, one must first make the protocol available to the Erlang
machine, which involves writing an Erlang driver. There is no way one can use a port program, there has to be an
Erlang driver. Erlang drivers can either be statically linked to the emulator, which can be an alternative when using
the open source distribution of Erlang, or dynamically loaded into the Erlang machines address space, which is the
only alternative if a precompiled version of Erlang is to be used.

Writing an Erlang driver is by no means easy. The driver is written as a couple of call-back functions called by the
Erlang emulator when data is sent to the driver or the driver has any data available on a file descriptor. As the driver
call-back routines execute in the main thread of the Erlang machine, the call-back functions can perform no blocking
activity whatsoever. The call-backs should only set up file descriptors for waiting and/or read/write available data.
All I/O has to be non blocking. Driver call-backs are however executed in sequence, why a global state can safely
be updated within the routines.

When the driver is implemented, one would preferably write an Erlang interface for the driver to be able to test the
functionality of the driver separately. This interface can then be used by the distribution module which will cover the
details of the protocol from the net_kernel. The easiest path is to mimic the inet and inet_tcp interfaces, but
a lot of functionality in those modules need not be implemented. In the example application, only a few of the usual
interfaces are implemented, and they are much simplified.

When the protocol is available to Erlang through a driver and an Erlang interface module, a distribution module can
be written. The distribution module is a module with well defined call-backs, much like a gen_server (there is
no compiler support for checking the call-backs though). The details of finding other nodes (i.e. talking to epmd or
something similar), creating a listen port (or similar), connecting to other nodes and performing the handshakes/cookie
verification are all implemented by this module. There is however a utility module, dist_util, that will do most
of the hard work of handling handshakes, cookies, timers and ticking. Using dist_util makes implementing a
distribution module much easier and that's what we are doing in the example application.

The last step is to create boot scripts to make the protocol implementation available at boot time. The implementation
can be debugged by starting the distribution when all of the system is running, but in a real system the distribution
should start very early, why a boot-script and some command line parameters are necessary. This last step also implies
that the Erlang code in the interface and distribution modules is written in such a way that it can be run in the startup
phase. Most notably there can be no calls to the application module or to any modules not loaded at boot-time
(i.e. only kernel, stdlib and the application itself can be used).

1.3.2 The driver
Although Erlang drivers in general may be beyond the scope of this document, a brief introduction seems to be in place.

Drivers in general

An Erlang driver is a native code module written in C (or assembler) which serves as an interface for some special
operating system service. This is a general mechanism that is used throughout the Erlang emulator for all kinds of I/

1.3 How to implement an alternative carrier for the Erlang distribution

16 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

O. An Erlang driver can be dynamically linked (or loaded) to the Erlang emulator at runtime by using the erl_ddll
Erlang module. Some of the drivers in OTP are however statically linked to the runtime system, but that's more an
optimization than a necessity.

The driver data-types and the functions available to the driver writer are defined in the header file erl_driver.h
(there is also an deprecated version called driver.h, don't use that one.) seated in Erlang's include directory (and
in $ERL_TOP/erts/emulator/beam in the source code distribution). Refer to that file for function prototypes etc.

When writing a driver to make a communications protocol available to Erlang, one should know just about everything
worth knowing about that particular protocol. All operation has to be non blocking and all possible situations should
be accounted for in the driver. A non stable driver will affect and/or crash the whole Erlang runtime system, which
is seldom what's wanted.

The emulator calls the driver in the following situations:

• When the driver is loaded. This call-back has to have a special name and will inform the emulator of what call-
backs should be used by returning a pointer to a ErlDrvEntry struct, which should be properly filled in (see
below).

• When a port to the driver is opened (by a open_port call from Erlang). This routine should set up internal
data structures and return an opaque data entity of the type ErlDrvData, which is a data-type large enough to
hold a pointer. The pointer returned by this function will be the first argument to all other call-backs concerning
this particular port. It is usually called the port handle. The emulator only stores the handle and does never try
to interpret it, why it can be virtually anything (well anything not larger than a pointer that is) and can point to
anything if it is a pointer. Usually this pointer will refer to a structure holding information about the particular
port, as i t does in our example.

• When an Erlang process sends data to the port. The data will arrive as a buffer of bytes, the interpretation is not
defined, but is up to the implementor. This call-back returns nothing to the caller, answers are sent to the caller
as messages (using a routine called driver_output available to all drivers). There is also a way to talk in a
synchronous way to drivers, described below. There can be an additional call-back function for handling data
that is fragmented (sent in a deep io-list). That interface will get the data in a form suitable for Unix writev
rather than in a single buffer. There is no need for a distribution driver to implement such a call-back, so we
wont.

• When a file descriptor is signaled for input. This call-back is called when the emulator detects input on
a file descriptor which the driver has marked for monitoring by using the interface driver_select.
The mechanism of driver select makes it possible to read non blocking from file descriptors by calling
driver_select when reading is needed and then do the actual reading in this call-back (when reading is
actually possible). The typical scenario is that driver_select is called when an Erlang process orders a
read operation, and that this routine sends the answer when data is available on the file descriptor.

• When a file descriptor is signaled for output. This call-back is called in a similar way as the previous, but when
writing to a file descriptor is possible. The usual scenario is that Erlang orders writing on a file descriptor and
that the driver calls driver_select. When the descriptor is ready for output, this call-back is called an the
driver can try to send the output. There may of course be queuing involved in such operations, and there are
some convenient queue routines available to the driver writer to use in such situations.

• When a port is closed, either by an Erlang process or by the driver calling one of the driver_failure_XXX
routines. This routine should clean up everything connected to one particular port. Note that when other call-
backs call a driver_failure_XXX routine, this routine will be immediately called and the call-back routine
issuing the error can make no more use of the data structures for the port, as this routine surely has freed all
associated data and closed all file descriptors. If the queue utility available to driver writes is used, this routine
will however not be called until the queue is empty.

• When an Erlang process calls erlang:port_control/3, which is a synchronous interface to drivers. The
control interface is used to set driver options, change states of ports etc. We'll use this interface quite a lot in our
example.

1.3 How to implement an alternative carrier for the Erlang distribution

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 17

• When a timer expires. The driver can set timers with the function driver_set_timer. When such timers
expire, a specific call-back function is called. We will not use timers in our example.

• When the whole driver is unloaded. Every resource allocated by the driver should be freed.

The distribution driver's data structures

The driver used for Erlang distribution should implement a reliable, order maintaining, variable length packet oriented
protocol. All error correction, re-sending and such need to be implemented in the driver or by the underlying
communications protocol. If the protocol is stream oriented (as is the case with both TCP/IP and our streamed Unix
domain sockets), some mechanism for packaging is needed. We will use the simple method of having a header of four
bytes containing the length of the package in a big endian 32 bit integer (as Unix domain sockets only can be used
between processes on the same machine, we actually don't need to code the integer in some special endianess, but I'll
do it anyway because in most situation you do need to do it. Unix domain sockets are reliable and order maintaining,
so we don't need to implement resends and such in our driver.

Lets start writing our example Unix domain sockets driver by declaring prototypes and filling in a static ErlDrvEntry
structure.

(1) #include <stdio.h>
(2) #include <stdlib.h>
(3) #include <string.h>
(4) #include <unistd.h>
(5) #include <errno.h>
(6) #include <sys/types.h>
(7) #include <sys/stat.h>
(8) #include <sys/socket.h>
(9) #include <sys/un.h>
(10) #include <fcntl.h>

(11) #define HAVE_UIO_H
(12) #include "erl_driver.h"

(13) /*
(14) ** Interface routines
(15) */
(16) static ErlDrvData uds_start(ErlDrvPort port, char *buff);
(17) static void uds_stop(ErlDrvData handle);
(18) static void uds_command(ErlDrvData handle, char *buff, int bufflen);
(19) static void uds_input(ErlDrvData handle, ErlDrvEvent event);
(20) static void uds_output(ErlDrvData handle, ErlDrvEvent event);
(21) static void uds_finish(void);
(22) static int uds_control(ErlDrvData handle, unsigned int command,
(23) char* buf, int count, char** res, int res_size);

(24) /* The driver entry */
(25) static ErlDrvEntry uds_driver_entry = {
(26) NULL, /* init, N/A */
(27) uds_start, /* start, called when port is opened */
(28) uds_stop, /* stop, called when port is closed */
(29) uds_command, /* output, called when erlang has sent */
(30) uds_input, /* ready_input, called when input
(31) descriptor ready */
(32) uds_output, /* ready_output, called when output
(33) descriptor ready */
(34) "uds_drv", /* char *driver_name, the argument
(35) to open_port */
(36) uds_finish, /* finish, called when unloaded */
(37) NULL, /* void * that is not used (BC) */
(38) uds_control, /* control, port_control callback */
(39) NULL, /* timeout, called on timeouts */
(40) NULL, /* outputv, vector output interface */

1.3 How to implement an alternative carrier for the Erlang distribution

18 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

(41) NULL, /* ready_async callback */
(42) NULL, /* flush callback */
(43) NULL, /* call callback */
(44) NULL, /* event callback */
(45) ERL_DRV_EXTENDED_MARKER, /* Extended driver interface marker */
(46) ERL_DRV_EXTENDED_MAJOR_VERSION, /* Major version number */
(47) ERL_DRV_EXTENDED_MINOR_VERSION, /* Minor version number */
(48) ERL_DRV_FLAG_SOFT_BUSY, /* Driver flags. Soft busy flag is
(49) required for distribution drivers */
(50) NULL, /* Reserved for internal use */
(51) NULL, /* process_exit callback */
(52) NULL /* stop_select callback */
(53) };

On line 1 to 10 we have included the OS headers needed for our driver. As this driver is written for Solaris, we
know that the header uio.h exists, why we can define the preprocessor variable HAVE_UIO_H before we include
erl_driver.h at line 12. The definition of HAVE_UIO_H will make the I/O vectors used in Erlang's driver queues
to correspond to the operating systems ditto, which is very convenient.

The different call-back functions are declared ("forward declarations") on line 16 to 23.

The driver structure is similar for statically linked in drivers and dynamically loaded. However some of the fields
should be left empty (i.e. initialized to NULL) in the different types of drivers. The first field (the init function
pointer) is always left blank in a dynamically loaded driver, which can be seen on line 26. The NULL on line 37 should
always be there, the field is no longer used and is retained for backward compatibility. We use no timers in this driver,
why no call-back for timers is needed. The outputv field (line 40) can be used to implement an interface similar
to Unix writev for output. The Erlang runtime system could previously not use outputv for the distribution, but
since erts version 5.7.2 it can. Since this driver was written before erts version 5.7.2 it does not use the outputv
callback. Using the outputv callback is preferred since it reduces copying of data. (We will however use scatter/
gather I/O internally in the driver).

As of erts version 5.5.3 the driver interface was extended with version control and the possibility to pass capability
information. Capability flags are present at line 48. As of erts version 5.7.4 the ERL_DRV_FLAG_SOFT_BUSY flag
is required for drivers that are to be used by the distribution. The soft busy flag implies that the driver is capable of
handling calls to the output and outputv callbacks even though it has marked itself as busy. This has always
been a requirement on drivers used by the distribution, but there have previously not been any capability information
available about this. For more information see set_busy_port()).

This driver was written before the runtime system had SMP support. The driver will still function in the runtime system
with SMP support, but performance will suffer from lock contention on the driver lock used for the driver. This can be
alleviated by reviewing and perhaps rewriting the code so that each instance of the driver safely can execute in parallel.
When instances safely can execute in parallel it is safe to enable instance specific locking on the driver. This is done
by passing ERL_DRV_FLAG_USE_PORT_LOCKING as a driver flag. This is left as an exercise for the reader.

Our defined call-backs thus are:

• uds_start, which shall initiate data for a port. We wont create any actual sockets here, just initialize data
structures.

• uds_stop, the function called when a port is closed.

• uds_command, which will handle messages from Erlang. The messages can either be plain data to be sent or
more subtle instructions to the driver. We will use this function mostly for data pumping.

• uds_input, this is the call-back which is called when we have something to read from a socket.

• uds_output, this is the function called when we can write to a socket.

• uds_finish, which is called when the driver is unloaded. A distribution driver will actually (or hopefully) never
be unloaded, but we include this for completeness. Being able to clean up after oneself is always a good thing.

• uds_control, the erlang:port_control/2 call-back, which will be used a lot in this implementation.

1.3 How to implement an alternative carrier for the Erlang distribution

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 19

The ports implemented by this driver will operate in two major modes, which i will call the command and data modes.
In command mode, only passive reading and writing (like gen_tcp:recv/gen_tcp:send) can be done, and this is the
mode the port will be in during the distribution handshake. When the connection is up, the port will be switched to data
mode and all data will be immediately read and passed further to the Erlang emulator. In data mode, no data arriving
to the uds_command will be interpreted, but just packaged and sent out on the socket. The uds_control call-back will
do the switching between those two modes.

While the net_kernel informs different subsystems that the connection is coming up, the port should accept data to
send, but not receive any data, to avoid that data arrives from another node before every kernel subsystem is prepared
to handle it. We have a third mode for this intermediate stage, lets call it the intermediate mode.

Lets define an enum for the different types of ports we have:

(1) typedef enum {
(2) portTypeUnknown, /* An uninitialized port */
(3) portTypeListener, /* A listening port/socket */
(4) portTypeAcceptor, /* An intermidiate stage when accepting
(5) on a listen port */
(6) portTypeConnector, /* An intermediate stage when connecting */
(7) portTypeCommand, /* A connected open port in command mode */
(8) portTypeIntermediate, /* A connected open port in special
(9) half active mode */
(10) portTypeData /* A connectec open port in data mode */
(11) } PortType;

Lets look at the different types:

• portTypeUnknown - The type a port has when it's opened, but not actually bound to any file descriptor.

• portTypeListener - A port that is connected to a listen socket. This port will not do especially much, there will
be no data pumping done on this socket, but there will be read data available when one is trying to do an accept
on the port.

• portTypeAcceptor - This is a port that is to represent the result of an accept operation. It is created when one
wants to accept from a listen socket, and it will be converted to a portTypeCommand when the accept succeeds.

• portTypeConnector - Very similar to portTypeAcceptor, an intermediate stage between the request for a connect
operation and that the socket is really connected to an accepting ditto in the other end. As soon as the sockets
are connected, the port will switch type to portTypeCommand.

• portTypeCommand - A connected socket (or accepted socket if you want) that is in the command mode
mentioned earlier.

• portTypeIntermediate - The intermediate stage for a connected socket. There should be no processing of input
for this socket.

• portTypeData - The mode where data is pumped through the port and the uds_command routine will regard
every call as a call where sending is wanted. In this mode all input available will be read and sent to Erlang as
soon as it arrives on the socket, much like in the active mode of a gen_tcp socket.

Now lets look at the state we'll need for our ports. One can note that not all fields are used for all types of ports and
that one could save some space by using unions, but that would clutter the code with multiple indirections, so i simply
use one struct for all types of ports, for readability.

(1) typedef unsigned char Byte;
(2) typedef unsigned int Word;

(3) typedef struct uds_data {
(4) int fd; /* File descriptor */
(5) ErlDrvPort port; /* The port identifier */

1.3 How to implement an alternative carrier for the Erlang distribution

20 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

(6) int lockfd; /* The file descriptor for a lock file in
(7) case of listen sockets */
(8) Byte creation; /* The creation serial derived from the
(9) lockfile */
(10) PortType type; /* Type of port */
(11) char *name; /* Short name of socket for unlink */
(12) Word sent; /* Bytes sent */
(13) Word received; /* Bytes received */
(14) struct uds_data *partner; /* The partner in an accept/listen pair */
(15) struct uds_data *next; /* Next structure in list */
(16) /* The input buffer and its data */
(17) int buffer_size; /* The allocated size of the input buffer */
(18) int buffer_pos; /* Current position in input buffer */
(19) int header_pos; /* Where the current header is in the
(20) input buffer */
(21) Byte *buffer; /* The actual input buffer */
(22) } UdsData;

This structure is used for all types of ports although some fields are useless for some types. The least memory
consuming solution would be to arrange this structure as a union of structures, but the multiple indirections in the code
to access a field in such a structure will clutter the code to much for an example.

Let's look at the fields in our structure:

• fd - The file descriptor of the socket associated with the port.

• port - The port identifier for the port which this structure corresponds to. It is needed for most driver_XXX
calls from the driver back to the emulator.

• lockfd - If the socket is a listen socket, we use a separate (regular) file for two purposes:

• We want a locking mechanism that gives no race conditions, so that we can be sure of if another Erlang
node uses the listen socket name we require or if the file is only left there from a previous (crashed)
session.

• We store the creation serial number in the file. The creation is a number that should change between different
instances of different Erlang emulators with the same name, so that process identifiers from one emulator
won't be valid when sent to a new emulator with the same distribution name. The creation can be between 0
and 3 (two bits) and is stored in every process identifier sent to another node.

In a system with TCP based distribution, this data is kept in the Erlang port mapper daemon (epmd), which
is contacted when a distributed node starts. The lock-file and a convention for the UDS listen socket's name
will remove the need for epmd when using this distribution module. UDS is always restricted to one host,
why avoiding a port mapper is easy.

• creation - The creation number for a listen socket, which is calculated as (the value found in the lock-file + 1)
rem 4. This creation value is also written back into the lock-file, so that the next invocation of the emulator will
found our value in the file.

• type - The current type/state of the port, which can be one of the values declared above.

• name - The name of the socket file (the path prefix removed), which allows for deletion (unlink) when the
socket is closed.

• sent - How many bytes that have been sent over the socket. This may wrap, but that's no problem for
the distribution, as the only thing that interests the Erlang distribution is if this value has changed (the
Erlang net_kernel ticker uses this value by calling the driver to fetch it, which is done through the
erlang:port_control routine).

• received - How many bytes that are read (received) from the socket, used in similar ways as sent.

• partner - A pointer to another port structure, which is either the listen port from which this port is accepting a
connection or the other way around. The "partner relation" is always bidirectional.

1.3 How to implement an alternative carrier for the Erlang distribution

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 21

• next - Pointer to next structure in a linked list of all port structures. This list is used when accepting connections
and when the driver is unloaded.

• buffer_size, buffer_pos, header_pos, buffer - data for input buffering. Refer to the source code (in the kernel/
examples directory) for details about the input buffering. That certainly goes beyond the scope of this
document.

Selected parts of the distribution driver implementation

The distribution drivers implementation is not completely covered in this text, details about buffering and other things
unrelated to driver writing are not explained. Likewise are some peculiarities of the UDS protocol not explained in
detail. The chosen protocol is not important.

Prototypes for the driver call-back routines can be found in the erl_driver.h header file.

The driver initialization routine is (usually) declared with a macro to make the driver easier to port between different
operating systems (and flavours of systems). This is the only routine that has to have a well defined name. All other
call-backs are reached through the driver structure. The macro to use is named DRIVER_INIT and takes the driver
name as parameter.

(1) /* Beginning of linked list of ports */
(2) static UdsData *first_data;

(3) DRIVER_INIT(uds_drv)
(4) {
(5) first_data = NULL;
(6) return &uds_driver_entry;
(7) }

The routine initializes the single global data structure and returns a pointer to the driver entry. The routine will be
called when erl_ddll:load_driver is called from Erlang.

The uds_start routine is called when a port is opened from Erlang. In our case, we only allocate a structure and
initialize it. Creating the actual socket is left to the uds_command routine.

(1) static ErlDrvData uds_start(ErlDrvPort port, char *buff)
(2) {
(3) UdsData *ud;
(4)
(5) ud = ALLOC(sizeof(UdsData));
(6) ud->fd = -1;
(7) ud->lockfd = -1;
(8) ud->creation = 0;
(9) ud->port = port;
(10) ud->type = portTypeUnknown;
(11) ud->name = NULL;
(12) ud->buffer_size = 0;
(13) ud->buffer_pos = 0;
(14) ud->header_pos = 0;
(15) ud->buffer = NULL;
(16) ud->sent = 0;
(17) ud->received = 0;
(18) ud->partner = NULL;
(19) ud->next = first_data;
(20) first_data = ud;
(21)
(22) return((ErlDrvData) ud);

1.3 How to implement an alternative carrier for the Erlang distribution

22 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

(23) }

Every data item is initialized, so that no problems will arise when a newly created port is closed (without there being
any corresponding socket). This routine is called when open_port({spawn, "uds_drv"},[]) is called from
Erlang.

The uds_command routine is the routine called when an Erlang process sends data to the port. All asynchronous
commands when the port is in command mode as well as the sending of all data when the port is in data mode is
handled in this9s routine. Let's have a look at it:

(1) static void uds_command(ErlDrvData handle, char *buff, int bufflen)
(2) {
(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeData || ud->type == portTypeIntermediate) {
(5) DEBUGF(("Passive do_send %d",bufflen));
(6) do_send(ud, buff + 1, bufflen - 1); /* XXX */
(7) return;
(8) }
(9) if (bufflen == 0) {
(10) return;
(11) }
(12) switch (*buff) {
(13) case 'L':
(14) if (ud->type != portTypeUnknown) {
(15) driver_failure_posix(ud->port, ENOTSUP);
(16) return;
(17) }
(18) uds_command_listen(ud,buff,bufflen);
(19) return;
(20) case 'A':
(21) if (ud->type != portTypeUnknown) {
(22) driver_failure_posix(ud->port, ENOTSUP);
(23) return;
(24) }
(25) uds_command_accept(ud,buff,bufflen);
(26) return;
(27) case 'C':
(28) if (ud->type != portTypeUnknown) {
(29) driver_failure_posix(ud->port, ENOTSUP);
(30) return;
(31) }
(32) uds_command_connect(ud,buff,bufflen);
(33) return;
(34) case 'S':
(35) if (ud->type != portTypeCommand) {
(36) driver_failure_posix(ud->port, ENOTSUP);
(37) return;
(38) }
(39) do_send(ud, buff + 1, bufflen - 1);
(40) return;
(41) case 'R':
(42) if (ud->type != portTypeCommand) {
(43) driver_failure_posix(ud->port, ENOTSUP);
(44) return;
(45) }
(46) do_recv(ud);
(47) return;
(48) default:
(49) return;
(50) }

1.3 How to implement an alternative carrier for the Erlang distribution

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 23

(51) }

The command routine takes three parameters; the handle returned for the port by uds_start, which is a pointer to
the internal port structure, the data buffer and the length of the data buffer. The buffer is the data sent from Erlang (a
list of bytes) converted to an C array (of bytes).

If Erlang sends i.e. the list [$a,$b,$c] to the port, the bufflen variable will be 3 ant the buff variable will
contain {'a','b','c'} (no null termination). Usually the first byte is used as an opcode, which is the case in our
driver to (at least when the port is in command mode). The opcodes are defined as:

• 'L'<socketname>: Create and listen on socket with the given name.

• 'A'<listennumber as 32 bit bigendian>: Accept from the listen socket identified by the given identification
number. The identification number is retrieved with the uds_control routine.

• 'C'<socketname>: Connect to the socket named <socketname>.

• 'S'<data>: Send the data <data> on the connected/accepted socket (in command mode). The sending is acked
when the data has left this process.

• 'R': Receive one packet of data.

One may wonder what is meant by "one packet of data" in the 'R' command. This driver always sends data packeted
with a 4 byte header containing a big endian 32 bit integer that represents the length of the data in the packet. There is
no need for different packet sizes or some kind of streamed mode, as this driver is for the distribution only. One may
wonder why the header word is coded explicitly in big endian when an UDS socket is local to the host. The answer
simply is that I see it as a good practice when writing a distribution driver, as distribution in practice usually cross
the host boundaries.

On line 4-8 we handle the case where the port is in data or intermediate mode, the rest of the routine handles the different
commands. We see (first on line 15) that the routine uses the driver_failure_posix() routine to report errors.
One important thing to remember is that the failure routines make a call to our uds_stop routine, which will remove
the internal port data. The handle (and the casted handle ud) is therefore invalid pointers after a driver_failure
call and we should immediately return. The runtime system will send exit signals to all linked processes.

The uds_input routine gets called when data is available on a file descriptor previously passed to the driver_select
routine. Typically this happens when a read command is issued and no data is available. Lets look at the do_recv
routine:

(1) static void do_recv(UdsData *ud)
(2) {
(3) int res;
(4) char *ibuf;
(5) for(;;) {
(6) if ((res = buffered_read_package(ud,&ibuf)) < 0) {
(7) if (res == NORMAL_READ_FAILURE) {
(8) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 1);
(9) } else {
(10) driver_failure_eof(ud->port);
(11) }
(12) return;
(13) }
(14) /* Got a package */
(15) if (ud->type == portTypeCommand) {
(16) ibuf[-1] = 'R'; /* There is always room for a single byte
(17) opcode before the actual buffer
(18) (where the packet header was) */
(19) driver_output(ud->port,ibuf - 1, res + 1);
(20) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ,0);
(21) return;
(22) } else {

1.3 How to implement an alternative carrier for the Erlang distribution

24 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

(23) ibuf[-1] = DIST_MAGIC_RECV_TAG; /* XXX */
(24) driver_output(ud->port,ibuf - 1, res + 1);
(25) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ,1);
(26) }
(27) }
(28) }

The routine tries to read data until a packet is read or the buffered_read_package routine returns a
NORMAL_READ_FAILURE (an internally defined constant for the module that means that the read operation resulted
in an EWOULDBLOCK). If the port is in command mode, the reading stops when one package is read, but if it is in data
mode, the reading continues until the socket buffer is empty (read failure). If no more data can be read and more is
wanted (always the case when socket is in data mode) driver_select is called to make the uds_input call-back be
called when more data is available for reading.

When the port is in data mode, all data is sent to Erlang in a format that suits the distribution, in fact the raw data
will never reach any Erlang process, but will be translated/interpreted by the emulator itself and then delivered in the
correct format to the correct processes. In the current emulator version, received data should be tagged with a single
byte of 100. Thats what the macro DIST_MAGIC_RECV_TAG is defined to. The tagging of data in the distribution
will possibly change in the future.

The uds_input routine will handle other input events (like nonblocking accept), but most importantly handle
data arriving at the socket by calling do_recv:

(1) static void uds_input(ErlDrvData handle, ErlDrvEvent event)
(2) {
(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeListener) {
(5) UdsData *ad = ud->partner;
(6) struct sockaddr_un peer;
(7) int pl = sizeof(struct sockaddr_un);
(8) int fd;

(9) if ((fd = accept(ud->fd, (struct sockaddr *) &peer, &pl)) < 0) {
(10) if (errno != EWOULDBLOCK) {
(11) driver_failure_posix(ud->port, errno);
(12) return;
(13) }
(14) return;
(15) }
(16) SET_NONBLOCKING(fd);
(17) ad->fd = fd;
(18) ad->partner = NULL;
(19) ad->type = portTypeCommand;
(20) ud->partner = NULL;
(21) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 0);
(22) driver_output(ad->port, "Aok",3);
(23) return;
(24) }
(25) do_recv(ud);
(26) }

The important line here is the last line in the function, the do_read routine is called to handle new input. The rest of
the function handles input on a listen socket, which means that there should be possible to do an accept on the socket,
which is also recognized as a read event.

The output mechanisms are similar to the input. Lets first look at the do_send routine:

1.3 How to implement an alternative carrier for the Erlang distribution

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 25

(1) static void do_send(UdsData *ud, char *buff, int bufflen)
(2) {
(3) char header[4];
(4) int written;
(5) SysIOVec iov[2];
(6) ErlIOVec eio;
(7) ErlDrvBinary *binv[] = {NULL,NULL};

(8) put_packet_length(header, bufflen);
(9) iov[0].iov_base = (char *) header;
(10) iov[0].iov_len = 4;
(11) iov[1].iov_base = buff;
(12) iov[1].iov_len = bufflen;
(13) eio.iov = iov;
(14) eio.binv = binv;
(15) eio.vsize = 2;
(16) eio.size = bufflen + 4;
(17) written = 0;
(18) if (driver_sizeq(ud->port) == 0) {
(19) if ((written = writev(ud->fd, iov, 2)) == eio.size) {
(20) ud->sent += written;
(21) if (ud->type == portTypeCommand) {
(22) driver_output(ud->port, "Sok", 3);
(23) }
(24) return;
(25) } else if (written < 0) {
(26) if (errno != EWOULDBLOCK) {
(27) driver_failure_eof(ud->port);
(28) return;
(29) } else {
(30) written = 0;
(31) }
(32) } else {
(33) ud->sent += written;
(34) }
(35) /* Enqueue remaining */
(36) }
(37) driver_enqv(ud->port, &eio, written);
(38) send_out_queue(ud);
(39) }

This driver uses the writev system call to send data onto the socket. A combination of writev and the driver output
queues is very convenient. An ErlIOVec structure contains a SysIOVec (which is equivalent to the struct iovec
structure defined in uio.h. The ErlIOVec also contains an array of ErlDrvBinary pointers, of the same length as the
number of buffers in the I/O vector itself. One can use this to allocate the binaries for the queue "manually" in the
driver, but we'll just fill the binary array with NULL values (line 7) , which will make the runtime system allocate its
own buffers when we call driver_enqv (line 37).

The routine builds an I/O vector containing the header bytes and the buffer (the opcode has been removed and the
buffer length decreased by the output routine). If the queue is empty, we'll write the data directly to the socket (or at
least try to). If any data is left, it is stored in the queue and then we try to send the queue (line 38). An ack is sent when
the message is delivered completely (line 22). The send_out_queue will send acks if the sending is completed
there. If the port is in command mode, the Erlang code serializes the send operations so that only one packet can be
waiting for delivery at a time. Therefore the ack can be sent simply whenever the queue is empty.

A short look at the send_out_queue routine:

(1) static int send_out_queue(UdsData *ud)
(2) {

1.3 How to implement an alternative carrier for the Erlang distribution

26 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

(3) for(;;) {
(4) int vlen;
(5) SysIOVec *tmp = driver_peekq(ud->port, &vlen);
(6) int wrote;
(7) if (tmp == NULL) {
(8) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_WRITE, 0);
(9) if (ud->type == portTypeCommand) {
(10) driver_output(ud->port, "Sok", 3);
(11) }
(12) return 0;
(13) }
(14) if (vlen > IO_VECTOR_MAX) {
(15) vlen = IO_VECTOR_MAX;
(16) }
(17) if ((wrote = writev(ud->fd, tmp, vlen)) < 0) {
(18) if (errno == EWOULDBLOCK) {
(19) driver_select(ud->port, (ErlDrvEvent) ud->fd,
(20) DO_WRITE, 1);
(21) return 0;
(22) } else {
(23) driver_failure_eof(ud->port);
(24) return -1;
(25) }
(26) }
(27) driver_deq(ud->port, wrote);
(28) ud->sent += wrote;
(29) }
(30) }

What we do is simply to pick out an I/O vector from the queue (which is the whole queue as an SysIOVec). If the I/O
vector is to long (IO_VECTOR_MAX is defined to 16), the vector length is decreased (line 15), otherwise the writev
(line 17) call will fail. Writing is tried and anything written is dequeued (line 27). If the write fails with EWOULDBLOCK
(note that all sockets are in nonblocking mode), driver_select is called to make the uds_output routine be
called when there is space to write again.

We will continue trying to write until the queue is empty or the writing would block.

The routine above are called from the uds_output routine, which looks like this:

(1) static void uds_output(ErlDrvData handle, ErlDrvEvent event)
(2) {
(3) UdsData *ud = (UdsData *) handle;
(4) if (ud->type == portTypeConnector) {
(5) ud->type = portTypeCommand;
(6) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_WRITE, 0);
(7) driver_output(ud->port, "Cok",3);
(8) return;
(9) }
(10) send_out_queue(ud);
(11) }

The routine is simple, it first handles the fact that the output select will concern a socket in the business of connecting
(and the connecting blocked). If the socket is in a connected state it simply sends the output queue, this routine is called
when there is possible to write to a socket where we have an output queue, so there is no question what to do.

The driver implements a control interface, which is a synchronous interface called when Erlang calls
erlang:port_control/3. This is the only interface that can control the driver when it is in data mode and it
may be called with the following opcodes:

• 'C': Set port in command mode.

1.3 How to implement an alternative carrier for the Erlang distribution

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 27

• 'I': Set port in intermediate mode.

• 'D': Set port in data mode.

• 'N': Get identification number for listen port, this identification number is used in an accept command to the
driver, it is returned as a big endian 32 bit integer, which happens to be the file identifier for the listen socket.

• 'S': Get statistics, which is the number of bytes received, the number of bytes sent and the number of bytes
pending in the output queue. This data is used when the distribution checks that a connection is alive (ticking).
The statistics is returned as 3 32 bit big endian integers.

• 'T': Send a tick message, which is a packet of length 0. Ticking is done when the port is in data mode, so the
command for sending data cannot be used (besides it ignores zero length packages in command mode). This
is used by the ticker to send dummy data when no other traffic is present. Note that it is important that the
interface for sending ticks is not blocking. This implementation uses erlang:port_control/3 which
does not block the caller. If erlang:port_command is used, use erlang:port_command/3 and pass
[force] as option list; otherwise, the caller can be blocked indefinitely on a busy port and prevent the system
from taking down a connection that is not functioning.

• 'R': Get creation number of listen socket, which is used to dig out the number stored in the lock file to
differentiate between invocations of Erlang nodes with the same name.

The control interface gets a buffer to return its value in, but is free to allocate its own buffer is the provided one is
to small. Here is the code for uds_control:

(1) static int uds_control(ErlDrvData handle, unsigned int command,
(2) char* buf, int count, char** res, int res_size)
(3) {
(4) /* Local macro to ensure large enough buffer. */
(5) #define ENSURE(N) \
(6) do { \
(7) if (res_size < N) { \
(8) *res = ALLOC(N); \
(9) } \
(10) } while(0)

(11) UdsData *ud = (UdsData *) handle;

(12) switch (command) {
(13) case 'S':
(14) {
(15) ENSURE(13);
(16) **res = 0;
(17) put_packet_length((*res) + 1, ud->received);
(18) put_packet_length((*res) + 5, ud->sent);
(19) put_packet_length((*res) + 9, driver_sizeq(ud->port));
(20) return 13;
(21) }
(22) case 'C':
(23) if (ud->type < portTypeCommand) {
(24) return report_control_error(res, res_size, "einval");
(25) }
(26) ud->type = portTypeCommand;
(27) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 0);
(28) ENSURE(1);
(29) **res = 0;
(30) return 1;
(31) case 'I':
(32) if (ud->type < portTypeCommand) {
(33) return report_control_error(res, res_size, "einval");
(34) }
(35) ud->type = portTypeIntermediate;
(36) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 0);

1.3 How to implement an alternative carrier for the Erlang distribution

28 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

(37) ENSURE(1);
(38) **res = 0;
(39) return 1;
(40) case 'D':
(41) if (ud->type < portTypeCommand) {
(42) return report_control_error(res, res_size, "einval");
(43) }
(44) ud->type = portTypeData;
(45) do_recv(ud);
(46) ENSURE(1);
(47) **res = 0;
(48) return 1;
(49) case 'N':
(50) if (ud->type != portTypeListener) {
(51) return report_control_error(res, res_size, "einval");
(52) }
(53) ENSURE(5);
(54) (*res)[0] = 0;
(55) put_packet_length((*res) + 1, ud->fd);
(56) return 5;
(57) case 'T': /* tick */
(58) if (ud->type != portTypeData) {
(59) return report_control_error(res, res_size, "einval");
(60) }
(61) do_send(ud,"",0);
(62) ENSURE(1);
(63) **res = 0;
(64) return 1;
(65) case 'R':
(66) if (ud->type != portTypeListener) {
(67) return report_control_error(res, res_size, "einval");
(68) }
(69) ENSURE(2);
(70) (*res)[0] = 0;
(71) (*res)[1] = ud->creation;
(72) return 2;
(73) default:
(74) return report_control_error(res, res_size, "einval");
(75) }
(76) #undef ENSURE
(77) }

The macro ENSURE (line 5 to 10) is used to ensure that the buffer is large enough for our answer. We switch on the
command and take actions, there is not much to say about this routine. Worth noting is that we always has read select
active on a port in data mode (achieved by calling do_recv on line 45), but turn off read selection in intermediate
and command modes (line 27 and 36).

The rest of the driver is more or less UDS specific and not of general interest.

1.3.3 Putting it all together
To test the distribution, one can use the net_kernel:start/1 function, which is useful as it starts the distribution
on a running system, where tracing/debugging can be performed. The net_kernel:start/1 routine takes a
list as its single argument. The lists first element should be the node name (without the "@hostname") as an atom,
and the second (and last) element should be one of the atoms shortnames or longnames. In the example case
shortnames is preferred.

For net kernel to find out which distribution module to use, the command line argument -proto_dist is used. The
argument is followed by one or more distribution module names, with the "_dist" suffix removed, i.e. uds_dist as a
distribution module is specified as -proto_dist uds.

1.4 The Abstract Format

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 29

If no epmd (TCP port mapper daemon) is used, one should also specify the command line option -no_epmd, which
will make Erlang skip the epmd startup, both as a OS process and as an Erlang ditto.

The path to the directory where the distribution modules reside must be known at boot, which can either be achieved by
specifying -pa <path> on the command line or by building a boot script containing the applications used for your
distribution protocol (in the uds_dist protocol, it's only the uds_dist application that needs to be added to the script).

The distribution will be started at boot if all the above is specified and an -sname <name> flag is present at the
command line, here follows two examples:

$ erl -pa $ERL_TOP/lib/kernel/examples/uds_dist/ebin -proto_dist uds -no_epmd
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
1> net_kernel:start([bing,shortnames]).
{ok,<0.30.0>}
(bing@hador)2>

...

$ erl -pa $ERL_TOP/lib/kernel/examples/uds_dist/ebin -proto_dist uds \
 -no_epmd -sname bong
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
(bong@hador)1>

One can utilize the ERL_FLAGS environment variable to store the complicated parameters in:

$ ERL_FLAGS=-pa $ERL_TOP/lib/kernel/examples/uds_dist/ebin \
 -proto_dist uds -no_epmd
$ export ERL_FLAGS
$ erl -sname bang
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
(bang@hador)1>

The ERL_FLAGS should preferably not include the name of the node.

1.4 The Abstract Format

This document describes the standard representation of parse trees for Erlang programs as Erlang terms. This
representation is known as the abstract format. Functions dealing with such parse trees are compile:forms/[1,2]
and functions in the modules epp, erl_eval, erl_lint, erl_pp, erl_parse, and io. They are also used as
input and output for parse transforms (see the module compile).

We use the function Rep to denote the mapping from an Erlang source construct C to its abstract format representation
R, and write R = Rep(C).

The word LINE below represents an integer, and denotes the number of the line in the source file where the construction
occurred. Several instances of LINE in the same construction may denote different lines.

1.4 The Abstract Format

30 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Since operators are not terms in their own right, when operators are mentioned below, the representation of an operator
should be taken to be the atom with a printname consisting of the same characters as the operator.

1.4.1 Module declarations and forms
A module declaration consists of a sequence of forms that are either function declarations or attributes.

• If D is a module declaration consisting of the forms F_1, ..., F_k, then Rep(D) = [Rep(F_1), ...,
Rep(F_k)].

• If F is an attribute -module(Mod), then Rep(F) = {attribute,LINE,module,Mod}.

• If F is an attribute -export([Fun_1/A_1, ..., Fun_k/A_k]), then Rep(F) =
{attribute,LINE,export,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}.

• If F is an attribute -import(Mod,[Fun_1/A_1, ..., Fun_k/A_k]), then Rep(F) =
{attribute,LINE,import,{Mod,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}}.

• If F is an attribute -compile(Options), then Rep(F) = {attribute,LINE,compile,Options}.

• If F is an attribute -file(File,Line), then Rep(F) = {attribute,LINE,file,{File,Line}}.

• If F is a record declaration -record(Name,{V_1, ..., V_k}), then Rep(F) =
{attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}. For Rep(V), see below.

• If F is a wild attribute -A(T), then Rep(F) = {attribute,LINE,A,T}.

• If F is a function declaration Name Fc_1 ; ... ; Name Fc_k, where each Fc_i is a function clause
with a pattern sequence of the same length Arity, then Rep(F) = {function,LINE,Name,Arity,
[Rep(Fc_1), ...,Rep(Fc_k)]}.

Record fields

Each field in a record declaration may have an optional explicit default initializer expression

• If V is A, then Rep(V) = {record_field,LINE,Rep(A)}.

• If V is A = E, then Rep(V) = {record_field,LINE,Rep(A),Rep(E)}.

Representation of parse errors and end of file

In addition to the representations of forms, the list that represents a module declaration (as returned by functions in
erl_parse and epp) may contain tuples {error,E} and {warning,W}, denoting syntactically incorrect forms
and warnings, and {eof,LINE}, denoting an end of stream encountered before a complete form had been parsed.

1.4.2 Atomic literals
There are five kinds of atomic literals, which are represented in the same way in patterns, expressions and guards:

• If L is an integer or character literal, then Rep(L) = {integer,LINE,L}.

• If L is a float literal, then Rep(L) = {float,LINE,L}.

• If L is a string literal consisting of the characters C_1, ..., C_k, then Rep(L) = {string,LINE,
[C_1, ..., C_k]}.

• If L is an atom literal, then Rep(L) = {atom,LINE,L}.

Note that negative integer and float literals do not occur as such; they are parsed as an application of the unary negation
operator.

1.4.3 Patterns
If Ps is a sequence of patterns P_1, ..., P_k, then Rep(Ps) = [Rep(P_1), ..., Rep(P_k)]. Such
sequences occur as the list of arguments to a function or fun.

Individual patterns are represented as follows:

1.4 The Abstract Format

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 31

• If P is an atomic literal L, then Rep(P) = Rep(L).

• If P is a compound pattern P_1 = P_2, then Rep(P) = {match,LINE,Rep(P_1),Rep(P_2)}.

• If P is a variable pattern V, then Rep(P) = {var,LINE,A}, where A is an atom with a printname consisting of
the same characters as V.

• If P is a universal pattern _, then Rep(P) = {var,LINE,'_'}.

• If P is a tuple pattern {P_1, ..., P_k}, then Rep(P) = {tuple,LINE,[Rep(P_1), ...,
Rep(P_k)]}.

• If P is a nil pattern [], then Rep(P) = {nil,LINE}.

• If P is a cons pattern [P_h | P_t], then Rep(P) = {cons,LINE,Rep(P_h),Rep(P_t)}.

• If E is a binary pattern <<P_1:Size_1/TSL_1, ..., P_k:Size_k/TSL_k>>, then Rep(E)
= {bin,LINE,[{bin_element,LINE,Rep(P_1),Rep(Size_1),Rep(TSL_1)}, ...,
{bin_element,LINE,Rep(P_k),Rep(Size_k),Rep(TSL_k)}]}. For Rep(TSL), see below. An
omitted Size is represented by default. An omitted TSL (type specifier list) is represented by default.

• If P is P_1 Op P_2, where Op is a binary operator (this is either an occurrence of ++ applied to a literal string
or character list, or an occurrence of an expression that can be evaluated to a number at compile time), then
Rep(P) = {op,LINE,Op,Rep(P_1),Rep(P_2)}.

• If P is Op P_0, where Op is a unary operator (this is an occurrence of an expression that can be evaluated to a
number at compile time), then Rep(P) = {op,LINE,Op,Rep(P_0)}.

• If P is a record pattern #Name{Field_1=P_1, ..., Field_k=P_k}, then Rep(P) =
{record,LINE,Name, [{record_field,LINE,Rep(Field_1),Rep(P_1)}, ...,
{record_field,LINE,Rep(Field_k),Rep(P_k)}]}.

• If P is #Name.Field, then Rep(P) = {record_index,LINE,Name,Rep(Field)}.

• If P is (P_0), then Rep(P) = Rep(P_0), i.e., patterns cannot be distinguished from their bodies.

Note that every pattern has the same source form as some expression, and is represented the same way as the
corresponding expression.

1.4.4 Expressions
A body B is a sequence of expressions E_1, ..., E_k, and Rep(B) = [Rep(E_1), ..., Rep(E_k)].

An expression E is one of the following alternatives:

• If P is an atomic literal L, then Rep(P) = Rep(L).

• If E is P = E_0, then Rep(E) = {match,LINE,Rep(P),Rep(E_0)}.

• If E is a variable V, then Rep(E) = {var,LINE,A}, where A is an atom with a printname consisting of the
same characters as V.

• If E is a tuple skeleton {E_1, ..., E_k}, then Rep(E) = {tuple,LINE,[Rep(E_1), ...,
Rep(E_k)]}.

• If E is [], then Rep(E) = {nil,LINE}.

• If E is a cons skeleton [E_h | E_t], then Rep(E) = {cons,LINE,Rep(E_h),Rep(E_t)}.

• If E is a binary constructor <<V_1:Size_1/TSL_1, ..., V_k:Size_k/TSL_k>>, then Rep(E)
= {bin,LINE,[{bin_element,LINE,Rep(V_1),Rep(Size_1),Rep(TSL_1)}, ...,
{bin_element,LINE,Rep(V_k),Rep(Size_k),Rep(TSL_k)}]}. For Rep(TSL), see below. An
omitted Size is represented by default. An omitted TSL (type specifier list) is represented by default.

• If E is E_1 Op E_2, where Op is a binary operator, then Rep(E) =
{op,LINE,Op,Rep(E_1),Rep(E_2)}.

• If E is Op E_0, where Op is a unary operator, then Rep(E) = {op,LINE,Op,Rep(E_0)}.

1.4 The Abstract Format

32 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

• If E is #Name{Field_1=E_1, ..., Field_k=E_k}, then Rep(E) =
{record,LINE,Name, [{record_field,LINE,Rep(Field_1),Rep(E_1)}, ...,
{record_field,LINE,Rep(Field_k),Rep(E_k)}]}.

• If E is E_0#Name{Field_1=E_1, ..., Field_k=E_k}, then Rep(E) =
{record,LINE,Rep(E_0),Name,
[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ...,
{record_field,LINE,Rep(Field_k),Rep(E_k)}]}.

• If E is #Name.Field, then Rep(E) = {record_index,LINE,Name,Rep(Field)}.

• If E is E_0#Name.Field, then Rep(E) = {record_field,LINE,Rep(E_0),Name,Rep(Field)}.

• If E is catch E_0, then Rep(E) = {'catch',LINE,Rep(E_0)}.

• If E is E_0(E_1, ..., E_k), then Rep(E) = {call,LINE,Rep(E_0),[Rep(E_1), ...,
Rep(E_k)]}.

• If E is E_m:E_0(E_1, ..., E_k), then Rep(E) = {call,LINE,
{remote,LINE,Rep(E_m),Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}.

• If E is a list comprehension [E_0 || W_1, ..., W_k], where each W_i is a generator or a filter, then
Rep(E) = {lc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}. For Rep(W), see below.

• If E is a binary comprehension <<E_0 || W_1, ..., W_k>>, where each W_i is a generator or a filter,
then Rep(E) = {bc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}. For Rep(W), see below.

• If E is begin B end, where B is a body, then Rep(E) = {block,LINE,Rep(B)}.

• If E is if Ic_1 ; ... ; Ic_k end, where each Ic_i is an if clause then Rep(E) = {'if',LINE,
[Rep(Ic_1), ..., Rep(Ic_k)]}.

• If E is case E_0 of Cc_1 ; ... ; Cc_k end, where E_0 is an expression and each Cc_i is a case
clause then Rep(E) = {'case',LINE,Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_k)]}.

• If E is try B catch Tc_1 ; ... ; Tc_k end, where B is a body and each Tc_i is a catch clause
then Rep(E) = {'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],[]}.

• If E is try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end, where B is a body,
each Cc_i is a case clause and each Tc_j is a catch clause then Rep(E) = {'try',LINE,Rep(B),
[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[]}.

• If E is try B after A end, where B and A are bodies then Rep(E) = {'try',LINE,Rep(B),[],
[],Rep(A)}.

• If E is try B of Cc_1 ; ... ; Cc_k after A end, where B and A are a bodies and each
Cc_i is a case clause then Rep(E) = {'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],
[],Rep(A)}.

• If E is try B catch Tc_1 ; ... ; Tc_k after A end, where B and A are bodies and
each Tc_i is a catch clause then Rep(E) = {'try',LINE,Rep(B),[],[Rep(Tc_1), ...,
Rep(Tc_k)],Rep(A)}.

• If E is try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n after A end,
where B and A are a bodies, each Cc_i is a case clause and each Tc_j is a catch clause then Rep(E)
= {'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ...,
Rep(Tc_n)],Rep(A)}.

• If E is receive Cc_1 ; ... ; Cc_k end, where each Cc_i is a case clause then Rep(E) =
{'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)]}.

• If E is receive Cc_1 ; ... ; Cc_k after E_0 -> B_t end, where each Cc_i is a case clause,
E_0 is an expression and B_t is a body, then Rep(E) = {'receive',LINE,[Rep(Cc_1), ...,
Rep(Cc_k)],Rep(E_0),Rep(B_t)}.

• If E is fun Name / Arity, then Rep(E) = {'fun',LINE,{function,Name,Arity}}.

• If E is fun Module:Name/Arity, then Rep(E) = {'fun',LINE,
{function,Module,Name,Arity}}.

1.4 The Abstract Format

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 33

• If E is fun Fc_1 ; ... ; Fc_k end where each Fc_i is a function clause then Rep(E) =
{'fun',LINE,{clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}.

• If E is query [E_0 || W_1, ..., W_k] end, where each W_i is a generator or a filter, then Rep(E)
= {'query',LINE,{lc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}}. For Rep(W), see
below.

• If E is E_0.Field, a Mnesia record access inside a query, then Rep(E) =
{record_field,LINE,Rep(E_0),Rep(Field)}.

• If E is (E_0), then Rep(E) = Rep(E_0), i.e., parenthesized expressions cannot be distinguished from their
bodies.

Generators and filters

When W is a generator or a filter (in the body of a list or binary comprehension), then:

• If W is a generator P <- E, where P is a pattern and E is an expression, then Rep(W) =
{generate,LINE,Rep(P),Rep(E)}.

• If W is a generator P <= E, where P is a pattern and E is an expression, then Rep(W) =
{b_generate,LINE,Rep(P),Rep(E)}.

• If W is a filter E, which is an expression, then Rep(W) = Rep(E).

Binary element type specifiers

A type specifier list TSL for a binary element is a sequence of type specifiers TS_1 - ... - TS_k. Rep(TSL)
= [Rep(TS_1), ..., Rep(TS_k)].

When TS is a type specifier for a binary element, then:

• If TS is an atom A, Rep(TS) = A.

• If TS is a couple A:Value where A is an atom and Value is an integer, Rep(TS) = {A, Value}.

1.4.5 Clauses
There are function clauses, if clauses, case clauses and catch clauses.

A clause C is one of the following alternatives:

• If C is a function clause (Ps) -> B where Ps is a pattern sequence and B is a body, then Rep(C) =
{clause,LINE,Rep(Ps),[],Rep(B)}.

• If C is a function clause (Ps) when Gs -> B where Ps is a pattern sequence, Gs is a guard sequence
and B is a body, then Rep(C) = {clause,LINE,Rep(Ps),Rep(Gs),Rep(B)}.

• If C is an if clause Gs -> B where Gs is a guard sequence and B is a body, then Rep(C) = {clause,LINE,
[],Rep(Gs),Rep(B)}.

• If C is a case clause P -> B where P is a pattern and B is a body, then Rep(C) = {clause,LINE,
[Rep(P)],[],Rep(B)}.

• If C is a case clause P when Gs -> B where P is a pattern, Gs is a guard sequence and B is a body, then
Rep(C) = {clause,LINE,[Rep(P)],Rep(Gs),Rep(B)}.

• If C is a catch clause P -> B where P is a pattern and B is a body, then Rep(C) = {clause,LINE,
[Rep({throw,P,_})],[],Rep(B)}.

• If C is a catch clause X : P -> B where X is an atomic literal or a variable pattern, P is a pattern and B is a
body, then Rep(C) = {clause,LINE,[Rep({X,P,_})],[],Rep(B)}.

• If C is a catch clause P when Gs -> B where P is a pattern, Gs is a guard sequence and B is a body, then
Rep(C) = {clause,LINE,[Rep({throw,P,_})],Rep(Gs),Rep(B)}.

1.4 The Abstract Format

34 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

• If C is a catch clause X : P when Gs -> B where X is an atomic literal or a variable
pattern, P is a pattern, Gs is a guard sequence and B is a body, then Rep(C) = {clause,LINE,
[Rep({X,P,_})],Rep(Gs),Rep(B)}.

1.4.6 Guards
A guard sequence Gs is a sequence of guards G_1; ...; G_k, and Rep(Gs) = [Rep(G_1), ..., Rep(G_k)].
If the guard sequence is empty, Rep(Gs) = [].

A guard G is a nonempty sequence of guard tests Gt_1, ..., Gt_k, and Rep(G) = [Rep(Gt_1), ...,
Rep(Gt_k)].

A guard test Gt is one of the following alternatives:

• If Gt is an atomic literal L, then Rep(Gt) = Rep(L).

• If Gt is a variable pattern V, then Rep(Gt) = {var,LINE,A}, where A is an atom with a printname consisting
of the same characters as V.

• If Gt is a tuple skeleton {Gt_1, ..., Gt_k}, then Rep(Gt) = {tuple,LINE,[Rep(Gt_1), ...,
Rep(Gt_k)]}.

• If Gt is [], then Rep(Gt) = {nil,LINE}.

• If Gt is a cons skeleton [Gt_h | Gt_t], then Rep(Gt) = {cons,LINE,Rep(Gt_h),Rep(Gt_t)}.

• If Gt is a binary constructor <<Gt_1:Size_1/TSL_1, ..., Gt_k:Size_k/TSL_k>>, then Rep(Gt)
= {bin,LINE,[{bin_element,LINE,Rep(Gt_1),Rep(Size_1),Rep(TSL_1)}, ...,
{bin_element,LINE,Rep(Gt_k),Rep(Size_k),Rep(TSL_k)}]}. For Rep(TSL), see above. An
omitted Size is represented by default. An omitted TSL (type specifier list) is represented by default.

• If Gt is Gt_1 Op Gt_2, where Op is a binary operator, then Rep(Gt) =
{op,LINE,Op,Rep(Gt_1),Rep(Gt_2)}.

• If Gt is Op Gt_0, where Op is a unary operator, then Rep(Gt) = {op,LINE,Op,Rep(Gt_0)}.

• If Gt is #Name{Field_1=Gt_1, ..., Field_k=Gt_k}, then Rep(E) =
{record,LINE,Name, [{record_field,LINE,Rep(Field_1),Rep(Gt_1)}, ...,
{record_field,LINE,Rep(Field_k),Rep(Gt_k)}]}.

• If Gt is #Name.Field, then Rep(Gt) = {record_index,LINE,Name,Rep(Field)}.

• If Gt is Gt_0#Name.Field, then Rep(Gt) =
{record_field,LINE,Rep(Gt_0),Name,Rep(Field)}.

• If Gt is A(Gt_1, ..., Gt_k), where A is an atom, then Rep(Gt) = {call,LINE,Rep(A),
[Rep(Gt_1), ..., Rep(Gt_k)]}.

• If Gt is A_m:A(Gt_1, ..., Gt_k), where A_m is the atom erlang and A is an atom or an operator,
then Rep(Gt) = {call,LINE,{remote,LINE,Rep(A_m),Rep(A)},[Rep(Gt_1), ...,
Rep(Gt_k)]}.

• If Gt is {A_m,A}(Gt_1, ..., Gt_k), where A_m is the atom erlang and A is an atom or an operator,
then Rep(Gt) = {call,LINE,Rep({A_m,A}),[Rep(Gt_1), ..., Rep(Gt_k)]}.

• If Gt is (Gt_0), then Rep(Gt) = Rep(Gt_0), i.e., parenthesized guard tests cannot be distinguished from
their bodies.

Note that every guard test has the same source form as some expression, and is represented the same way as the
corresponding expression.

1.4.7 The abstract format after preprocessing
The compilation option debug_info can be given to the compiler to have the abstract code stored in the
abstract_code chunk in the BEAM file (for debugging purposes).

In OTP R9C and later, the abstract_code chunk will contain

1.5 tty - A command line interface

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 35

{raw_abstract_v1,AbstractCode}

where AbstractCode is the abstract code as described in this document.

In releases of OTP prior to R9C, the abstract code after some more processing was stored in the BEAM file. The first
element of the tuple would be either abstract_v1 (R7B) or abstract_v2 (R8B).

1.5 tty - A command line interface
tty is a simple command line interface program where keystrokes are collected and interpreted. Completed lines are
sent to the shell for interpretation. There is a simple history mechanism, which saves previous lines. These can be
edited before sending them to the shell. tty is started when Erlang is started with the command:

erl

tty operates in one of two modes:

• normal mode, in which lines of text can be edited and sent to the shell.

• shell break mode, which allows the user to kill the current shell, start multiple shells etc. Shell break mode is
started by typing Control G.

1.5.1 Normal Mode
In normal mode keystrokes from the user are collected and interpreted by tty. Most of the emacs line editing
commands are supported. The following is a complete list of the supported line editing commands.

Note: The notation C-a means pressing the control key and the letter a simultaneously. M-f means pressing the ESC
key followed by the letter f.

Key Sequence Function

C-a Beginning of line

C-b Backward character

M-b Backward word

C-d Delete character

M-d Delete word

C-e End of line

C-f Forward character

M-f Forward word

C-g Enter shell break mode

C-k Kill line

C-l Redraw line

C-n Fetch next line from the history buffer

C-p Fetch previous line from the history buffer

1.6 How to implement a driver

36 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

C-t Transpose characters

C-y Insert previously killed text

Table 5.1: tty text editing

1.5.2 Shell Break Mode
tty enters shell break mode when you type Control G. In this mode you can:

• Kill or suspend the current shell

• Connect to a suspended shell

• Start a new shell

1.6 How to implement a driver

Note:
This document was written a long time ago. A lot of it is still valid, but some things have changed since it was first
written. Updates of this document are planned for the future. The reader is encouraged to also read the erl_driver,
and the driver_entry documentation.

1.6.1 Introduction
This chapter tells you how to build your own driver for erlang.

A driver in Erlang is a library written in C, that is linked to the Erlang emulator and called from erlang. Drivers can
be used when C is more suitable than Erlang, to speed things up, or to provide access to OS resources not directly
accessible from Erlang.

A driver can be dynamically loaded, as a shared library (known as a DLL on windows), or statically loaded, linked
with the emulator when it is compiled and linked. Only dynamically loaded drivers are described here, statically linked
drivers are beyond the scope of this chapter.

When a driver is loaded it is executed in the context of the emulator, shares the same memory and the same thread.
This means that all operations in the driver must be non-blocking, and that any crash in the driver will bring the whole
emulator down. In short: you have to be extremely careful!

1.6.2 Sample driver
This is a simple driver for accessing a postgres database using the libpq C client library. Postgres is used because it's
free and open source. For information on postgres, refer to the website www.postgres.org.

The driver is synchronous, it uses the synchronous calls of the client library. This is only for simplicity, and is generally
not good, since it will halt the emulator while waiting for the database. This will be improved on below with an
asynchronous sample driver.

The code is quite straight-forward: all communication between Erlang and the driver is done with port_control/3,
and the driver returns data back using the rbuf.

An Erlang driver only exports one function: the driver entry function. This is defined with a macro, DRIVER_INIT,
and returns a pointer to a C struct containing the entry points that are called from the emulator. The struct

1.6 How to implement a driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 37

defines the entries that the emulator calls to call the driver, with a NULL pointer for entries that are not defined and
used by the driver.

The start entry is called when the driver is opened as a port with open_port/2. Here we allocate memory for
a user data structure. This user data will be passed every time the emulator calls us. First we store the driver handle,
because it is needed in subsequent calls. We allocate memory for the connection handle that is used by LibPQ. We
also set the port to return allocated driver binaries, by setting the flag PORT_CONTROL_FLAG_BINARY, calling
set_port_control_flags. (This is because we don't know whether our data will fit in the result buffer of
control, which has a default size set up by the emulator, currently 64 bytes.)

There is an entry init which is called when the driver is loaded, but we don't use this, since it is executed only once,
and we want to have the possibility of several instances of the driver.

The stop entry is called when the port is closed.

The control entry is called from the emulator when the Erlang code calls port_control/3, to do the actual
work. We have defined a simple set of commands: connect to login to the database, disconnect to log out
and select to send a SQL-query and get the result. All results are returned through rbuf. The library ei in
erl_interface is used to encode data in binary term format. The result is returned to the emulator as binary terms,
so binary_to_term is called in Erlang to convert the result to term form.

The code is available in pg_sync.c in the sample directory of erts.

The driver entry contains the functions that will be called by the emulator. In our simple example, we only provide
start, stop and control.

/* Driver interface declarations */
static ErlDrvData start(ErlDrvPort port, char *command);
static void stop(ErlDrvData drv_data);
static int control(ErlDrvData drv_data, unsigned int command, char *buf,
 int len, char **rbuf, int rlen);

static ErlDrvEntry pq_driver_entry = {
 NULL, /* init */
 start,
 stop,
 NULL, /* output */
 NULL, /* ready_input */
 NULL, /* ready_output */
 "pg_sync", /* the name of the driver */
 NULL, /* finish */
 NULL, /* handle */
 control,
 NULL, /* timeout */
 NULL, /* outputv */
 NULL, /* ready_async */
 NULL, /* flush */
 NULL, /* call */
 NULL /* event */
};

We have a structure to store state needed by the driver, in this case we only need to keep the database connection.

typedef struct our_data_s {
 PGconn* conn;
} our_data_t;

1.6 How to implement a driver

38 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

These are control codes we have defined.

/* Keep the following definitions in alignment with the
 * defines in erl_pq_sync.erl
 */

#define DRV_CONNECT 'C'
#define DRV_DISCONNECT 'D'
#define DRV_SELECT 'S'

This just returns the driver structure. The macro DRIVER_INIT defines the only exported function. All the other
functions are static, and will not be exported from the library.

/* INITIALIZATION AFTER LOADING */

/*
 * This is the init function called after this driver has been loaded.
 * It must *not* be declared static. Must return the address to
 * the driver entry.
 */

DRIVER_INIT(pq_drv)
{
 return &pq_driver_entry;
}

Here we do some initialization, start is called from open_port. The data will be passed to control and stop.

/* DRIVER INTERFACE */
static ErlDrvData start(ErlDrvPort port, char *command)
{
 our_data_t* data;

 data = (our_data_t*)driver_alloc(sizeof(our_data_t));
 data->conn = NULL;
 set_port_control_flags(port, PORT_CONTROL_FLAG_BINARY);
 return (ErlDrvData)data;
}

We call disconnect to log out from the database. (This should have been done from Erlang, but just in case.)

static int do_disconnect(our_data_t* data, ei_x_buff* x);

static void stop(ErlDrvData drv_data)
{
 our_data_t* data = (our_data_t*)drv_data;

 do_disconnect(data, NULL);
 driver_free(data);
}

1.6 How to implement a driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 39

We use the binary format only to return data to the emulator; input data is a string paramater for connect and
select. The returned data consists of Erlang terms.

The functions get_s and ei_x_to_new_binary are utilities that is used to make the code shorter. get_s
duplicates the string and zero-terminates it, since the postgres client library wants that. ei_x_to_new_binary
takes an ei_x_buff buffer and allocates a binary and copies the data there. This binary is returned in *rbuf. (Note
that this binary is freed by the emulator, not by us.)

static char* get_s(const char* buf, int len);
static int do_connect(const char *s, our_data_t* data, ei_x_buff* x);
static int do_select(const char* s, our_data_t* data, ei_x_buff* x);

/* Since we are operating in binary mode, the return value from control
 * is irrelevant, as long as it is not negative.
 */
static int control(ErlDrvData drv_data, unsigned int command, char *buf,
 int len, char **rbuf, int rlen)
{
 int r;
 ei_x_buff x;
 our_data_t* data = (our_data_t*)drv_data;
 char* s = get_s(buf, len);
 ei_x_new_with_version(&x);
 switch (command) {
 case DRV_CONNECT: r = do_connect(s, data, &x); break;
 case DRV_DISCONNECT: r = do_disconnect(data, &x); break;
 case DRV_SELECT: r = do_select(s, data, &x); break;
 default: r = -1; break;
 }
 rbuf = (char)ei_x_to_new_binary(&x);
 ei_x_free(&x);
 driver_free(s);
 return r;
}

In do_connect is where we log in to the database. If the connection was successful we store the connection handle in
our driver data, and return ok. Otherwise, we return the error message from postgres, and store NULL in the driver data.

static int do_connect(const char *s, our_data_t* data, ei_x_buff* x)
{
 PGconn* conn = PQconnectdb(s);
 if (PQstatus(conn) != CONNECTION_OK) {
 encode_error(x, conn);
 PQfinish(conn);
 conn = NULL;
 } else {
 encode_ok(x);
 }
 data->conn = conn;
 return 0;
}

If we are connected (if the connection handle is not NULL), we log out from the database. We need to check if a we
should encode an ok, since we might get here from the stop function, which doesn't return data to the emulator.

1.6 How to implement a driver

40 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

static int do_disconnect(our_data_t* data, ei_x_buff* x)
{
 if (data->conn == NULL)
 return 0;
 PQfinish(data->conn);
 data->conn = NULL;
 if (x != NULL)
 encode_ok(x);
 return 0;
}

We execute a query and encodes the result. Encoding is done in another C module, pg_encode.c which is also
provided as sample code.

static int do_select(const char* s, our_data_t* data, ei_x_buff* x)
{
 PGresult* res = PQexec(data->conn, s);
 encode_result(x, res, data->conn);
 PQclear(res);
 return 0;
}

Here we simply checks the result from postgres, and if it's data we encode it as lists of lists with column data. Everything
from postgres is C strings, so we just use ei_x_encode_string to send the result as strings to Erlang. (The head
of the list contains the column names.)

void encode_result(ei_x_buff* x, PGresult* res, PGconn* conn)
{
 int row, n_rows, col, n_cols;
 switch (PQresultStatus(res)) {
 case PGRES_TUPLES_OK:
 n_rows = PQntuples(res);
 n_cols = PQnfields(res);
 ei_x_encode_tuple_header(x, 2);
 encode_ok(x);
 ei_x_encode_list_header(x, n_rows+1);
 ei_x_encode_list_header(x, n_cols);
 for (col = 0; col < n_cols; ++col) {
 ei_x_encode_string(x, PQfname(res, col));
 }
 ei_x_encode_empty_list(x);
 for (row = 0; row < n_rows; ++row) {
 ei_x_encode_list_header(x, n_cols);
 for (col = 0; col < n_cols; ++col) {
 ei_x_encode_string(x, PQgetvalue(res, row, col));
 }
 ei_x_encode_empty_list(x);
 }
 ei_x_encode_empty_list(x);
 break;
 case PGRES_COMMAND_OK:
 ei_x_encode_tuple_header(x, 2);
 encode_ok(x);
 ei_x_encode_string(x, PQcmdTuples(res));
 break;
 default:
 encode_error(x, conn);

1.6 How to implement a driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 41

 break;
 }
}

1.6.3 Compiling and linking the sample driver
The driver should be compiled and linked to a shared library (DLL on windows). With gcc this is done with the link
flags -shared and -fpic. Since we use the ei library we should include it too. There are several versions of ei,
compiled for debug or non-debug and multi-threaded or single-threaded. In the makefile for the samples the obj
directory is used for the ei library, meaning that we use the non-debug, single-threaded version.

1.6.4 Calling a driver as a port in Erlang
Before a driver can be called from Erlang, it must be loaded and opened. Loading is done using the erl_ddll module
(the erl_ddll driver that loads dynamic driver, is actually a driver itself). If loading is ok the port can be opened with
open_port/2. The port name must match the name of the shared library and the name in the driver entry structure.

When the port has been opened, the driver can be called. In the pg_sync example, we don't have any data from the
port, only the return value from the port_control.

The following code is the Erlang part of the synchronous postgres driver, pg_sync.erl.

-module(pg_sync).

-define(DRV_CONNECT, 1).
-define(DRV_DISCONNECT, 2).
-define(DRV_SELECT, 3).

-export([connect/1, disconnect/1, select/2]).

connect(ConnectStr) ->
 case erl_ddll:load_driver(".", "pg_sync") of
 ok -> ok;
 {error, already_loaded} -> ok;
 E -> exit({error, E})
 end,
 Port = open_port({spawn, ?MODULE}, []),
 case binary_to_term(port_control(Port, ?DRV_CONNECT, ConnectStr)) of
 ok -> {ok, Port};
 Error -> Error
 end.

disconnect(Port) ->
 R = binary_to_term(port_control(Port, ?DRV_DISCONNECT, "")),
 port_close(Port),
 R.

select(Port, Query) ->
 binary_to_term(port_control(Port, ?DRV_SELECT, Query)).

The api is simple: connect/1 loads the driver, opens it and logs on to the database, returning the Erlang port
if successful, select/2 sends a query to the driver, and returns the result, disconnect/1 closes the database
connection and the driver. (It does not unload it, however.) The connection string should be a connection string for
postgres.

The driver is loaded with erl_ddll:load_driver/2, and if this is successful, or if it's already loaded, it is
opened. This will call the start function in the driver.

1.6 How to implement a driver

42 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

We use the port_control/3 function for all calls into the driver, the result from the driver is returned immediately,
and converted to terms by calling binary_to_term/1. (We trust that the terms returned from the driver are well-
formed, otherwise the binary_to_term calls could be contained in a catch.)

1.6.5 Sample asynchronous driver
Sometimes database queries can take long time to complete, in our pg_sync driver, the emulator halts while the
driver is doing its job. This is often not acceptable, since no other Erlang processes gets a chance to do anything. To
improve on our postgres driver, we reimplement it using the asynchronous calls in LibPQ.

The asynchronous version of the driver is in the sample files pg_async.c and pg_asyng.erl.

/* Driver interface declarations */
static ErlDrvData start(ErlDrvPort port, char *command);
static void stop(ErlDrvData drv_data);
static int control(ErlDrvData drv_data, unsigned int command, char *buf,
 int len, char **rbuf, int rlen);
static void ready_io(ErlDrvData drv_data, ErlDrvEvent event);

static ErlDrvEntry pq_driver_entry = {
 NULL, /* init */
 start,
 stop,
 NULL, /* output */
 ready_io, /* ready_input */
 ready_io, /* ready_output */
 "pg_async", /* the name of the driver */
 NULL, /* finish */
 NULL, /* handle */
 control,
 NULL, /* timeout */
 NULL, /* outputv */
 NULL, /* ready_async */
 NULL, /* flush */
 NULL, /* call */
 NULL /* event */
};

typedef struct our_data_t {
 PGconn* conn;
 ErlDrvPort port;
 int socket;
 int connecting;
} our_data_t;

Here some things have changed from pg_sync.c: we use the entry ready_io for ready_input and
ready_output which will be called from the emulator only when there is input to be read from the socket. (Actually,
the socket is used in a select function inside the emulator, and when the socket is signalled, indicating there is data
to read, the ready_input entry is called. More on this below.)

Our driver data is also extended, we keep track of the socket used for communication with postgres, and also the port,
which is needed when we send data to the port with driver_output. We have a flag connecting to tell whether
the driver is waiting for a connection or waiting for the result of a query. (This is needed since the entry ready_io
will be called both when connecting and when there is query result.)

static int do_connect(const char *s, our_data_t* data)
{

1.6 How to implement a driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 43

 PGconn* conn = PQconnectStart(s);
 if (PQstatus(conn) == CONNECTION_BAD) {
 ei_x_buff x;
 ei_x_new_with_version(&x);
 encode_error(&x, conn);
 PQfinish(conn);
 conn = NULL;
 driver_output(data->port, x.buff, x.index);
 ei_x_free(&x);
 }
 PQconnectPoll(conn);
 int socket = PQsocket(conn);
 data->socket = socket;
 driver_select(data->port, (ErlDrvEvent)socket, DO_READ, 1);
 driver_select(data->port, (ErlDrvEvent)socket, DO_WRITE, 1);
 data->conn = conn;
 data->connecting = 1;
 return 0;
}

The connect function looks a bit different too. We connect using the asynchronous PQconnectStart function.
After the connection is started, we retrieve the socket for the connection with PQsocket. This socket is used with the
driver_select function to wait for connection. When the socket is ready for input or for output, the ready_io
function will be called.

Note that we only return data (with driver_output) if there is an error here, otherwise we wait for the connection
to be completed, in which case our ready_io function will be called.

static int do_select(const char* s, our_data_t* data)
{
 data->connecting = 0;
 PGconn* conn = data->conn;
 /* if there's an error return it now */
 if (PQsendQuery(conn, s) == 0) {
 ei_x_buff x;
 ei_x_new_with_version(&x);
 encode_error(&x, conn);
 driver_output(data->port, x.buff, x.index);
 ei_x_free(&x);
 }
 /* else wait for ready_output to get results */
 return 0;
}

The do_select function initiates a select, and returns if there is no immediate error. The actual result will be returned
when ready_io is called.

static void ready_io(ErlDrvData drv_data, ErlDrvEvent event)
{
 PGresult* res = NULL;
 our_data_t* data = (our_data_t*)drv_data;
 PGconn* conn = data->conn;
 ei_x_buff x;
 ei_x_new_with_version(&x);
 if (data->connecting) {
 ConnStatusType status;
 PQconnectPoll(conn);

1.6 How to implement a driver

44 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

 status = PQstatus(conn);
 if (status == CONNECTION_OK)
 encode_ok(&x);
 else if (status == CONNECTION_BAD)
 encode_error(&x, conn);
 } else {
 PQconsumeInput(conn);
 if (PQisBusy(conn))
 return;
 res = PQgetResult(conn);
 encode_result(&x, res, conn);
 PQclear(res);
 for (;;) {
 res = PQgetResult(conn);
 if (res == NULL)
 break;
 PQclear(res);
 }
 }
 if (x.index > 1) {
 driver_output(data->port, x.buff, x.index);
 if (data->connecting)
 driver_select(data->port, (ErlDrvEvent)data->socket, DO_WRITE, 0);
 }
 ei_x_free(&x);
}

The ready_io function will be called when the socket we got from postgres is ready for input or output. Here we first
check if we are connecting to the database. In that case we check connection status and return ok if the connection is
successful, or error if it's not. If the connection is not yet established, we simply return; ready_io will be called again.

If we have result from a connect, indicated that we have data in the x buffer, we no longer need to select on output
(ready_output), so we remove this by calling driver_select.

If we're not connecting, we're waiting for results from a PQsendQuery, so we get the result and return it. The
encoding is done with the same functions as in the earlier example.

We should add error handling here, for instance checking that the socket is still open, but this is just a simple example.

The Erlang part of the asynchronous driver consists of the sample file pg_async.erl.

-module(pg_async).

-define(DRV_CONNECT, $C).
-define(DRV_DISCONNECT, $D).
-define(DRV_SELECT, $S).

-export([connect/1, disconnect/1, select/2]).

connect(ConnectStr) ->
 case erl_ddll:load_driver(".", "pg_async") of
 ok -> ok;
 {error, already_loaded} -> ok;
 _ -> exit({error, could_not_load_driver})
 end,
 Port = open_port({spawn, ?MODULE}, [binary]),
 port_control(Port, ?DRV_CONNECT, ConnectStr),
 case return_port_data(Port) of
 ok ->
 {ok, Port};
 Error ->

1.6 How to implement a driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 45

 Error
 end.

disconnect(Port) ->
 port_control(Port, ?DRV_DISCONNECT, ""),
 R = return_port_data(Port),
 port_close(Port),
 R.

select(Port, Query) ->
 port_control(Port, ?DRV_SELECT, Query),
 return_port_data(Port).

return_port_data(Port) ->
 receive
 {Port, {data, Data}} ->
 binary_to_term(Data)
 end.

The Erlang code is slightly different, this is because we don't return the result synchronously from port_control,
instead we get it from driver_output as data in the message queue. The function return_port_data above
receives data from the port. Since the data is in binary format, we use binary_to_term/1 to convert it to Erlang
term. Note that the driver is opened in binary mode, open_port/2 is called with the option [binary]. This means
that data sent from the driver to the emulator is sent as binaries. Without the binary option, they would have been
lists of integers.

1.6.6 An asynchronous driver using driver_async
As a final example we demonstrate the use of driver_async. We also use the driver term interface. The driver is
written in C++. This enables us to use an algorithm from STL. We will use the next_permutation algorithm to
get the next permutation of a list of integers. For large lists (more than 100000 elements), this will take some time,
so we will perform this as an asynchronous task.

The asynchronous api for drivers are quite complicated. First of all, the work must be prepared. In our example we do
this in output. We could have used control just as well, but we want some variation in our examples. In our driver,
we allocate a structure that contains all needed for the asynchronous task to do the work. This is done in the main
emulator thread. Then the asynchronous function is called from a driver thread, separate from the main emulator thread.
Note that the driver- functions are not reentrant, so they shouldn't be used. Finally, after the function is completed, the
driver callback ready_async is called from the main emulator thread, this is where we return the result to Erlang.
(We can't return the result from within the asynchronous function, since we can't call the driver-functions.)

The code below is from the sample file next_perm.cc.

The driver entry looks like before, but also contains the call-back ready_async.

static ErlDrvEntry next_perm_driver_entry = {
 NULL, /* init */
 start,
 NULL, /* stop */
 output,
 NULL, /* ready_input */
 NULL, /* ready_output */
 "next_perm", /* the name of the driver */
 NULL, /* finish */
 NULL, /* handle */
 NULL, /* control */
 NULL, /* timeout */
 NULL, /* outputv */

1.6 How to implement a driver

46 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

 ready_async,
 NULL, /* flush */
 NULL, /* call */
 NULL /* event */
};

The output function allocates the work-area of the asynchronous function. Since we use C++, we use a struct, and
stuff the data in it. We have to copy the original data, it is not valid after we have returned from the output function,
and the do_perm function will be called later, and from another thread. We return no data here, instead it will be
sent later from the ready_async call-back.

The async_data will be passed to the do_perm function. We do not use a async_free function (the last
argument to driver_async, it's only used if the task is cancelled programmatically.

struct our_async_data {
 bool prev;
 vector<int> data;
 our_async_data(ErlDrvPort p, int command, const char* buf, int len);
};

our_async_data::our_async_data(ErlDrvPort p, int command,
 const char* buf, int len)
 : prev(command == 2),
 data((int*)buf, (int*)buf + len / sizeof(int))
{
}

static void do_perm(void* async_data);

static void output(ErlDrvData drv_data, char *buf, int len)
{
 if (*buf < 1 || *buf > 2) return;
 ErlDrvPort port = reinterpret_cast<ErlDrvPort>(drv_data);
 void* async_data = new our_async_data(port, *buf, buf+1, len);
 driver_async(port, NULL, do_perm, async_data, do_free);
}

In the do_perm we simply do the work, operating on the structure that was allocated in output.

static void do_perm(void* async_data)
{
 our_async_data* d = reinterpret_cast<our_async_data*>(async_data);
 if (d->prev)
 prev_permutation(d->data.begin(), d->data.end());
 else
 next_permutation(d->data.begin(), d->data.end());
}

In the ready_async function, the output is sent back to the emulator. We use the driver term format instead
of ei. This is the only way to send Erlang terms directly to a driver, without having the Erlang code to call
binary_to_term/1. In our simple example this works well, and we don't need to use ei to handle the binary
term format.

When the data is returned we deallocate our data.

1.6 How to implement a driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 47

static void ready_async(ErlDrvData drv_data, ErlDrvThreadData async_data)
{
 ErlDrvPort port = reinterpret_cast<ErlDrvPort>(drv_data);
 our_async_data* d = reinterpret_cast<our_async_data*>(async_data);
 int n = d->data.size(), result_n = n*2 + 3;
 ErlDrvTermData* result = new ErlDrvTermData[result_n], * rp = result;
 for (vector<int>::iterator i = d->data.begin();
 i != d->data.end(); ++i) {
 *rp++ = ERL_DRV_INT;
 *rp++ = *i;
 }
 *rp++ = ERL_DRV_NIL;
 *rp++ = ERL_DRV_LIST;
 *rp++ = n+1;
 driver_output_term(port, result, result_n);
 delete[] result;
 delete d;
}

This driver is called like the others from Erlang, however, since we use driver_output_term, there is no need
to call binary_to_term. The Erlang code is in the sample file next_perm.erl.

The input is changed into a list of integers and sent to the driver.

-module(next_perm).

-export([next_perm/1, prev_perm/1, load/0, all_perm/1]).

load() ->
 case whereis(next_perm) of
 undefined ->
 case erl_ddll:load_driver(".", "next_perm") of
 ok -> ok;
 {error, already_loaded} -> ok;
 E -> exit(E)
 end,
 Port = open_port({spawn, "next_perm"}, []),
 register(next_perm, Port);
 _ ->
 ok
 end.

list_to_integer_binaries(L) ->
 [<<I:32/integer-native>> || I <- L].

next_perm(L) ->
 next_perm(L, 1).

prev_perm(L) ->
 next_perm(L, 2).

next_perm(L, Nxt) ->
 load(),
 B = list_to_integer_binaries(L),
 port_control(next_perm, Nxt, B),
 receive
 Result ->
 Result
 end.

1.7 Inet configuration

48 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

all_perm(L) ->
 New = prev_perm(L),
 all_perm(New, L, [New]).

all_perm(L, L, Acc) ->
 Acc;
all_perm(L, Orig, Acc) ->
 New = prev_perm(L),
 all_perm(New, Orig, [New | Acc]).

1.7 Inet configuration

1.7.1 Introduction
This chapter tells you how the Erlang runtime system is configured for IP communication. It also explains how you may
configure it for your own particular needs by means of a configuration file. The information here is mainly intended
for users with special configuration needs or problems. There should normally be no need for specific settings for
Erlang to function properly on a correctly IP configured platform.

When Erlang starts up it will read the kernel variable inetrc which, if defined, should specify the location and name
of a user configuration file. Example:

% erl -kernel inetrc '"./cfg_files/erl_inetrc"'

Note that the usage of a .inetrc file, which was supported in earlier Erlang versions, is now obsolete.

A second way to specify the configuration file is to set the environment variable ERL_INETRC to the full name of
the file. Example (bash):

% export ERL_INETRC=./cfg_files/erl_inetrc

Note that the kernel variable inetrc overrides this environment variable.

If no user configuration file is specified and Erlang is started in non-distributed or short name distributed mode,
Erlang will use default configuration settings and a native lookup method that should work correctly under most
circumstances. Erlang will not read any information from system inet configuration files (like /etc/host.conf, /etc/
nsswitch.conf, etc) in these modes, except for /etc/resolv.conf and /etc/hosts that is read and monitored for changes
on Unix platforms for the internal DNS client inet_res.

If Erlang is started in long name distributed mode, it needs to get the domain name from somewhere and will read
system inet configuration files for this information. Any hosts and resolver information found then is also recorded,
but not used as long as Erlang is configured for native lookups. (The information becomes useful if the lookup method
is changed to 'file' or 'dns', see below).

Native lookup (system calls) is always the default resolver method. This is true for all platforms except VxWorks and
OSE Delta where 'file' or 'dns' is used (in that order of priority).

On Windows platforms, Erlang will search the system registry rather than look for configuration files when started
in long name distributed mode.

1.7.2 Configuration Data
Erlang records the following data in a local database if found in system inet configuration files (or system registry):

• Host names and addresses

• Domain name

• Nameservers

• Search domains

1.7 Inet configuration

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 49

• Lookup method

This data may also be specified explicitly in the user configuration file. The configuration file should contain lines
of configuration parameters (each terminated with a full stop). Some parameters add data to the configuration (e.g.
host and nameserver), others overwrite any previous settings (e.g. domain and lookup). The user configuration file is
always examined last in the configuration process, making it possible for the user to override any default values or
previously made settings. Call inet:get_rc() to view the state of the inet configuration database.

These are the valid configuration parameters:

{file, Format, File}.

Format = atom()

File = string()

Specify a system file that Erlang should read configuration data from. Format tells the parser how
the file should be interpreted: resolv (Unix resolv.conf), host_conf_freebsd (FreeBSD host.conf),
host_conf_bsdos (BSDOS host.conf), host_conf_linux (Linux host.conf), nsswitch_conf (Unix
nsswitch.conf) or hosts (Unix hosts). File should specify the name of the file with full path.

{resolv_conf, File}.

File = string()

Specify a system file that Erlang should read resolver configuration from for the internal DNS client inet_res,
and monitor for changes, even if it does not exist. The path must be absolute.

This may override the configuration parameters nameserver and search depending on the contents of the
specified file. They may also change any time in the future reflecting the file contents.

If the file is specified as an empty string "", no file is read nor monitored in the future. This emulates the old
behaviour of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified it defaults to /etc/resolv.conf unless the environment variable
ERL_INET_ETC_DIR is set which defines the directory for this file to some maybe other than /etc.

{hosts_file, File}.

File = string()

Specify a system file that Erlang should read resolver configuration from for the internal hosts file resolver and
monitor for changes, even if it does not exist. The path must be absolute.

These host entries are searched after all added with {file, hosts, File} above or {host, IP,
Aliases} below when the lookup option file is used.

If the file is specified as an empty string "", no file is read nor monitored in the future. This emulates the old
behaviour of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified it defaults to /etc/hosts unless the environment variable
ERL_INET_ETC_DIR is set which defines the directory for this file to some maybe other than /etc.

{registry, Type}.

Type = atom()

Specify a system registry that Erlang should read configuration data from. Currently, win32 is the only valid
option.

1.7 Inet configuration

50 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

{host, IP, Aliases}.

IP = tuple()

Aliases = [string()]

Add host entry to the hosts table.

{domain, Domain}.

Domain = string()

Set domain name.

{nameserver, IP [,Port]}.

IP = tuple()

Port = integer()

Add address (and port, if other than default) of primary nameserver to use for inet_res.

{alt_nameserver, IP [,Port]}.

IP = tuple()

Port = integer()

Add address (and port, if other than default) of secondary nameserver for inet_res.

{search, Domains}.

Domains = [string()]

Add search domains for inet_res.

{lookup, Methods}.

Methods = [atom()]

Specify lookup methods and in which order to try them. The valid methods are: native (use system calls),
file (use host data retrieved from system configuration files and/or the user configuration file) or dns (use the
Erlang DNS client inet_res for nameserver queries).

The lookup method string tries to parse the hostname as a IPv4 or IPv6 string and return the resulting IP
address. It is automatically tried first when native is not in the Methods list. To skip it in this case the pseudo
lookup method nostring can be inserted anywhere in the Methods list.

{cache_size, Size}.

Size = integer()

Set size of resolver cache. Default is 100 DNS records.

{cache_refresh, Time}.

Time = integer()

1.7 Inet configuration

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 51

Set how often (in millisec) the resolver cache for inet_res. is refreshed (i.e. expired DNS records are deleted).
Default is 1 h.

{timeout, Time}.

Time = integer()

Set the time to wait until retry (in millisec) for DNS queries made by inet_res. Default is 2 sec.

{retry, N}.

N = integer()

Set the number of DNS queries inet_res will try before giving up. Default is 3.

{inet6, Bool}.

Bool = true | false

Tells the DNS client inet_res to look up IPv6 addresses. Default is false.

{usevc, Bool}.

Bool = true | false

Tells the DNS client inet_res to use TCP (Virtual Circuit) instead of UDP. Default is false.

{edns, Version}.

Version = false | 0

Sets the EDNS version that inet_res will use. The only allowed is zero. Default is false which means to not use
EDNS.

{udp_payload_size, Size}.

N = integer()

Sets the allowed UDP payload size inet_res will advertise in EDNS queries. Also sets the limit when the DNS
query will be deemed too large for UDP forcing a TCP query instead, which is not entirely correct since the
advertised UDP payload size of the individual nameserver is what should be used, but this simple strategy will
do until a more intelligent (probing, caching) algorithm need be implemented. The default is 1280 which stems
from the standard Ethernet MTU size.

{udp, Module}.

Module = atom()

Tell Erlang to use other primitive UDP module than inet_udp.

{tcp, Module}.

Module = atom()

Tell Erlang to use other primitive TCP module than inet_tcp.

1.8 External Term Format

52 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

clear_hosts.

Clear the hosts table.

clear_ns.

Clear the list of recorded nameservers (primary and secondary).

clear_search.

Clear the list of search domains.

1.7.3 User Configuration Example
Here follows a user configuration example.

Assume a user does not want Erlang to use the native lookup method, but wants Erlang to read all information necessary
from start and use that for resolving names and addresses. In case lookup fails, Erlang should request the data from
a nameserver (using the Erlang DNS client, set to use EDNS allowing larger responses). The resolver configuration
will be updated when its configuration file changes, furthermore, DNS records should never be cached. The user
configuration file (in this example named erl_inetrc, stored in directory ./cfg_files) could then look like
this (Unix):

 %% -- ERLANG INET CONFIGURATION FILE --
 %% read the hosts file
 {file, hosts, "/etc/hosts"}.
 %% add a particular host
 {host, {134,138,177,105}, ["finwe"]}.
 %% do not monitor the hosts file
 {hosts_file, ""}.
 %% read and monitor nameserver config from here
 {resolv_conf, "/usr/local/etc/resolv.conf"}.
 %% enable EDNS
 {edns,0}.
 %% disable caching
 {cache_size, 0}.
 %% specify lookup method
 {lookup, [file, dns]}.

And Erlang could, for example, be started like this:

% erl -sname my_node -kernel inetrc '"./cfg_files/erl_inetrc"'

1.8 External Term Format

1.8.1 Introduction
The external term format is mainly used in the distribution mechanism of Erlang.

Since Erlang has a fixed number of types, there is no need for a programmer to define a specification for the external
format used within some application. All Erlang terms has an external representation and the interpretation of the
different terms are application specific.

In Erlang the BIF term_to_binary/1,2 is used to convert a term into the external format. To convert binary data encoding
a term the BIF binary_to_term/1 is used.

The distribution does this implicitly when sending messages across node boundaries.

1.8 External Term Format

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 53

The overall format of the term format is:

1 1 N

131 Tag Data

Table 8.1:

Note:
When messages are passed between connected nodes and a distribution header is used, the first byte containing
the version number (131) is omitted from the terms that follow the distribution header. This since the version
number is implied by the version number in the distribution header.

A compressed term looks like this:

1 1 4 N

131 80 UncompressedSize Zlib-compressedData

Table 8.2:

Uncompressed Size (unsigned 32 bit integer in big-endian byte order) is the size of the data before it was compressed.
The compressed data has the following format when it has been expanded:

1 Uncompressed Size

Tag Data

Table 8.3:

1.8.2 Distribution header
As of erts version 5.7.2 the old atom cache protocol was dropped and a new one was introduced. This atom cache
protocol introduced the distribution header. Nodes with erts versions earlier than 5.7.2 can still communicate with new
nodes, but no distribution header and no atom cache will be used.

The distribution header currently only contains an atom cache reference section, but could in the future contain more
information. The distribution header precedes one or more Erlang terms on the external format. For more information
see the documentation of the protocol between connected nodes in the distribution protocol documentation.

ATOM_CACHE_REF entries with corresponding AtomCacheReferenceIndex in terms encoded on the external
format following a distribution header refers to the atom cache references made in the distribution header. The range
is 0 <= AtomCacheReferenceIndex < 255, i.e., at most 255 different atom cache references from the following
terms can be made.

The distribution header format is:

1.8 External Term Format

54 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1 1 1
NumberOfAtomCacheRefs/2+1

| 0
N | 0

131 68 NumberOfAtomCacheRefs Flags AtomCacheRefs

Table 8.4:

Flags consists of NumberOfAtomCacheRefs/2+1 bytes, unless NumberOfAtomCacheRefs is 0. If
NumberOfAtomCacheRefs is 0, Flags and AtomCacheRefs are omitted. Each atom cache reference have
a half byte flag field. Flags corresponding to a specific AtomCacheReferenceIndex, are located in flag byte
number AtomCacheReferenceIndex/2. Flag byte 0 is the first byte after the NumberOfAtomCacheRefs
byte. Flags for an even AtomCacheReferenceIndex are located in the least significant half byte and flags for an
odd AtomCacheReferenceIndex are located in the most significant half byte.

The flag field of an atom cache reference has the following format:

1 bit 3 bits

NewCacheEntryFlag SegmentIndex

Table 8.5:

The most significant bit is the NewCacheEntryFlag. If set, the corresponding cache reference is new. The three
least significant bits are the SegmentIndex of the corresponding atom cache entry. An atom cache consists of 8
segments each of size 256, i.e., an atom cache can contain 2048 entries.

After flag fields for atom cache references, another half byte flag field is located which has the following format:

3 bits 1 bit

CurrentlyUnused LongAtoms

Table 8.6:

The least significant bit in that half byte is the LongAtoms flag. If it is set, 2 bytes are used for atom lengths instead
of 1 byte in the distribution header. However, the current emulator cannot handle long atoms, so it will currently
always be 0.

After the Flags field follow the AtomCacheRefs. The first AtomCacheRef is the one corresponding to
AtomCacheReferenceIndex 0. Higher indices follows in sequence up to index NumberOfAtomCacheRefs
- 1.

If the NewCacheEntryFlag for the next AtomCacheRef has been set, a NewAtomCacheRef on the following
format will follow:

1 1 | 2 Length

InternalSegmentIndex Length AtomText

Table 8.7:

1.8 External Term Format

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 55

InternalSegmentIndex together with the SegmentIndex completely identify the location of an atom cache
entry in the atom cache. Length is number of one byte characters that the atom text consists of. Length is a two byte
big endian integer if the LongAtoms flag has been set, otherwise a one byte integer. Subsequent CachedAtomRefs
with the same SegmentIndex and InternalSegmentIndex as this NewAtomCacheRef will refer to this
atom until a new NewAtomCacheRef with the same SegmentIndex and InternalSegmentIndex appear.

If the NewCacheEntryFlag for the next AtomCacheRef has not been set, a CachedAtomRef on the following
format will follow:

1

InternalSegmentIndex

Table 8.8:

InternalSegmentIndex together with the SegmentIndex identify the location of the atom cache entry in the
atom cache. The atom corresponding to this CachedAtomRef is the latest NewAtomCacheRef preceding this
CachedAtomRef in another previously passed distribution header.

1.8.3 ATOM_CACHE_REF

1 1

82 AtomCacheReferenceIndex

Table 8.9:

Refers to the atom with AtomCacheReferenceIndex in the distribution header.

1.8.4 SMALL_INTEGER_EXT

1 1

97 Int

Table 8.10:

Unsigned 8 bit integer.

1.8.5 INTEGER_EXT

1 4

98 Int

Table 8.11:

Signed 32 bit integer in big-endian format (i.e. MSB first)

1.8 External Term Format

56 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8.6 FLOAT_EXT

1 31

99 Float String

Table 8.12:

A float is stored in string format. the format used in sprintf to format the float is "%.20e" (there are more bytes allocated
than necessary). To unpack the float use sscanf with format "%lf".

This term is used in minor version 0 of the external format; it has been superseded by NEW_FLOAT_EXT .

1.8.7 ATOM_EXT

1 2 Len

100 Len AtomName

Table 8.13:

An atom is stored with a 2 byte unsigned length in big-endian order, followed by Len numbers of 8 bit characters that
forms the AtomName. Note: The maximum allowed value for Len is 255.

1.8.8 REFERENCE_EXT

1 N 4 1

101 Node ID Creation

Table 8.14:

Encode a reference object (an object generated with make_ref/0). The Node term is an encoded atom, i.e.
ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. The ID field contains a big-endian unsigned integer, but
should be regarded as uninterpreted data since this field is node specific. Creation is a byte containing a node
serial number that makes it possible to separate old (crashed) nodes from a new one.

In ID, only 18 bits are significant; the rest should be 0. In Creation, only 2 bits are significant; the rest should be
0. See NEW_REFERENCE_EXT.

1.8.9 PORT_EXT

1 N 4 1

102 Node ID Creation

Table 8.15:

1.8 External Term Format

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 57

Encode a port object (obtained form open_port/2). The ID is a node specific identifier for a local port. Port
operations are not allowed across node boundaries. The Creation works just like in REFERENCE_EXT.

1.8.10 PID_EXT

1 N 4 4 1

103 Node ID Serial Creation

Table 8.16:

Encode a process identifier object (obtained from spawn/3 or friends). The ID and Creation fields works just
like in REFERENCE_EXT, while the Serial field is used to improve safety. In ID, only 15 bits are significant; the
rest should be 0.

1.8.11 SMALL_TUPLE_EXT

1 1 N

104 Arity Elements

Table 8.17:

SMALL_TUPLE_EXT encodes a tuple. The Arity field is an unsigned byte that determines how many element that
follows in the Elements section.

1.8.12 LARGE_TUPLE_EXT

1 4 N

105 Arity Elements

Table 8.18:

Same as SMALL_TUPLE_EXT with the exception that Arity is an unsigned 4 byte integer in big endian format.

1.8.13 NIL_EXT

1

106

Table 8.19:

The representation for an empty list, i.e. the Erlang syntax [].

1.8 External Term Format

58 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8.14 STRING_EXT

1 2 Len

107 Length Characters

Table 8.20:

String does NOT have a corresponding Erlang representation, but is an optimization for sending lists of bytes (integer
in the range 0-255) more efficiently over the distribution. Since the Length field is an unsigned 2 byte integer (big
endian), implementations must make sure that lists longer than 65535 elements are encoded as LIST_EXT.

1.8.15 LIST_EXT

1 4

108 Length Elements Tail

Table 8.21:

Length is the number of elements that follows in the Elements section. Tail is the final tail of the list; it is
NIL_EXT for a proper list, but may be anything type if the list is improper (for instance [a|b]).

1.8.16 BINARY_EXT

1 4 Len

109 Len Data

Table 8.22:

Binaries are generated with bit syntax expression or with list_to_binary/1, term_to_binary/1, or as input from binary
ports. The Len length field is an unsigned 4 byte integer (big endian).

1.8.17 SMALL_BIG_EXT

1 1 1 n

110 n Sign d(0) ... d(n-1)

Table 8.23:

Bignums are stored in unary form with a Sign byte that is 0 if the binum is positive and 1 if is negative. The digits
are stored with the LSB byte stored first. To calculate the integer the following formula can be used:
B = 256
(d0*B^0 + d1*B^1 + d2*B^2 + ... d(N-1)*B^(n-1))

1.8 External Term Format

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 59

1.8.18 LARGE_BIG_EXT

1 4 1 n

111 n Sign d(0) ... d(n-1)

Table 8.24:

Same as SMALL_BIG_EXT with the difference that the length field is an unsigned 4 byte integer.

1.8.19 NEW_REFERENCE_EXT

1 2 N 1 N'

114 Len Node Creation ID ...

Table 8.25:

Node and Creation are as in REFERENCE_EXT.

ID contains a sequence of big-endian unsigned integers (4 bytes each, so N' is a multiple of 4), but should be regarded
as uninterpreted data.

N' = 4 * Len.

In the first word (four bytes) of ID, only 18 bits are significant, the rest should be 0. In Creation, only 2 bits are
significant, the rest should be 0.

NEW_REFERENCE_EXT was introduced with distribution version 4. In version 4, N' should be at most 12.

See REFERENCE_EXT).

1.8.20 SMALL_ATOM_EXT

1 1 Len

115 Len AtomName

Table 8.26:

An atom is stored with a 1 byte unsigned length, followed by Len numbers of 8 bit characters that forms the
AtomName. Longer atoms can be represented by ATOM_EXT. Note the SMALL_ATOM_EXT was introduced in erts
version 5.7.2 and require a small atom distribution flag exchanged in the distribution handshake.

1.8.21 FUN_EXT

1 4 N1 N2 N3 N4 N5

117 NumFree Pid Module Index Uniq Free vars ...

Table 8.27:

1.8 External Term Format

60 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Pid
is a process identifier as in PID_EXT. It represents the process in which the fun was created.

Module
is an encoded as an atom, using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. This is the
module that the fun is implemented in.

Index
is an integer encoded using SMALL_INTEGER_EXT or INTEGER_EXT. It is typically a small index into the
module's fun table.

Uniq
is an integer encoded using SMALL_INTEGER_EXT or INTEGER_EXT. Uniq is the hash value of the parse
for the fun.

Free vars
is NumFree number of terms, each one encoded according to its type.

1.8.22 NEW_FUN_EXT

1 4 1 16 4 4 N1 N2 N3 N4 N5

112 Size Arity Uniq Index NumFree Module OldIndex OldUniq Pid
Free
Vars

Table 8.28:

This is the new encoding of internal funs: fun F/A and fun(Arg1,..) -> ... end.

Size
is the total number of bytes, including the Size field.

Arity
is the arity of the function implementing the fun.

Uniq
is the 16 bytes MD5 of the significant parts of the Beam file.

Index
is an index number. Each fun within a module has an unique index. Index is stored in big-endian byte order.

NumFree
is the number of free variables.

Module
is an encoded as an atom, using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF. This is the
module that the fun is implemented in.

OldIndex
is an integer encoded using SMALL_INTEGER_EXT or INTEGER_EXT. It is typically a small index into the
module's fun table.

OldUniq
is an integer encoded using SMALL_INTEGER_EXT or INTEGER_EXT. Uniq is the hash value of the parse
tree for the fun.

Pid
is a process identifier as in PID_EXT. It represents the process in which the fun was created.

Free vars
is NumFree number of terms, each one encoded according to its type.

1.9 Distribution Protocol

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 61

1.8.23 EXPORT_EXT

1 N1 N2 N3

113 Module Function Arity

Table 8.29:

This term is the encoding for external funs: fun M:F/A.

Module and Function are atoms (encoded using ATOM_EXT, SMALL_ATOM_EXT or ATOM_CACHE_REF).

Arity is an integer encoded using SMALL_INTEGER_EXT.

1.8.24 BIT_BINARY_EXT

1 4 1 Len

77 Len Bits Data

Table 8.30:

This term represents a bitstring whose length in bits is not a multiple of 8 (created using the bit syntax in R12B and
later). The Len field is an unsigned 4 byte integer (big endian). The Bits field is the number of bits that are used in
the last byte in the data field, counting from the most significant bit towards the least significant.

1.8.25 NEW_FLOAT_EXT

1 8

70 IEEE float

Table 8.31:

A float is stored as 8 bytes in big-endian IEEE format.

This term is used in minor version 1 of the external format.

1.9 Distribution Protocol
The description here is far from complete and will therefore be further refined in upcoming releases. The protocols
both from Erlang nodes towards EPMD (Erlang Port Mapper Daemon) and between Erlang nodes, however, are stable
since many years.

The distribution protocol can be divided into four (4) parts:

• 1. Low level socket connection.

• 2. Handshake, interchange node name and authenticate.

• 3. Authentication (done by net_kernel).

• 4. Connected.

1.9 Distribution Protocol

62 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

A node fetches the Port number of another node through the EPMD (at the other host) in order to initiate a connection
request.

For each host where a distributed Erlang node is running there should also be an EPMD running. The EPMD can be
started explicitly or automatically as a result of the Erlang node startup.

By default EPMD listens on port 4369.

3 and 4 are performed at the same level but the net_kernel disconnects the other node if it communicates using an
invalid cookie (after one (1) second).

The integers in all multi-byte fields are in big-endian order.

1.9.1 EPMD Protocol
The requests served by the EPMD (Erlang Port Mapper Daemon) are summarized in the figure below.

Figure 9.1: Summary of EPMD requests.

Each request *_REQ is preceded by a two-byte length field. Thus, the overall request format is:

2 n

Length Request

Table 9.1:

1.9 Distribution Protocol

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 63

Register a node in the EPMD

When a distributed node is started it registers itself in EPMD. The message ALIVE2_REQ described below is sent
from the node towards EPMD. The response from EPMD is ALIVE2_RESP.

1 2 1 1 2 2 2 Nlen 2 Elen

120 PortNo NodeType ProtocolHighestVersionLowestVersion Nlen NodeName Elen Extra

Table 9.2: ALIVE2_REQ (120)

PortNo
The port number on which the node accept connection requests.

NodeType
77 = normal Erlang node, 72 = hidden node (C-node),...

Protocol
0 = tcp/ip-v4, ...

HighestVersion
The highest distribution version that this node can handle. The value in R6B and later is 5.

LowestVersion
The lowest distribution version that this node can handle. The value in R6B and later is 5.

Nlen
The length of the NodeName.

NodeName
The NodeName as a string of length Nlen.

Elen
The length of the Extra field.

Extra
Extra field of Elen bytes.

The connection created to the EPMD must be kept as long as the node is a distributed node. When the connection is
closed the node is automatically unregistered from the EPMD.

The response message ALIVE2_RESP is described below.

1 1 2

121 Result Creation

Table 9.3: ALIVE2_RESP (121)

Result = 0 -> ok, Result > 0 -> error

Unregister a node from the EPMD

A node unregisters itself from the EPMD by simply closing the TCP connection towards EPMD established when
the node was registered.

Get the distribution port of another node

When one node wants to connect to another node it starts with a PORT_PLEASE2_REQ request towards EPMD on
the host where the node resides in order to get the distribution port that the node listens to.

1.9 Distribution Protocol

64 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1 N

122 NodeName

Table 9.4: PORT_PLEASE2_REQ (122)

where N = Length - 1

1 1

119 Result

Table 9.5: PORT2_RESP (119) response indicating error, Result > 0.

Or

1 1 2 1 1 2 2 2 Nlen 2 Elen

119 Result PortNo NodeType ProtocolHighestVersionLowestVersion Nlen NodeName Elen Extra

Table 9.6: PORT2_RESP when Result = 0.

If Result > 0, the packet only consists of [119, Result].

EPMD will close the socket as soon as it has sent the information.

Get all registered names from EPMD

This request is used via the Erlang function net_adm:names/1,2. A TCP connection is opened towards EPMD
and this request is sent.

1

110

Table 9.7: NAMES_REQ (110)

The response for a NAMES_REQ looks like this:

4

EPMDPortNo NodeInfo*

Table 9.8: NAMES_RESP

NodeInfo is a string written for each active node. When all NodeInfo has been written the connection is closed by
EPMD.

NodeInfo is, as expressed in Erlang:

1.9 Distribution Protocol

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 65

 io:format("name ~s at port ~p~n", [NodeName, Port]).

Dump all data from EPMD

This request is not really used, it should be regarded as a debug feature.

1

100

Table 9.9: DUMP_REQ

The response for a DUMP_REQ looks like this:

4

EPMDPortNo NodeInfo*

Table 9.10: DUMP_RESP

NodeInfo is a string written for each node kept in EPMD. When all NodeInfo has been written the connection is closed
by EPMD.

NodeInfo is, as expressed in Erlang:

 io:format("active name ~s at port ~p, fd = ~p ~n",
 [NodeName, Port, Fd]).

or

 io:format("old/unused name ~s at port ~p, fd = ~p~n",
 [NodeName, Port, Fd]).

Kill the EPMD

This request will kill the running EPMD. It is almost never used.

1

107

Table 9.11: KILL_REQ

The response fo a KILL_REQ looks like this:

1.9 Distribution Protocol

66 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

2

OKString

Table 9.12: KILL_RESP

where OKString is "OK".

STOP_REQ (Not Used)

1 n

115 NodeName

Table 9.13: STOP_REQ

where n = Length - 1

The current implementation of Erlang does not care if the connection to the EPMD is broken.

The response for a STOP_REQ looks like this.

7

OKString

Table 9.14: STOP_RESP

where OKString is "STOPPED".

A negative response can look like this.

7

NOKString

Table 9.15: STOP_NOTOK_RESP

where NOKString is "NOEXIST".

1.9.2 Handshake
The handshake is discussed in detail in the internal documentation for the kernel (Erlang) application.

1.9.3 Protocol between connected nodes
As of erts version 5.7.2 the runtime system passes a distribution flag in the handshake stage that enables the use of a
distribution header on all messages passed. Messages passed between nodes are in this case on the following format:

1.9 Distribution Protocol

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 67

4 d n m

Length DistributionHeader ControlMessage Message

Table 9.16:

where:

Length is equal to d + n + m

ControlMessage is a tuple passed using the external format of Erlang.

Message is the message sent to another node using the '!' (in external format). Note that Message is only passed
in combination with a ControlMessage encoding a send ('!').

Also note that the version number is omitted from the terms that follow a distribution header.

Nodes with an erts version less than 5.7.2 does not pass the distribution flag that enables the distribution header.
Messages passed between nodes are in this case on the following format:

4 1 n m

Length Type ControlMessage Message

Table 9.17:

where:

Length is equal to 1 + n + m

Type is: 112 (pass through)

ControlMessage is a tuple passed using the external format of Erlang.

Message is the message sent to another node using the '!' (in external format). Note that Message is only passed
in combination with a ControlMessage encoding a send ('!').

The ControlMessage is a tuple, where the first element indicates which distributed operation it encodes.

LINK

{1, FromPid, ToPid}

SEND

{2, Cookie, ToPid}

Note followed by Message

EXIT

{3, FromPid, ToPid, Reason}

UNLINK

{4, FromPid, ToPid}

NODE_LINK

{5}

1.9 Distribution Protocol

68 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

REG_SEND

{6, FromPid, Cookie, ToName}

Note followed by Message

GROUP_LEADER

{7, FromPid, ToPid}

EXIT2

{8, FromPid, ToPid, Reason}

1.9.4 New Ctrlmessages for distrvsn = 1 (OTP R4)
SEND_TT

{12, Cookie, ToPid, TraceToken}

Note followed by Message

EXIT_TT

{13, FromPid, ToPid, TraceToken, Reason}

REG_SEND_TT

{16, FromPid, Cookie, ToName, TraceToken}

Note followed by Message

EXIT2_TT

{18, FromPid, ToPid, TraceToken, Reason}

1.9.5 New Ctrlmessages for distrvsn = 2
distrvsn 2 was never used.

1.9.6 New Ctrlmessages for distrvsn = 3 (OTP R5C)
None, but the version number was increased anyway.

1.9.7 New Ctrlmessages for distrvsn = 4 (OTP R6)
These are only recognized by Erlang nodes, not by hidden nodes.

MONITOR_P

{19, FromPid, ToProc, Ref} FromPid = monitoring process ToProc = monitored process pid or
name (atom)

DEMONITOR_P

{20, FromPid, ToProc, Ref} We include the FromPid just in case we want to trace this. FromPid =
monitoring process ToProc = monitored process pid or name (atom)

MONITOR_P_EXIT

{21, FromProc, ToPid, Ref, Reason} FromProc = monitored process pid or name (atom) ToPid
= monitoring process Reason = exit reason for the monitored process

1.9 Distribution Protocol

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 69

2 Reference Manual

The Erlang Runtime System Application ERTS.

Note:
By default, the erts is only guaranteed to be compatible with other Erlang/OTP components from the same
release as the erts itself. See the documentation of the system flag +R on how to communicate with Erlang/
OTP components from earlier releases.

erl_prim_loader

70 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_prim_loader
Erlang module

erl_prim_loader is used to load all Erlang modules into the system. The start script is also fetched with this
low level loader.

erl_prim_loader knows about the environment and how to fetch modules. The loader could, for example, fetch
files using the file system (with absolute file names as input), or a database (where the binary format of a module
is stored).

The -loader Loader command line flag can be used to choose the method used by the erl_prim_loader.
Two Loader methods are supported by the Erlang runtime system: efile and inet. If another loader is required,
then it has to be implemented by the user. The Loader provided by the user must fulfill the protocol defined below,
and it is started with the erl_prim_loader by evaluating open_port({spawn,Loader},[binary]).

Warning:
The support for loading of code from archive files is experimental. The sole purpose of releasing it before
it is ready is to obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future
release. The functions list_dir/1 and read_file_info/1 as well as the flag -loader_debug are also
experimental

Exports

start(Id, Loader, Hosts) -> {ok, Pid} | {error, What}

Types:

Id = term()

Loader = atom() | string()

Hosts = [Host]

Host = atom()

Pid = pid()

What = term()

Starts the Erlang low level loader. This function is called by the init process (and module). The init process reads
the command line flags -id Id, -loader Loader, and -hosts Hosts. These are the arguments supplied
to the start/3 function.

If -loader is not given, the default loader is efile which tells the system to read from the file system.

If -loader is inet, the -id Id, -hosts Hosts, and -setcookie Cookie flags must also be supplied.
Hosts identifies hosts which this node can contact in order to load modules. One Erlang runtime system with a
erl_boot_server process must be started on each of hosts given in Hosts in order to answer the requests. See
erl_boot_server(3).

If -loader is something else, the given port program is started. The port program is supposed to follow the protocol
specified below.

get_file(Filename) -> {ok, Bin, FullName} | error

Types:

erl_prim_loader

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 71

Filename = string()

Bin = binary()

FullName = string()

This function fetches a file using the low level loader. Filename is either an absolute file name or just the name of
the file, for example "lists.beam". If an internal path is set to the loader, this path is used to find the file. If a user
supplied loader is used, the path can be stripped off if it is obsolete, and the loader does not use a path. FullName is
the complete name of the fetched file. Bin is the contents of the file as a binary.

The Filename can also be a file in an archive. For example /otp/root/lib/mnesia-4.4.7.ez/
mnesia-4.4.7/ebin/mnesia_backup.beam See code(3) about archive files.

get_path() -> {ok, Path}

Types:

Path = [Dir]

Dir = string()

This function gets the path set in the loader. The path is set by the init process according to information found in
the start script.

list_dir(Dir) -> {ok, Filenames} | error

Types:

Dir = name()

Filenames = [Filename]

Filename = string()

Lists all the files in a directory. Returns {ok, Filenames} if successful. Otherwise, it returns error. Filenames
is a list of the names of all the files in the directory. The names are not sorted.

The Dir can also be a directory in an archive. For example /otp/root/lib/mnesia-4.4.7.ez/
mnesia-4.4.7/ebin See code(3) about archive files.

read_file_info(Filename) -> {ok, FileInfo} | error

Types:

Filename = name()

FileInfo = #file_info{}

Retrieves information about a file. Returns {ok, FileInfo} if successful, otherwise error. FileInfo is a
record file_info, defined in the Kernel include file file.hrl. Include the following directive in the module
from which the function is called:

-include_lib("kernel/include/file.hrl").

See file(3) for more info about the record file_info.

The Filename can also be a file in an archive. For example /otp/root/lib/mnesia-4.4.7.ez/
mnesia-4.4.7/ebin/mnesia_backup.beam See code(3) about archive files.

set_path(Path) -> ok

Types:

Path = [Dir]

erl_prim_loader

72 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Dir = string()

This function sets the path of the loader if init interprets a path command in the start script.

Protocol
The following protocol must be followed if a user provided loader port program is used. The Loader port program
is started with the command open_port({spawn,Loader},[binary]). The protocol is as follows:

Function Send Receive

get_file [102 | FileName] [121 | BinaryFile] (on success)
 [122] (failure)

stop eof terminate

Command Line Flags
The erl_prim_loader module interprets the following command line flags:

-loader Loader

Specifies the name of the loader used by erl_prim_loader. Loader can be efile (use the local file
system), or inet (load using the boot_server on another Erlang node). If Loader is user defined, the
defined Loader port program is started.

If the -loader flag is omitted, it defaults to efile.

-loader_debug

Makes the efile loader write some debug information, such as the reason for failures, while it handles files.

-hosts Hosts

Specifies which other Erlang nodes the inet loader can use. This flag is mandatory if the -loader inet flag
is present. On each host, there must be on Erlang node with the erl_boot_server which handles the load
requests. Hosts is a list of IP addresses (hostnames are not acceptable).

-id Id

Specifies the identity of the Erlang runtime system. If the system runs as a distributed node, Id must be identical
to the name supplied with the -sname or -name distribution flags.

-setcookie Cookie

Specifies the cookie of the Erlang runtime system. This flag is mandatory if the -loader inet flag is present.

SEE ALSO
init(3), erl_boot_server(3)

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 73

erlang
Erlang module

By convention, most built-in functions (BIFs) are seen as being in the module erlang. A number of
the BIFs are viewed more or less as part of the Erlang programming language and are auto-imported.
Thus, it is not necessary to specify the module name and both the calls atom_to_list(Erlang) and
erlang:atom_to_list(Erlang) are identical.

In the text, auto-imported BIFs are listed without module prefix. BIFs listed with module prefix are not auto-imported.

BIFs may fail for a variety of reasons. All BIFs fail with reason badarg if they are called with arguments of an
incorrect type. The other reasons that may make BIFs fail are described in connection with the description of each
individual BIF.

Some BIFs may be used in guard tests, these are marked with "Allowed in guard tests".

DATA TYPES

ext_binary()
 a binary data object,
 structured according to the Erlang external term format

iodata() = iolist() | binary()

iolist() = [char() | binary() | iolist()]
 a binary is allowed as the tail of the list

Exports

abs(Number) -> int() | float()

Types:

Number = number()

Returns an integer or float which is the arithmetical absolute value of Number.

> abs(-3.33).
3.33
> abs(-3).
3

Allowed in guard tests.

erlang:adler32(Data) -> int()

Types:

Data = iodata()

Computes and returns the adler32 checksum for Data.

erlang:adler32(OldAdler, Data) -> int()

Types:

erlang

74 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

OldAdler = int()

Data = iodata()

Continue computing the adler32 checksum by combining the previous checksum, OldAdler, with the checksum of
Data.

The following code:

 X = erlang:adler32(Data1),
 Y = erlang:adler32(X,Data2).

- would assign the same value to Y as this would:

 Y = erlang:adler32([Data1,Data2]).

erlang:adler32_combine(FirstAdler, SecondAdler, SecondSize) -> int()

Types:

FirstAdler = SecondAdler = int()

SecondSize = int()

Combines two previously computed adler32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

 Y = erlang:adler32(Data1),
 Z = erlang:adler32(Y,Data2).

- would assign the same value to Z as this would:

 X = erlang:adler32(Data1),
 Y = erlang:adler32(Data2),
 Z = erlang:adler32_combine(X,Y,iolist_size(Data2)).

erlang:append_element(Tuple1, Term) -> Tuple2

Types:

Tuple1 = Tuple2 = tuple()

Term = term()

Returns a new tuple which has one element more than Tuple1, and contains the elements in Tuple1 followed
by Term as the last element. Semantically equivalent to list_to_tuple(tuple_to_list(Tuple) ++
[Term]), but much faster.

> erlang:append_element({one, two}, three).

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 75

{one,two,three}

apply(Fun, Args) -> term() | empty()

Types:

Fun = fun()

Args = [term()]

Call a fun, passing the elements in Args as arguments.

Note: If the number of elements in the arguments are known at compile-time, the call is better written as Fun(Arg1,
Arg2, ... ArgN).

Warning:
Earlier, Fun could also be given as {Module, Function}, equivalent to apply(Module, Function,
Args). This usage is deprecated and will stop working in a future release of Erlang/OTP.

apply(Module, Function, Args) -> term() | empty()

Types:

Module = Function = atom()

Args = [term()]

Returns the result of applying Function in Module to Args. The applied function must be exported from Module.
The arity of the function is the length of Args.

> apply(lists, reverse, [[a, b, c]]).
[c,b,a]

apply can be used to evaluate BIFs by using the module name erlang.

> apply(erlang, atom_to_list, ['Erlang']).
"Erlang"

Note: If the number of arguments are known at compile-time, the call is better written as
Module:Function(Arg1, Arg2, ..., ArgN).

Failure: error_handler:undefined_function/3 is called if the applied function is not exported. The error
handler can be redefined (see process_flag/2). If the error_handler is undefined, or if the user has redefined the
default error_handler so the replacement module is undefined, an error with the reason undef is generated.

atom_to_binary(Atom, Encoding) -> binary()

Types:

Atom = atom()

Encoding = latin1 | utf8 | unicode

Returns a binary which corresponds to the text representation of Atom. If Encoding is latin1, there will be one
byte for each character in the text representation. If Encoding is utf8 or unicode, the characters will encoded
using UTF-8 (meaning that characters from 16#80 up to 0xFF will be encode in two bytes).

erlang

76 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Note:
Currently, atom_to_binary(Atom, latin1) can never fail because the text representation of an atom can
only contain characters from 0 to 16#FF. In a future release, the text representation of atoms might be allowed to
contain any Unicode character and atom_to_binary(Atom, latin1) will fail if the text representation
for the Atom contains a Unicode character greater than 16#FF.

> atom_to_binary('Erlang', latin1).
<<"Erlang">>

atom_to_list(Atom) -> string()

Types:

Atom = atom()

Returns a string which corresponds to the text representation of Atom.

> atom_to_list('Erlang').
"Erlang"

binary_part(Subject, PosLen) -> binary()

Types:

Subject = binary()

PosLen = {Start,Length}

Start = int()

Length = int()

Extracts the part of the binary described by PosLen.

Negative length can be used to extract bytes at the end of a binary:

1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
2> binary_part(Bin,{byte_size(Bin), -5)).
<<6,7,8,9,10>>

If PosLen in any way references outside the binary, a badarg exception is raised.

Start is zero-based, i.e:

1> Bin = <<1,2,3>>
2> binary_part(Bin,{0,2}).
<<1,2>>

See the STDLIB module binary for details about the PosLen semantics.

Allowed in guard tests.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 77

binary_part(Subject, Start, Length) -> binary()

Types:

Subject = binary()

Start = int()

Length = int()

The same as binary_part(Subject, {Pos, Len}).

Allowed in guard tests.

binary_to_atom(Binary, Encoding) -> atom()

Types:

Binary = binary()

Encoding = latin1 | utf8 | unicode

Returns the atom whose text representation is Binary. If Encoding is latin1, no translation of bytes in the binary
is done. If Encoding is utf8 or unicode, the binary must contain valid UTF-8 sequences; furthermore, only
Unicode characters up to 0xFF are allowed.

Note:
binary_to_atom(Binary, utf8) will fail if the binary contains Unicode characters greater than 16#FF.
In a future release, such Unicode characters might be allowed and binary_to_atom(Binary, utf8) will
not fail in that case.

> binary_to_atom(<<"Erlang">>, latin1).
'Erlang'
> binary_to_atom(<<1024/utf8>>, utf8).
** exception error: bad argument
 in function binary_to_atom/2
 called as binary_to_atom(<<208,128>>,utf8)

binary_to_existing_atom(Binary, Encoding) -> atom()

Types:

Binary = binary()

Encoding = latin1 | utf8 | unicode

Works like binary_to_atom/2, but the atom must already exist.

Failure: badarg if the atom does not already exist.

binary_to_list(Binary) -> [char()]

Types:

Binary = binary()

Returns a list of integers which correspond to the bytes of Binary.

binary_to_list(Binary, Start, Stop) -> [char()]

Types:

erlang

78 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Binary = binary()

Start = Stop = 1..byte_size(Binary)

As binary_to_list/1, but returns a list of integers corresponding to the bytes from position Start to position
Stop in Binary. Positions in the binary are numbered starting from 1.

Note:
This function's indexing style of using one-based indices for binaries is deprecated. New code should use
the functions in the STDLIB module binary instead. They consequently use the same (zero-based) style of
indexing.

bitstring_to_list(Bitstring) -> [char()|bitstring()]

Types:

Bitstring = bitstring()

Returns a list of integers which correspond to the bytes of Bitstring. If the number of bits in the binary is not
divisible by 8, the last element of the list will be a bitstring containing the remaining bits (1 up to 7 bits).

binary_to_term(Binary) -> term()

Types:

Binary = ext_binary()

Returns an Erlang term which is the result of decoding the binary object Binary, which must be encoded according
to the Erlang external term format.

Warning:
When decoding binaries from untrusted sources, consider using binary_to_term/2 to prevent denial of
service attacks.

See also term_to_binary/1 and binary_to_term/2.

binary_to_term(Binary, Opts) -> term()

Types:

Opts = [safe]

Binary = ext_binary()

As binary_to_term/1, but takes options that affect decoding of the binary.

safe

Use this option when receiving binaries from an untrusted source.

When enabled, it prevents decoding data that may be used to attack the Erlang system. In the event of receiving
unsafe data, decoding fails with a badarg error.

Currently, this prevents creation of new atoms directly, creation of new atoms indirectly (as they are embedded
in certain structures like pids, refs, funs, etc.), and creation of new external function references. None of those
resources are currently garbage collected, so unchecked creation of them can exhaust available memory.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 79

Failure: badarg if safe is specified and unsafe data is decoded.

See also term_to_binary/1, binary_to_term/1, and list_to_existing_atom/1.

bit_size(Bitstring) -> int()

Types:

Bitstring = bitstring()

Returns an integer which is the size in bits of Bitstring.

> bit_size(<<433:16,3:3>>).
19
> bit_size(<<1,2,3>>).
24

Allowed in guard tests.

erlang:bump_reductions(Reductions) -> void()

Types:

Reductions = int()

This implementation-dependent function increments the reduction counter for the calling process. In the Beam
emulator, the reduction counter is normally incremented by one for each function and BIF call, and a context switch
is forced when the counter reaches the maximum number of reductions for a process (2000 reductions in R12B).

Warning:
This BIF might be removed in a future version of the Beam machine without prior warning. It is unlikely to be
implemented in other Erlang implementations.

byte_size(Bitstring) -> int()

Types:

Bitstring = bitstring()

Returns an integer which is the number of bytes needed to contain Bitstring. (That is, if the number of bits in
Bitstring is not divisible by 8, the resulting number of bytes will be rounded up.)

> byte_size(<<433:16,3:3>>).
3
> byte_size(<<1,2,3>>).
3

Allowed in guard tests.

erlang:cancel_timer(TimerRef) -> Time | false

Types:

TimerRef = reference()

Time = int()

erlang

80 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Cancels a timer, where TimerRef was returned by either erlang:send_after/3 or erlang:start_timer/3. If the timer is
there to be removed, the function returns the time in milliseconds left until the timer would have expired, otherwise
false (which means that TimerRef was never a timer, that it has already been cancelled, or that it has already
delivered its message).

See also erlang:send_after/3, erlang:start_timer/3, and erlang:read_timer/1.

Note: Cancelling a timer does not guarantee that the message has not already been delivered to the message queue.

check_process_code(Pid, Module) -> bool()

Types:

Pid = pid()

Module = atom()

Returns true if the process Pid is executing old code for Module. That is, if the current call of the process executes
old code for this module, or if the process has references to old code for this module, or if the process contains funs
that references old code for this module. Otherwise, it returns false.

> check_process_code(Pid, lists).
false

See also code(3).

concat_binary(ListOfBinaries)

Do not use; use list_to_binary/1 instead.

erlang:crc32(Data) -> int()

Types:

Data = iodata()

Computes and returns the crc32 (IEEE 802.3 style) checksum for Data.

erlang:crc32(OldCrc, Data) -> int()

Types:

OldCrc = int()

Data = iodata()

Continue computing the crc32 checksum by combining the previous checksum, OldCrc, with the checksum of Data.

The following code:

 X = erlang:crc32(Data1),
 Y = erlang:crc32(X,Data2).

- would assign the same value to Y as this would:

 Y = erlang:crc32([Data1,Data2]).

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 81

erlang:crc32_combine(FirstCrc, SecondCrc, SecondSize) -> int()

Types:

FirstCrc = SecondCrc = int()

SecondSize = int()

Combines two previously computed crc32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

 Y = erlang:crc32(Data1),
 Z = erlang:crc32(Y,Data2).

- would assign the same value to Z as this would:

 X = erlang:crc32(Data1),
 Y = erlang:crc32(Data2),
 Z = erlang:crc32_combine(X,Y,iolist_size(Data2)).

date() -> {Year, Month, Day}

Types:

Year = Month = Day = int()

Returns the current date as {Year, Month, Day}.

The time zone and daylight saving time correction depend on the underlying OS.

> date().
{1995,2,19}

erlang:decode_packet(Type,Bin,Options) -> {ok,Packet,Rest} | {more,Length} |
{error,Reason}

Types:

Bin = binary()

Options = [Opt]

Packet = binary() | HttpPacket

Rest = binary()

Length = int() | undefined

Reason = term()

 Type, Opt -- see below
HttpPacket = HttpRequest | HttpResponse | HttpHeader | http_eoh | HttpError

HttpRequest = {http_request, HttpMethod, HttpUri, HttpVersion}

HttpResponse = {http_response, HttpVersion, integer(), HttpString}

HttpHeader = {http_header, int(), HttpField, Reserved=term(), Value=HttpString}

HttpError = {http_error, HttpString}

erlang

82 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

HttpMethod = HttpMethodAtom | HttpString

HttpMethodAtom = 'OPTIONS' | 'GET' | 'HEAD' | 'POST' | 'PUT' | 'DELETE' | 'TRACE'

HttpUri = '*' | {absoluteURI, http|https, Host=HttpString, Port=int()|undefined, Path=HttpString} |
{scheme, Scheme=HttpString, HttpString} | {abs_path, HttpString} | HttpString

HttpVersion = {Major=int(), Minor=int()}

HttpString = string() | binary()

HttpField = HttpFieldAtom | HttpString

HttpFieldAtom = 'Cache-Control' | 'Connection' | 'Date' | 'Pragma' | 'Transfer-Encoding' | 'Upgrade'
| 'Via' | 'Accept' | 'Accept-Charset' | 'Accept-Encoding' | 'Accept-Language' | 'Authorization' | 'From'
| 'Host' | 'If-Modified-Since' | 'If-Match' | 'If-None-Match' | 'If-Range' | 'If-Unmodified-Since' | 'Max-
Forwards' | 'Proxy-Authorization' | 'Range' | 'Referer' | 'User-Agent' | 'Age' | 'Location' | 'Proxy-
Authenticate' | 'Public' | 'Retry-After' | 'Server' | 'Vary' | 'Warning' | 'Www-Authenticate' | 'Allow' |
'Content-Base' | 'Content-Encoding' | 'Content-Language' | 'Content-Length' | 'Content-Location' |
'Content-Md5' | 'Content-Range' | 'Content-Type' | 'Etag' | 'Expires' | 'Last-Modified' | 'Accept-Ranges' |
'Set-Cookie' | 'Set-Cookie2' | 'X-Forwarded-For' | 'Cookie' | 'Keep-Alive' | 'Proxy-Connection'

Decodes the binary Bin according to the packet protocol specified by Type. Very similar to the packet handling done
by sockets with the option {packet,Type}.

If an entire packet is contained in Bin it is returned together with the remainder of the binary as
{ok,Packet,Rest}.

If Bin does not contain the entire packet, {more,Length} is returned. Length is either the expected total size
of the packet or undefined if the expected packet size is not known. decode_packet can then be called again
with more data added.

If the packet does not conform to the protocol format {error,Reason} is returned.

The following values of Type are valid:

raw | 0

No packet handling is done. Entire binary is returned unless it is empty.

1 | 2 | 4

Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes. The
length of header can be one, two, or four bytes; the order of the bytes is big-endian. The header will be stripped
off when the packet is returned.

line

A packet is a line terminated with newline. The newline character is included in the returned packet unless the
line was truncated according to the option line_length.

asn1 | cdr | sunrm | fcgi | tpkt

The header is not stripped off.

The meanings of the packet types are as follows:

asn1 - ASN.1 BER
sunrm - Sun's RPC encoding
cdr - CORBA (GIOP 1.1)
fcgi - Fast CGI
tpkt - TPKT format [RFC1006]

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 83

http | httph | http_bin | httph_bin

The Hypertext Transfer Protocol. The packets are returned with the format according to HttpPacket described
above. A packet is either a request, a response, a header or an end of header mark. Invalid lines are returned as
HttpError.

Recognized request methods and header fields are returned as atoms. Others are returned as strings.

The protocol type http should only be used for the first line when a HttpRequest or a HttpResponse is
expected. The following calls should use httph to get HttpHeader's until http_eoh is returned that marks
the end of the headers and the beginning of any following message body.

The variants http_bin and httph_bin will return strings (HttpString) as binaries instead of lists.

The following options are available:

{packet_size, int()}

Sets the max allowed size of the packet body. If the packet header indicates that the length of the packet is longer
than the max allowed length, the packet is considered invalid. Default is 0 which means no size limit.

{line_length, int()}

Applies only to line oriented protocols (line, http). Lines longer than this will be truncated.

> erlang:decode_packet(1,<<3,"abcd">>,[]).
{ok,<<"abc">>,<<"d">>}
> erlang:decode_packet(1,<<5,"abcd">>,[]).
{more,6}

delete_module(Module) -> true | undefined

Types:

Module = atom()

Makes the current code for Module become old code, and deletes all references for this module from the export table.
Returns undefined if the module does not exist, otherwise true.

Warning:
This BIF is intended for the code server (see code(3)) and should not be used elsewhere.

Failure: badarg if there is already an old version of Module.

demonitor(MonitorRef) -> true

Types:

MonitorRef = reference()

If MonitorRef is a reference which the calling process obtained by calling monitor/2, this monitoring is turned off.
If the monitoring is already turned off, nothing happens.

Once demonitor(MonitorRef) has returned it is guaranteed that no {'DOWN', MonitorRef, _, _, _}
message due to the monitor will be placed in the callers message queue in the future. A {'DOWN', MonitorRef,
_, _, _} message might have been placed in the callers message queue prior to the call, though. Therefore, in most
cases, it is advisable to remove such a 'DOWN' message from the message queue after monitoring has been stopped.
demonitor(MonitorRef, [flush]) can be used instead of demonitor(MonitorRef) if this cleanup is wanted.

erlang

84 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Note:
Prior to OTP release R11B (erts version 5.5) demonitor/1 behaved completely asynchronous, i.e., the monitor
was active until the "demonitor signal" reached the monitored entity. This had one undesirable effect, though.
You could never know when you were guaranteed not to receive a DOWN message due to the monitor.

Current behavior can be viewed as two combined operations: asynchronously send a "demonitor signal" to the
monitored entity and ignore any future results of the monitor.

Failure: It is an error if MonitorRef refers to a monitoring started by another process. Not all such cases are cheap
to check; if checking is cheap, the call fails with badarg (for example if MonitorRef is a remote reference).

demonitor(MonitorRef, OptionList) -> true|false

Types:

MonitorRef = reference()

OptionList = [Option]

Option = flush

Option = info

The returned value is true unless info is part of OptionList.

demonitor(MonitorRef, []) is equivalent to demonitor(MonitorRef).

Currently the following Options are valid:

flush

Remove (one) {_, MonitorRef, _, _, _} message, if there is one, from the callers message queue after
monitoring has been stopped.

Calling demonitor(MonitorRef, [flush]) is equivalent to the following, but more efficient:

 demonitor(MonitorRef),
 receive
 {_, MonitorRef, _, _, _} ->
 true
 after 0 ->
 true
 end

info

The returned value is one of the following:

true

The monitor was found and removed. In this case no 'DOWN' message due to this monitor have been nor will
be placed in the message queue of the caller.

false

The monitor was not found and could not be removed. This probably because someone already has placed a
'DOWN' message corresponding to this monitor in the callers message queue.

If the info option is combined with the flush option, false will be returned if a flush was needed; otherwise,
true.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 85

Note:
More options may be added in the future.

Failure: badarg if OptionList is not a list, or if Option is not a valid option, or the same failure as for demonitor/1

disconnect_node(Node) -> bool() | ignored

Types:

Node = atom()

Forces the disconnection of a node. This will appear to the node Node as if the local node has crashed. This BIF
is mainly used in the Erlang network authentication protocols. Returns true if disconnection succeeds, otherwise
false. If the local node is not alive, the function returns ignored.

erlang:display(Term) -> true

Types:

Term = term()

Prints a text representation of Term on the standard output.

Warning:
This BIF is intended for debugging only.

element(N, Tuple) -> term()

Types:

N = 1..tuple_size(Tuple)

Tuple = tuple()

Returns the Nth element (numbering from 1) of Tuple.

> element(2, {a, b, c}).
b

Allowed in guard tests.

erase() -> [{Key, Val}]

Types:

Key = Val = term()

Returns the process dictionary and deletes it.

> put(key1, {1, 2, 3}),
put(key2, [a, b, c]),
erase().
[{key1,{1,2,3}},{key2,[a,b,c]}]

erlang

86 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erase(Key) -> Val | undefined

Types:

Key = Val = term()

Returns the value Val associated with Key and deletes it from the process dictionary. Returns undefined if no
value is associated with Key.

> put(key1, {merry, lambs, are, playing}),
X = erase(key1),
{X, erase(key1)}.
{{merry,lambs,are,playing},undefined}

error(Reason)

Types:

Reason = term()

Stops the execution of the calling process with the reason Reason, where Reason is any term. The actual exit reason
will be {Reason, Where}, where Where is a list of the functions most recently called (the current function first).
Since evaluating this function causes the process to terminate, it has no return value.

> catch error(foobar).
{'EXIT',{foobar,[{erl_eval,do_apply,5},
 {erl_eval,expr,5},
 {shell,exprs,6},
 {shell,eval_exprs,6},
 {shell,eval_loop,3}]}}

error(Reason, Args)

Types:

Reason = term()

Args = [term()]

Stops the execution of the calling process with the reason Reason, where Reason is any term. The actual exit reason
will be {Reason, Where}, where Where is a list of the functions most recently called (the current function first).
Args is expected to be the list of arguments for the current function; in Beam it will be used to provide the actual
arguments for the current function in the Where term. Since evaluating this function causes the process to terminate,
it has no return value.

exit(Reason)

Types:

Reason = term()

Stops the execution of the calling process with the exit reason Reason, where Reason is any term. Since evaluating
this function causes the process to terminate, it has no return value.

> exit(foobar).
** exception exit: foobar
> catch exit(foobar).
{'EXIT',foobar}

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 87

exit(Pid, Reason) -> true

Types:

Pid = pid()

Reason = term()

Sends an exit signal with exit reason Reason to the process Pid.

The following behavior apply if Reason is any term except normal or kill:

If Pid is not trapping exits, Pid itself will exit with exit reason Reason. If Pid is trapping exits, the exit signal is
transformed into a message {'EXIT', From, Reason} and delivered to the message queue of Pid. From is the
pid of the process which sent the exit signal. See also process_flag/2.

If Reason is the atom normal, Pid will not exit. If it is trapping exits, the exit signal is transformed into a message
{'EXIT', From, normal} and delivered to its message queue.

If Reason is the atom kill, that is if exit(Pid, kill) is called, an untrappable exit signal is sent to Pid which
will unconditionally exit with exit reason killed.

float(Number) -> float()

Types:

Number = number()

Returns a float by converting Number to a float.

> float(55).
55.0

Allowed in guard tests.

Note:
Note that if used on the top-level in a guard, it will test whether the argument is a floating point number; for
clarity, use is_float/1 instead.

When float/1 is used in an expression in a guard, such as 'float(A) == 4.0', it converts a number as
described above.

float_to_list(Float) -> string()

Types:

Float = float()

Returns a string which corresponds to the text representation of Float.

> float_to_list(7.0).
"7.00000000000000000000e+00"

erlang:fun_info(Fun) -> [{Item, Info}]

Types:

erlang

88 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Fun = fun()

Item, Info -- see below

Returns a list containing information about the fun Fun. Each element of the list is a tuple. The order of the tuples is
not defined, and more tuples may be added in a future release.

Warning:
This BIF is mainly intended for debugging, but it can occasionally be useful in library functions that might need
to verify, for instance, the arity of a fun.

There are two types of funs with slightly different semantics:

A fun created by fun M:F/A is called an external fun. Calling it will always call the function F with arity A in the
latest code for module M. Note that module M does not even need to be loaded when the fun fun M:F/A is created.

All other funs are called local. When a local fun is called, the same version of the code that created the fun will be
called (even if newer version of the module has been loaded).

The following elements will always be present in the list for both local and external funs:

{type, Type}

Type is either local or external.

{module, Module}

Module (an atom) is the module name.

If Fun is a local fun, Module is the module in which the fun is defined.

If Fun is an external fun, Module is the module that the fun refers to.

{name, Name}

Name (an atom) is a function name.

If Fun is a local fun, Name is the name of the local function that implements the fun. (This name was generated
by the compiler, and is generally only of informational use. As it is a local function, it is not possible to call it
directly.) If no code is currently loaded for the fun, [] will be returned instead of an atom.

If Fun is an external fun, Name is the name of the exported function that the fun refers to.

{arity, Arity}

Arity is the number of arguments that the fun should be called with.

{env, Env}

Env (a list) is the environment or free variables for the fun. (For external funs, the returned list is always empty.)

The following elements will only be present in the list if Fun is local:

{pid, Pid}

Pid is the pid of the process that originally created the fun.

{index, Index}

Index (an integer) is an index into the module's fun table.

{new_index, Index}

Index (an integer) is an index into the module's fun table.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 89

{new_uniq, Uniq}

Uniq (a binary) is a unique value for this fun.

{uniq, Uniq}

Uniq (an integer) is a unique value for this fun.

erlang:fun_info(Fun, Item) -> {Item, Info}

Types:

Fun = fun()

Item, Info -- see below

Returns information about Fun as specified by Item, in the form {Item,Info}.

For any fun, Item can be any of the atoms module, name, arity, or env.

For a local fun, Item can also be any of the atoms index, new_index, new_uniq, uniq, and pid. For an
external fun, the value of any of these items is always the atom undefined.

See erlang:fun_info/1.

erlang:fun_to_list(Fun) -> string()

Types:

Fun = fun()

Returns a string which corresponds to the text representation of Fun.

erlang:function_exported(Module, Function, Arity) -> bool()

Types:

Module = Function = atom()

Arity = int()

Returns true if the module Module is loaded and contains an exported function Function/Arity; otherwise
false.

Returns false for any BIF (functions implemented in C rather than in Erlang).

garbage_collect() -> true

Forces an immediate garbage collection of the currently executing process. The function should not be used, unless it
has been noticed -- or there are good reasons to suspect -- that the spontaneous garbage collection will occur too late
or not at all. Improper use may seriously degrade system performance.

Compatibility note: In versions of OTP prior to R7, the garbage collection took place at the next context switch, not
immediately. To force a context switch after a call to erlang:garbage_collect(), it was sufficient to make
any function call.

garbage_collect(Pid) -> bool()

Types:

Pid = pid()

Works like erlang:garbage_collect() but on any process. The same caveats apply. Returns false if Pid
refers to a dead process; true otherwise.

erlang

90 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

get() -> [{Key, Val}]

Types:

Key = Val = term()

Returns the process dictionary as a list of {Key, Val} tuples.

> put(key1, merry),
put(key2, lambs),
put(key3, {are, playing}),
get().
[{key1,merry},{key2,lambs},{key3,{are,playing}}]

get(Key) -> Val | undefined

Types:

Key = Val = term()

Returns the value Valassociated with Key in the process dictionary, or undefined if Key does not exist.

> put(key1, merry),
put(key2, lambs),
put({any, [valid, term]}, {are, playing}),
get({any, [valid, term]}).
{are,playing}

erlang:get_cookie() -> Cookie | nocookie

Types:

Cookie = atom()

Returns the magic cookie of the local node, if the node is alive; otherwise the atom nocookie.

get_keys(Val) -> [Key]

Types:

Val = Key = term()

Returns a list of keys which are associated with the value Val in the process dictionary.

> put(mary, {1, 2}),
put(had, {1, 2}),
put(a, {1, 2}),
put(little, {1, 2}),
put(dog, {1, 3}),
put(lamb, {1, 2}),
get_keys({1, 2}).
[mary,had,a,little,lamb]

erlang:get_stacktrace() -> [{Module, Function, Arity | Args}]

Types:

Module = Function = atom()

Arity = int()

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 91

Args = [term()]

Get the call stack back-trace (stacktrace) of the last exception in the calling process as a list of
{Module,Function,Arity} tuples. The Arity field in the first tuple may be the argument list of that function
call instead of an arity integer, depending on the exception.

If there has not been any exceptions in a process, the stacktrace is []. After a code change for the process, the stacktrace
may also be reset to [].

The stacktrace is the same data as the catch operator returns, for example:

{'EXIT',{badarg,Stacktrace}} = catch abs(x)

See also erlang:error/1 and erlang:error/2.

group_leader() -> GroupLeader

Types:

GroupLeader = pid()

Returns the pid of the group leader for the process which evaluates the function.

Every process is a member of some process group and all groups have a group leader. All IO from the group is
channeled to the group leader. When a new process is spawned, it gets the same group leader as the spawning process.
Initially, at system start-up, init is both its own group leader and the group leader of all processes.

group_leader(GroupLeader, Pid) -> true

Types:

GroupLeader = Pid = pid()

Sets the group leader of Pid to GroupLeader. Typically, this is used when a processes started from a certain shell
should have another group leader than init.

See also group_leader/0.

halt()

Halts the Erlang runtime system and indicates normal exit to the calling environment. Has no return value.

> halt().
os_prompt%

halt(Status)

Types:

Status = int()>=0 | string()

Status must be a non-negative integer, or a string. Halts the Erlang runtime system. Has no return value. If Status
is an integer, it is returned as an exit status of Erlang to the calling environment. If Status is a string, produces an
Erlang crash dump with String as slogan, and then exits with a non-zero status code.

Note that on many platforms, only the status codes 0-255 are supported by the operating system.

erlang:hash(Term, Range) -> Hash

Returns a hash value for Term within the range 1..Range. The allowed range is 1..2^27-1.

erlang

92 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Warning:
This BIF is deprecated as the hash value may differ on different architectures. Also the hash values for integer
terms larger than 2^27 as well as large binaries are very poor. The BIF is retained for backward compatibility
reasons (it may have been used to hash records into a file), but all new code should use one of the BIFs
erlang:phash/2 or erlang:phash2/1,2 instead.

hd(List) -> term()

Types:

List = [term()]

Returns the head of List, that is, the first element.

> hd([1,2,3,4,5]).
1

Allowed in guard tests.

Failure: badarg if List is the empty list [].

erlang:hibernate(Module, Function, Args)

Types:

Module = Function = atom()

Args = [term()]

Puts the calling process into a wait state where its memory allocation has been reduced as much as possible, which is
useful if the process does not expect to receive any messages in the near future.

The process will be awaken when a message is sent to it, and control will resume in Module:Function with the
arguments given by Args with the call stack emptied, meaning that the process will terminate when that function
returns. Thus erlang:hibernate/3 will never return to its caller.

If the process has any message in its message queue, the process will be awaken immediately in the same way as
described above.

In more technical terms, what erlang:hibernate/3 does is the following. It discards the call stack for the process.
Then it garbage collects the process. After the garbage collection, all live data is in one continuous heap. The heap is
then shrunken to the exact same size as the live data which it holds (even if that size is less than the minimum heap
size for the process).

If the size of the live data in the process is less than the minimum heap size, the first garbage collection occurring after
the process has been awaken will ensure that the heap size is changed to a size not smaller than the minimum heap size.

Note that emptying the call stack means that any surrounding catch is removed and has to be re-inserted after
hibernation. One effect of this is that processes started using proc_lib (also indirectly, such as gen_server
processes), should use proc_lib:hibernate/3 instead to ensure that the exception handler continues to work when the
process wakes up.

integer_to_list(Integer) -> string()

Types:

Integer = int()

Returns a string which corresponds to the text representation of Integer.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 93

> integer_to_list(77).
"77"

integer_to_list(Integer, Base) -> string()

Types:

Integer = int()

Base = 2..36

Returns a string which corresponds to the text representation of Integer in base Base.

> integer_to_list(1023, 16).
"3FF"

iolist_to_binary(IoListOrBinary) -> binary()

Types:

IoListOrBinary = iolist() | binary()

Returns a binary which is made from the integers and binaries in IoListOrBinary.

> Bin1 = <<1,2,3>>.
<<1,2,3>>
> Bin2 = <<4,5>>.
<<4,5>>
> Bin3 = <<6>>.
<<6>>
> iolist_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

iolist_size(Item) -> int()

Types:

Item = iolist() | binary()

Returns an integer which is the size in bytes of the binary that would be the result of iolist_to_binary(Item).

> iolist_size([1,2|<<3,4>>]).
4

is_alive() -> bool()

Returns true if the local node is alive; that is, if the node can be part of a distributed system. Otherwise, it returns
false.

is_atom(Term) -> bool()

Types:

Term = term()

Returns true if Term is an atom; otherwise returns false.

erlang

94 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Allowed in guard tests.

is_binary(Term) -> bool()

Types:

Term = term()

Returns true if Term is a binary; otherwise returns false.

A binary always contains a complete number of bytes.

Allowed in guard tests.

is_bitstring(Term) -> bool()

Types:

Term = term()

Returns true if Term is a bitstring (including a binary); otherwise returns false.

Allowed in guard tests.

is_boolean(Term) -> bool()

Types:

Term = term()

Returns true if Term is either the atom true or the atom false (i.e. a boolean); otherwise returns false.

Allowed in guard tests.

erlang:is_builtin(Module, Function, Arity) -> bool()

Types:

Module = Function = atom()

Arity = int()

Returns true if Module:Function/Arity is a BIF implemented in C; otherwise returns false. This BIF is
useful for builders of cross reference tools.

is_float(Term) -> bool()

Types:

Term = term()

Returns true if Term is a floating point number; otherwise returns false.

Allowed in guard tests.

is_function(Term) -> bool()

Types:

Term = term()

Returns true if Term is a fun; otherwise returns false.

Allowed in guard tests.

is_function(Term, Arity) -> bool()

Types:

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 95

Term = term()

Arity = int()

Returns true if Term is a fun that can be applied with Arity number of arguments; otherwise returns false.

Allowed in guard tests.

Warning:
Currently, is_function/2 will also return true if the first argument is a tuple fun (a tuple containing two
atoms). In a future release, tuple funs will no longer be supported and is_function/2 will return false if
given a tuple fun.

is_integer(Term) -> bool()

Types:

Term = term()

Returns true if Term is an integer; otherwise returns false.

Allowed in guard tests.

is_list(Term) -> bool()

Types:

Term = term()

Returns true if Term is a list with zero or more elements; otherwise returns false.

Allowed in guard tests.

is_number(Term) -> bool()

Types:

Term = term()

Returns true if Term is either an integer or a floating point number; otherwise returns false.

Allowed in guard tests.

is_pid(Term) -> bool()

Types:

Term = term()

Returns true if Term is a pid (process identifier); otherwise returns false.

Allowed in guard tests.

is_port(Term) -> bool()

Types:

Term = term()

Returns true if Term is a port identifier; otherwise returns false.

Allowed in guard tests.

erlang

96 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

is_process_alive(Pid) -> bool()

Types:

Pid = pid()

Pid must refer to a process at the local node. Returns true if the process exists and is alive, that is, is not exiting
and has not exited. Otherwise, returns false.

is_record(Term, RecordTag) -> bool()

Types:

Term = term()

RecordTag = atom()

Returns true if Term is a tuple and its first element is RecordTag. Otherwise, returns false.

Note:
Normally the compiler treats calls to is_record/2 specially. It emits code to verify that Term is a tuple, that
its first element is RecordTag, and that the size is correct. However, if the RecordTag is not a literal atom,
the is_record/2 BIF will be called instead and the size of the tuple will not be verified.

Allowed in guard tests, if RecordTag is a literal atom.

is_record(Term, RecordTag, Size) -> bool()

Types:

Term = term()

RecordTag = atom()

Size = int()

RecordTag must be an atom. Returns true if Term is a tuple, its first element is RecordTag, and its size is
Size. Otherwise, returns false.

Allowed in guard tests, provided that RecordTag is a literal atom and Size is a literal integer.

Note:
This BIF is documented for completeness. In most cases is_record/2 should be used.

is_reference(Term) -> bool()

Types:

Term = term()

Returns true if Term is a reference; otherwise returns false.

Allowed in guard tests.

is_tuple(Term) -> bool()

Types:

Term = term()

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 97

Returns true if Term is a tuple; otherwise returns false.

Allowed in guard tests.

length(List) -> int()

Types:

List = [term()]

Returns the length of List.

> length([1,2,3,4,5,6,7,8,9]).
9

Allowed in guard tests.

link(Pid) -> true

Types:

Pid = pid() | port()

Creates a link between the calling process and another process (or port) Pid, if there is not such a link already. If a
process attempts to create a link to itself, nothing is done. Returns true.

If Pid does not exist, the behavior of the BIF depends on if the calling process is trapping exits or not (see
process_flag/2):

• If the calling process is not trapping exits, and checking Pid is cheap -- that is, if Pid is local -- link/1 fails
with reason noproc.

• Otherwise, if the calling process is trapping exits, and/or Pid is remote, link/1 returns true, but an exit
signal with reason noproc is sent to the calling process.

list_to_atom(String) -> atom()

Types:

String = string()

Returns the atom whose text representation is String.

> list_to_atom("Erlang").
'Erlang'

list_to_binary(IoList) -> binary()

Types:

IoList = iolist()

Returns a binary which is made from the integers and binaries in IoList.

> Bin1 = <<1,2,3>>.
<<1,2,3>>
> Bin2 = <<4,5>>.
<<4,5>>
> Bin3 = <<6>>.
<<6>>

erlang

98 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

> list_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

list_to_bitstring(BitstringList) -> bitstring()

Types:

BitstringList = [BitstringList | bitstring() | char()]

Returns a bitstring which is made from the integers and bitstrings in BitstringList. (The last tail in
BitstringList is allowed to be a bitstring.)

> Bin1 = <<1,2,3>>.
<<1,2,3>>
> Bin2 = <<4,5>>.
<<4,5>>
> Bin3 = <<6,7:4,>>.
<<6>>
> list_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6,7:46>>

list_to_existing_atom(String) -> atom()

Types:

String = string()

Returns the atom whose text representation is String, but only if there already exists such atom.

Failure: badarg if there does not already exist an atom whose text representation is String.

list_to_float(String) -> float()

Types:

String = string()

Returns the float whose text representation is String.

> list_to_float("2.2017764e+0").
2.2017764

Failure: badarg if String contains a bad representation of a float.

list_to_integer(String) -> int()

Types:

String = string()

Returns an integer whose text representation is String.

> list_to_integer("123").
123

Failure: badarg if String contains a bad representation of an integer.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 99

list_to_integer(String, Base) -> int()

Types:

String = string()

Base = 2..36

Returns an integer whose text representation in base Base is String.

> list_to_integer("3FF", 16).
1023

Failure: badarg if String contains a bad representation of an integer.

list_to_pid(String) -> pid()

Types:

String = string()

Returns a pid whose text representation is String.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It should not be used in application
programs.

> list_to_pid("<0.4.1>").
<0.4.1>

Failure: badarg if String contains a bad representation of a pid.

list_to_tuple(List) -> tuple()

Types:

List = [term()]

Returns a tuple which corresponds to List. List can contain any Erlang terms.

> list_to_tuple([share, ['Ericsson_B', 163]]).
{share, ['Ericsson_B', 163]}

load_module(Module, Binary) -> {module, Module} | {error, Reason}

Types:

Module = atom()

Binary = binary()

Reason = badfile | not_purged | badfile

If Binary contains the object code for the module Module, this BIF loads that object code. Also, if the code for
the module Module already exists, all export references are replaced so they point to the newly loaded code. The

erlang

100 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

previously loaded code is kept in the system as old code, as there may still be processes which are executing that code.
It returns either {module, Module}, or {error, Reason} if loading fails. Reason is one of the following:

badfile

The object code in Binary has an incorrect format.

not_purged

Binary contains a module which cannot be loaded because old code for this module already exists.

badfile

The object code contains code for another module than Module

Warning:
This BIF is intended for the code server (see code(3)) and should not be used elsewhere.

erlang:load_nif(Path, LoadInfo) -> ok | {error, {Reason, Text}}

Types:

Path = string()

LoadInfo = term()

Reason = load_failed | bad_lib | load | reload | upgrade | old_code

Text = string()

Note:
In releases older than OTP R14B, NIFs were an experimental feature. Versions of OTP older than R14B might
have different and possibly incompatible NIF semantics and interfaces. For example, in R13B03 the return value
on failure was {error,Reason,Text}.

Loads and links a dynamic library containing native implemented functions (NIFs) for a module. Path is a file path
to the sharable object/dynamic library file minus the OS-dependent file extension (.so for Unix and .dll for Windows).
See erl_nif on how to implement a NIF library.

LoadInfo can be any term. It will be passed on to the library as part of the initialization. A good practice is to include
a module version number to support future code upgrade scenarios.

The call to load_nif/2 must be made directly from the Erlang code of the module that the NIF library belongs to.

It returns either ok, or {error,{Reason,Text}} if loading fails. Reason is one of the atoms below, while Text
is a human readable string that may give some more information about the failure.

load_failed

The OS failed to load the NIF library.

bad_lib

The library did not fulfil the requirements as a NIF library of the calling module.

load | reload | upgrade

The corresponding library callback was not successful.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 101

old_code

The call to load_nif/2 was made from the old code of a module that has been upgraded. This is not allowed.

erlang:loaded() -> [Module]

Types:

Module = atom()

Returns a list of all loaded Erlang modules (current and/or old code), including preloaded modules.

See also code(3).

erlang:localtime() -> {Date, Time}

Types:

Date = {Year, Month, Day}

Time = {Hour, Minute, Second}

 Year = Month = Day = Hour = Minute = Second = int()

Returns the current local date and time {{Year, Month, Day}, {Hour, Minute, Second}}.

The time zone and daylight saving time correction depend on the underlying OS.

> erlang:localtime().
{{1996,11,6},{14,45,17}}

erlang:localtime_to_universaltime({Date1, Time1}) -> {Date2, Time2}

Types:

Date1 = Date2 = {Year, Month, Day}

Time1 = Time2 = {Hour, Minute, Second}

 Year = Month = Day = Hour = Minute = Second = int()

Converts local date and time to Universal Time Coordinated (UTC), if this is supported by the underlying OS.
Otherwise, no conversion is done and {Date1, Time1} is returned.

> erlang:localtime_to_universaltime({{1996,11,6},{14,45,17}}).
{{1996,11,6},{13,45,17}}

Failure: badarg if Date1 or Time1 do not denote a valid date or time.

erlang:localtime_to_universaltime({Date1, Time1}, IsDst) -> {Date2, Time2}

Types:

Date1 = Date2 = {Year, Month, Day}

Time1 = Time2 = {Hour, Minute, Second}

 Year = Month = Day = Hour = Minute = Second = int()

IsDst = true | false | undefined

Converts local date and time to Universal Time Coordinated (UTC) just like
erlang:localtime_to_universaltime/1, but the caller decides if daylight saving time is active or not.

erlang

102 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

If IsDst == true the {Date1, Time1} is during daylight saving time, if IsDst == false
it is not, and if IsDst == undefined the underlying OS may guess, which is the same as calling
erlang:localtime_to_universaltime({Date1, Time1}).

> erlang:localtime_to_universaltime({{1996,11,6},{14,45,17}}, true).
{{1996,11,6},{12,45,17}}
> erlang:localtime_to_universaltime({{1996,11,6},{14,45,17}}, false).
{{1996,11,6},{13,45,17}}
> erlang:localtime_to_universaltime({{1996,11,6},{14,45,17}}, undefined).
{{1996,11,6},{13,45,17}}

Failure: badarg if Date1 or Time1 do not denote a valid date or time.

make_ref() -> reference()

Returns an almost unique reference.

The returned reference will re-occur after approximately 2^82 calls; therefore it is unique enough for practical purposes.

> make_ref().
#Ref<0.0.0.135>

erlang:make_tuple(Arity, InitialValue) -> tuple()

Types:

Arity = int()

InitialValue = term()

Returns a new tuple of the given Arity, where all elements are InitialValue.

> erlang:make_tuple(4, []).
{[],[],[],[]}

erlang:make_tuple(Arity, Default, InitList) -> tuple()

Types:

Arity = int()

Default = term()

InitList = [{Position,term()}]

Position = integer()

erlang:make_tuple first creates a tuple of size Arity where each element has the value Default. It then fills
in values from InitList. Each list element in InitList must be a two-tuple where the first element is a position
in the newly created tuple and the second element is any term. If a position occurs more than once in the list, the term
corresponding to last occurrence will be used.

> erlang:make_tuple(5, [], [{2,ignored},{5,zz},{2,aa}]).
{{[],aa,[],[],zz}

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 103

max(Term1, Term2) -> Maximum

Types:

Term1 = Term2 = Maximum = term()

Return the largest of Term1 and Term2; if the terms compares equal, Term1 will be returned.

erlang:md5(Data) -> Digest

Types:

Data = iodata()

Digest = binary()

Computes an MD5 message digest from Data, where the length of the digest is 128 bits (16 bytes). Data is a binary
or a list of small integers and binaries.

See The MD5 Message Digest Algorithm (RFC 1321) for more information about MD5.

Warning:
The MD5 Message Digest Algorithm is not considered safe for code-signing or software integrity purposes.

erlang:md5_final(Context) -> Digest

Types:

Context = Digest = binary()

Finishes the update of an MD5 Context and returns the computed MD5 message digest.

erlang:md5_init() -> Context

Types:

Context = binary()

Creates an MD5 context, to be used in subsequent calls to md5_update/2.

erlang:md5_update(Context, Data) -> NewContext

Types:

Data = iodata()

Context = NewContext = binary()

Updates an MD5 Context with Data, and returns a NewContext.

erlang:memory() -> [{Type, Size}]

Types:

Type, Size -- see below

Returns a list containing information about memory dynamically allocated by the Erlang emulator. Each element of
the list is a tuple {Type, Size}. The first element Typeis an atom describing memory type. The second element
Sizeis memory size in bytes. A description of each memory type follows:

total

The total amount of memory currently allocated, which is the same as the sum of memory size for processes
and system.

erlang

104 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

processes

The total amount of memory currently allocated by the Erlang processes.

processes_used

The total amount of memory currently used by the Erlang processes.

This memory is part of the memory presented as processes memory.

system

The total amount of memory currently allocated by the emulator that is not directly related to any Erlang process.

Memory presented as processes is not included in this memory.

atom

The total amount of memory currently allocated for atoms.

This memory is part of the memory presented as system memory.

atom_used

The total amount of memory currently used for atoms.

This memory is part of the memory presented as atom memory.

binary

The total amount of memory currently allocated for binaries.

This memory is part of the memory presented as system memory.

code

The total amount of memory currently allocated for Erlang code.

This memory is part of the memory presented as system memory.

ets

The total amount of memory currently allocated for ets tables.

This memory is part of the memory presented as system memory.

maximum

The maximum total amount of memory allocated since the emulator was started.

This tuple is only present when the emulator is run with instrumentation.

For information on how to run the emulator with instrumentation see instrument(3) and/or erl(1).

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 105

Note:
The system value is not complete. Some allocated memory that should be part of the system value are not.

When the emulator is run with instrumentation, the system value is more accurate, but memory directly allocated
by malloc (and friends) are still not part of the system value. Direct calls to malloc are only done from
OS specific runtime libraries and perhaps from user implemented Erlang drivers that do not use the memory
allocation functions in the driver interface.

Since the total value is the sum of processes and system the error in system will propagate to the
total value.

The different amounts of memory that are summed are not gathered atomically which also introduce an error
in the result.

The different values has the following relation to each other. Values beginning with an uppercase letter is not part
of the result.

 total = processes + system
 processes = processes_used + ProcessesNotUsed
 system = atom + binary + code + ets + OtherSystem
 atom = atom_used + AtomNotUsed

 RealTotal = processes + RealSystem
 RealSystem = system + MissedSystem

More tuples in the returned list may be added in the future.

Note:
The total value is supposed to be the total amount of memory dynamically allocated by the emulator. Shared
libraries, the code of the emulator itself, and the emulator stack(s) are not supposed to be included. That is, the
total value is not supposed to be equal to the total size of all pages mapped to the emulator. Furthermore,
due to fragmentation and pre-reservation of memory areas, the size of the memory segments which contain the
dynamically allocated memory blocks can be substantially larger than the total size of the dynamically allocated
memory blocks.

Note:
Since erts version 5.6.4 erlang:memory/0 requires that all erts_alloc(3) allocators are enabled (default
behaviour).

Failure:

notsup
If an erts_alloc(3) allocator has been disabled.

erlang:memory(Type | [Type]) -> Size | [{Type, Size}]

Types:

erlang

106 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Type, Size -- see below

Returns the memory size in bytes allocated for memory of type Type. The argument can also be given as a list of
Type atoms, in which case a corresponding list of {Type, Size} tuples is returned.

Note:
Since erts version 5.6.4 erlang:memory/1 requires that all erts_alloc(3) allocators are enabled (default
behaviour).

Failures:

badarg
If Type is not one of the memory types listed in the documentation of erlang:memory/0.

badarg
If maximum is passed as Type and the emulator is not run in instrumented mode.

notsup
If an erts_alloc(3) allocator has been disabled.

See also erlang:memory/0.

min(Term1, Term2) -> Minimum

Types:

Term1 = Term2 = Minimum = term()

Return the smallest of Term1 and Term2; if the terms compare equal, Term1 will be returned.

module_loaded(Module) -> bool()

Types:

Module = atom()

Returns true if the module Module is loaded, otherwise returns false. It does not attempt to load the module.

Warning:
This BIF is intended for the code server (see code(3)) and should not be used elsewhere.

monitor(Type, Item) -> MonitorRef

Types:

Type = process

Item = pid() | {RegName, Node} | RegName

 RegName = atom()

 Node = node()

MonitorRef = reference()

The calling process starts monitoring Item which is an object of type Type.

Currently only processes can be monitored, i.e. the only allowed Type is process, but other types may be allowed
in the future.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 107

Item can be:

pid()

The pid of the process to monitor.

{RegName, Node}

A tuple consisting of a registered name of a process and a node name. The process residing on the node Node
with the registered name RegName will be monitored.

RegName

The process locally registered as RegName will be monitored.

Note:
When a process is monitored by registered name, the process that has the registered name at the time when
monitor/2 is called will be monitored. The monitor will not be effected, if the registered name is unregistered.

A 'DOWN' message will be sent to the monitoring process if Item dies, if Item does not exist, or if the connection
is lost to the node which Item resides on. A 'DOWN' message has the following pattern:

{'DOWN', MonitorRef, Type, Object, Info}

where MonitorRef and Type are the same as described above, and:

Object

A reference to the monitored object:

• the pid of the monitored process, if Item was specified as a pid.

• {RegName, Node}, if Item was specified as {RegName, Node}.

• {RegName, Node}, if Item was specified as RegName. Node will in this case be the name of the
local node (node()).

Info

Either the exit reason of the process, noproc (non-existing process), or noconnection (no connection to
Node).

Note:
If/when monitor/2 is extended (e.g. to handle other item types than process), other possible values for
Object, and Info in the 'DOWN' message will be introduced.

The monitoring is turned off either when the 'DOWN' message is sent, or when demonitor/1 is called.

If an attempt is made to monitor a process on an older node (where remote process monitoring is not implemented or
one where remote process monitoring by registered name is not implemented), the call fails with badarg.

Making several calls to monitor/2 for the same Item is not an error; it results in as many, completely independent,
monitorings.

erlang

108 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Note:
The format of the 'DOWN' message changed in the 5.2 version of the emulator (OTP release R9B) for monitor
by registered name. The Object element of the 'DOWN' message could in earlier versions sometimes be the
pid of the monitored process and sometimes be the registered name. Now the Object element is always a tuple
consisting of the registered name and the node name. Processes on new nodes (emulator version 5.2 or greater) will
always get 'DOWN' messages on the new format even if they are monitoring processes on old nodes. Processes
on old nodes will always get 'DOWN' messages on the old format.

monitor_node(Node, Flag) -> true

Types:

Node = node()

Flag = bool()

Monitors the status of the node Node. If Flag is true, monitoring is turned on; if Flag is false, monitoring
is turned off.

Making several calls to monitor_node(Node, true) for the same Node is not an error; it results in as many,
completely independent, monitorings.

If Node fails or does not exist, the message {nodedown, Node} is delivered to the process. If a process has made
two calls to monitor_node(Node, true) and Node terminates, two nodedown messages are delivered to the
process. If there is no connection to Node, there will be an attempt to create one. If this fails, a nodedown message
is delivered.

Nodes connected through hidden connections can be monitored as any other node.

Failure: badargif the local node is not alive.

erlang:monitor_node(Node, Flag, Options) -> true

Types:

Node = node()

Flag = bool()

Options = [Option]

Option = allow_passive_connect

Behaves as monitor_node/2 except that it allows an extra option to be given, namely
allow_passive_connect. The option allows the BIF to wait the normal net connection timeout for the monitored
node to connect itself, even if it cannot be actively connected from this node (i.e. it is blocked). The state where this
might be useful can only be achieved by using the kernel option dist_auto_connect once. If that kernel option
is not used, the allow_passive_connect option has no effect.

Note:
The allow_passive_connect option is used internally and is seldom needed in applications where the
network topology and the kernel options in effect is known in advance.

Failure: badarg if the local node is not alive or the option list is malformed.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 109

erlang:nif_error(Reason)

Types:

Reason = term()

Works exactly like erlang:error/1, but Dialyzer thinks that this BIF will return an arbitrary term. When used in a
stub function for a NIF to generate an exception when the NIF library is not loaded, Dialyzer will not generate false
warnings.

erlang:nif_error(Reason, Args)

Types:

Reason = term()

Args = [term()]

Works exactly like erlang:error/2, but Dialyzer thinks that this BIF will return an arbitrary term. When used in a
stub function for a NIF to generate an exception when the NIF library is not loaded, Dialyzer will not generate false
warnings.

node() -> Node

Types:

Node = node()

Returns the name of the local node. If the node is not alive, nonode@nohost is returned instead.

Allowed in guard tests.

node(Arg) -> Node

Types:

Arg = pid() | port() | reference()

Node = node()

Returns the node where Arg is located. Arg can be a pid, a reference, or a port. If the local node is not alive,
nonode@nohost is returned.

Allowed in guard tests.

nodes() -> Nodes

Types:

Nodes = [node()]

Returns a list of all visible nodes in the system, excluding the local node. Same as nodes(visible).

nodes(Arg | [Arg]) -> Nodes

Types:

Arg = visible | hidden | connected | this | known

Nodes = [node()]

Returns a list of nodes according to argument given. The result returned when the argument is a list, is the list of nodes
satisfying the disjunction(s) of the list elements.

Arg can be any of the following:

visible

Nodes connected to this node through normal connections.

erlang

110 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

hidden

Nodes connected to this node through hidden connections.

connected

All nodes connected to this node.

this

This node.

known

Nodes which are known to this node, i.e., connected, previously connected, etc.

Some equalities: [node()] = nodes(this), nodes(connected) = nodes([visible, hidden]),
and nodes() = nodes(visible).

If the local node is not alive, nodes(this) == nodes(known) == [nonode@nohost], for any other Arg
the empty list [] is returned.

now() -> {MegaSecs, Secs, MicroSecs}

Types:

MegaSecs = Secs = MicroSecs = int()

Returns the tuple {MegaSecs, Secs, MicroSecs} which is the elapsed time since 00:00 GMT, January 1, 1970
(zero hour) on the assumption that the underlying OS supports this. Otherwise, some other point in time is chosen.
It is also guaranteed that subsequent calls to this BIF returns continuously increasing values. Hence, the return value
from now() can be used to generate unique time-stamps, and if it is called in a tight loop on a fast machine the time
of the node can become skewed.

It can only be used to check the local time of day if the time-zone info of the underlying operating system is properly
configured.

open_port(PortName, PortSettings) -> port()

Types:

PortName = {spawn, Command} | {spawn_driver, Command} | {spawn_executable, FileName} | {fd, In,
Out}

 Command = string()

 FileName = [FileNameChar] | binary()

 FileNameChar = int() (1..255 or any Unicode codepoint, see description)

 In = Out = int()

PortSettings = [Opt]

 Opt = {packet, N} | stream | {line, L} | {cd, Dir} | {env, Env} | {args, [ArgString]} | {arg0, ArgString} |
exit_status | use_stdio | nouse_stdio | stderr_to_stdout | in | out | binary | eof

 N = 1 | 2 | 4

 L = int()

 Dir = string()

 ArgString = [FileNameChar] | binary()

 Env = [{Name, Val}]

 Name = string()

 Val = string() | false

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 111

Returns a port identifier as the result of opening a new Erlang port. A port can be seen as an external Erlang process.
PortName is one of the following:

{spawn, Command}

Starts an external program. Command is the name of the external program which will be run. Command runs
outside the Erlang work space unless an Erlang driver with the name Command is found. If found, that driver will
be started. A driver runs in the Erlang workspace, which means that it is linked with the Erlang runtime system.

When starting external programs on Solaris, the system call vfork is used in preference to fork for performance
reasons, although it has a history of being less robust. If there are problems with using vfork, setting the
environment variable ERL_NO_VFORK to any value will cause fork to be used instead.

For external programs, the PATH is searched (or an equivalent method is used to find programs, depending on
operating system). This is done by invoking the shell och certain platforms. The first space separated token of
the command will be considered as the name of the executable (or driver). This (among other things) makes
this option unsuitable for running programs having spaces in file or directory names. Use {spawn_executable,
Command} instead if spaces in executable file names is desired.

{spawn_driver, Command}

Works like {spawn, Command}, but demands the first (space separated) token of the command to be the name
of a loaded driver. If no driver with that name is loaded, a badarg error is raised.

{spawn_executable, Command}

Works like {spawn, Command}, but only runs external executables. The Command in its whole is used
as the name of the executable, including any spaces. If arguments are to be passed, the args and arg0
PortSettings can be used.

The shell is not usually invoked to start the program, it's executed directly. Neither is the PATH (or equivalent)
searched. To find a program in the PATH to execute, use os:find_executable/1.

Only if a shell script or .bat file is executed, the appropriate command interpreter will implicitly be invoked,
but there will still be no command argument expansion or implicit PATH search.

The name of the executable as well as the arguments given in args and arg0 is subject to Unicode file
name translation if the system is running in Unicode file name mode. To avoid translation or force i.e.
UTF-8, supply the executable and/or arguments as a binary in the correct encoding. See the file module, the
file:native_name_encoding/0 function and the stdlib users guide for details.

Note:
The characters in the name (if given as a list) can only be > 255 if the Erlang VM is started in Unicode file
name translation mode, otherwise the name of the executable is limited to the ISO-latin-1 character set.

If the Command cannot be run, an error exception, with the posix error code as the reason, is raised. The error
reason may differ between operating systems. Typically the error enoent is raised when one tries to run a
program that is not found and eaccess is raised when the given file is not executable.

{fd, In, Out}

Allows an Erlang process to access any currently opened file descriptors used by Erlang. The file descriptor In
can be used for standard input, and the file descriptor Out for standard output. It is only used for various servers
in the Erlang operating system (shell and user). Hence, its use is very limited.

PortSettings is a list of settings for the port. Valid settings are:

erlang

112 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

{packet, N}

Messages are preceded by their length, sent in N bytes, with the most significant byte first. Valid values for N
are 1, 2, or 4.

stream

Output messages are sent without packet lengths. A user-defined protocol must be used between the Erlang
process and the external object.

{line, L}

Messages are delivered on a per line basis. Each line (delimited by the OS-dependent newline sequence) is
delivered in one single message. The message data format is {Flag, Line}, where Flag is either eol or
noeol and Line is the actual data delivered (without the newline sequence).

L specifies the maximum line length in bytes. Lines longer than this will be delivered in more than one message,
with the Flag set to noeol for all but the last message. If end of file is encountered anywhere else than
immediately following a newline sequence, the last line will also be delivered with the Flag set to noeol. In
all other cases, lines are delivered with Flag set to eol.

The {packet, N} and {line, L} settings are mutually exclusive.

{cd, Dir}

This is only valid for {spawn, Command} and {spawn_executable, Command}. The external program
starts using Dir as its working directory. Dir must be a string. Not available on VxWorks.

{env, Env}

This is only valid for {spawn, Command} and {spawn_executable, Command}. The environment of
the started process is extended using the environment specifications in Env.

Env should be a list of tuples {Name, Val}, where Name is the name of an environment variable, and Val
is the value it is to have in the spawned port process. Both Name and Val must be strings. The one exception
is Val being the atom false (in analogy with os:getenv/1), which removes the environment variable. Not
available on VxWorks.

{args, [string()]}

This option is only valid for {spawn_executable, Command} and specifies arguments to the executable.
Each argument is given as a separate string and (on Unix) eventually ends up as one element each in the argument
vector. On other platforms, similar behavior is mimicked.

The arguments are not expanded by the shell prior to being supplied to the executable, most notably this means that
file wildcard expansion will not happen. Use filelib:wildcard/1 to expand wildcards for the arguments. Note that
even if the program is a Unix shell script, meaning that the shell will ultimately be invoked, wildcard expansion
will not happen and the script will be provided with the untouched arguments. On Windows®, wildcard expansion
is always up to the program itself, why this isn't an issue.

Note also that the actual executable name (a.k.a. argv[0]) should not be given in this list. The proper executable
name will automatically be used as argv[0] where applicable.

When the Erlang VM is running in Unicode file name mode, the arguments can contain any Unicode characters
and will be translated into whatever is appropriate on the underlying OS, which means UTF-8 for all platforms
except Windows, which has other (more transparent) ways of dealing with Unicode arguments to programs.
To avoid Unicode translation of arguments, they can be supplied as binaries in whatever encoding is deemed
appropriate.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 113

Note:
The characters in the arguments (if given as a list of characters) can only be > 255 if the Erlang VM is started
in Unicode file name mode, otherwise the arguments are limited to the ISO-latin-1 character set.

If one, for any reason, wants to explicitly set the program name in the argument vector, the arg0 option can
be used.

{arg0, string()}

This option is only valid for {spawn_executable, Command} and explicitly specifies the program name
argument when running an executable. This might in some circumstances, on some operating systems, be
desirable. How the program responds to this is highly system dependent and no specific effect is guaranteed.

The unicode file name translation rules of the args option apply to this option as well.

exit_status

This is only valid for {spawn, Command} where Command refers to an external program, and for
{spawn_executable, Command}.

When the external process connected to the port exits, a message of the form {Port,
{exit_status,Status}} is sent to the connected process, where Status is the exit status of the external
process. If the program aborts, on Unix the same convention is used as the shells do (i.e., 128+signal).

If the eof option has been given as well, the eof message and the exit_status message appear in an
unspecified order.

If the port program closes its stdout without exiting, the exit_status option will not work.

use_stdio

This is only valid for {spawn, Command} and {spawn_executable, Command}. It allows the standard
input and output (file descriptors 0 and 1) of the spawned (UNIX) process for communication with Erlang.

nouse_stdio

The opposite of use_stdio. Uses file descriptors 3 and 4 for communication with Erlang.

stderr_to_stdout

Affects ports to external programs. The executed program gets its standard error file redirected to its standard
output file. stderr_to_stdout and nouse_stdio are mutually exclusive.

overlapped_io

Affects ports to external programs on Windows® only. The standard input and standard output handles of the
port program will, if this option is supplied, be opened with the flag FILE_FLAG_OVERLAPPED, so that the
port program can (and has to) do overlapped I/O on its standard handles. This is not normally the case for simple
port programs, but an option of value for the experienced Windows programmer. On all other platforms, this
option is silently discarded.

in

The port can only be used for input.

out

The port can only be used for output.

binary

All IO from the port are binary data objects as opposed to lists of bytes.

erlang

114 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

eof

The port will not be closed at the end of the file and produce an exit signal. Instead, it will remain open and a
{Port, eof} message will be sent to the process holding the port.

hide

When running on Windows, suppress creation of a new console window when spawning the port program. (This
option has no effect on other platforms.)

The default is stream for all types of port and use_stdio for spawned ports.

Failure: If the port cannot be opened, the exit reason is badarg, system_limit, or the Posix error code which
most closely describes the error, or einval if no Posix code is appropriate:

badarg

Bad input arguments to open_port.

system_limit

All available ports in the Erlang emulator are in use.

enomem

There was not enough memory to create the port.

eagain

There are no more available operating system processes.

enametoolong

The external command given was too long.

emfile

There are no more available file descriptors (for the operating system process that the Erlang emulator runs in).

enfile

The file table is full (for the entire operating system).

eacces

The Command given in {spawn_executable, Command} does not point out an executable file.

enoent

The Command given in {spawn_executable, Command} does not point out an existing file.

During use of a port opened using {spawn, Name}, {spawn_driver, Name} or {spawn_executable,
Name}, errors arising when sending messages to it are reported to the owning process using signals of the form
{'EXIT', Port, PosixCode}. See file(3) for possible values of PosixCode.

The maximum number of ports that can be open at the same time is 1024 by default, but can be configured by the
environment variable ERL_MAX_PORTS.

erlang:phash(Term, Range) -> Hash

Types:

Term = term()

Range = 1..2^32

Hash = 1..Range

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 115

Portable hash function that will give the same hash for the same Erlang term regardless of machine architecture and
ERTS version (the BIF was introduced in ERTS 4.9.1.1). Range can be between 1 and 2^32, the function returns a
hash value for Term within the range 1..Range.

This BIF could be used instead of the old deprecated erlang:hash/2 BIF, as it calculates better hashes for all data-
types, but consider using phash2/1,2 instead.

erlang:phash2(Term [, Range]) -> Hash

Types:

Term = term()

Range = 1..2^32

Hash = 0..Range-1

Portable hash function that will give the same hash for the same Erlang term regardless of machine architecture and
ERTS version (the BIF was introduced in ERTS 5.2). Range can be between 1 and 2^32, the function returns a hash
value for Term within the range 0..Range-1. When called without the Range argument, a value in the range
0..2^27-1 is returned.

This BIF should always be used for hashing terms. It distributes small integers better than phash/2, and it is faster
for bignums and binaries.

Note that the range 0..Range-1 is different from the range of phash/2 (1..Range).

pid_to_list(Pid) -> string()

Types:

Pid = pid()

Returns a string which corresponds to the text representation of Pid.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It should not be used in application
programs.

port_close(Port) -> true

Types:

Port = port() | atom()

Closes an open port. Roughly the same as Port ! {self(), close} except for the error behaviour (see below),
and that the port does not reply with {Port, closed}. Any process may close a port with port_close/1, not
only the port owner (the connected process).

For comparison: Port ! {self(), close} fails with badarg if Port cannot be sent to (i.e., Port refers
neither to a port nor to a process). If Port is a closed port nothing happens. If Port is an open port and the calling
process is the port owner, the port replies with {Port, closed} when all buffers have been flushed and the port
really closes, but if the calling process is not the port owner the port owner fails with badsig.

Note that any process can close a port using Port ! {PortOwner, close} just as if it itself was the port owner,
but the reply always goes to the port owner.

In short: port_close(Port) has a cleaner and more logical behaviour than Port ! {self(), close}.

Failure: badarg if Port is not an open port or the registered name of an open port.

erlang

116 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

port_command(Port, Data) -> true

Types:

Port = port() | atom()

Data = iodata()

Sends data to a port. Same as Port ! {self(), {command, Data}} except for the error behaviour (see below).
Any process may send data to a port with port_command/2, not only the port owner (the connected process).

For comparison: Port ! {self(), {command, Data}} fails with badarg if Port cannot be sent to (i.e.,
Port refers neither to a port nor to a process). If Port is a closed port the data message disappears without a sound.
If Port is open and the calling process is not the port owner, the port owner fails with badsig. The port owner fails
with badsig also if Data is not a valid IO list.

Note that any process can send to a port using Port ! {PortOwner, {command, Data}} just as if it itself
was the port owner.

In short: port_command(Port, Data) has a cleaner and more logical behaviour than Port ! {self(),
{command, Data}}.

If the port is busy, the calling process will be suspended until the port is not busy anymore.

Failures:

badarg
If Port is not an open port or the registered name of an open port.

badarg
If Data is not a valid io list.

port_command(Port, Data, OptionList) -> true|false

Types:

Port = port() | atom()

Data = iodata()

OptionList = [Option]

Option = force

Option = nosuspend

Sends data to a port. port_command(Port, Data, []) equals port_command(Port, Data).

If the port command is aborted false is returned; otherwise, true is returned.

If the port is busy, the calling process will be suspended until the port is not busy anymore.

Currently the following Options are valid:

force
The calling process will not be suspended if the port is busy; instead, the port command is forced through. The
call will fail with a notsup exception if the driver of the port does not support this. For more information see
the ERL_DRV_FLAG_SOFT_BUSY driver flag.

nosuspend
The calling process will not be suspended if the port is busy; instead, the port command is aborted and false
is returned.

Note:
More options may be added in the future.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 117

Failures:

badarg
If Port is not an open port or the registered name of an open port.

badarg
If Data is not a valid io list.

badarg
If OptionList is not a valid option list.

notsup
If the force option has been passed, but the driver of the port does not allow forcing through a busy port.

port_connect(Port, Pid) -> true

Types:

Port = port() | atom()

Pid = pid()

Sets the port owner (the connected port) to Pid. Roughly the same as Port ! {self(), {connect, Pid}}
except for the following:

• The error behavior differs, see below.

• The port does not reply with {Port,connected}.

• The new port owner gets linked to the port.

The old port owner stays linked to the port and have to call unlink(Port) if this is not desired. Any process may
set the port owner to be any process with port_connect/2.

For comparison: Port ! {self(), {connect, Pid}} fails with badarg if Port cannot be sent to (i.e.,
Port refers neither to a port nor to a process). If Port is a closed port nothing happens. If Port is an open port and
the calling process is the port owner, the port replies with {Port, connected} to the old port owner. Note that
the old port owner is still linked to the port, and that the new is not. If Port is an open port and the calling process
is not the port owner, the port owner fails with badsig. The port owner fails with badsig also if Pid is not an
existing local pid.

Note that any process can set the port owner using Port ! {PortOwner, {connect, Pid}} just as if it itself
was the port owner, but the reply always goes to the port owner.

In short: port_connect(Port, Pid) has a cleaner and more logical behaviour than Port ! {self(),
{connect,Pid}}.

Failure: badarg if Port is not an open port or the registered name of an open port, or if Pid is not an existing
local pid.

port_control(Port, Operation, Data) -> Res

Types:

Port = port() | atom()

Operation = int()

Data = Res = iodata()

Performs a synchronous control operation on a port. The meaning of Operation and Data depends on the port,
i.e., on the port driver. Not all port drivers support this control feature.

Returns: a list of integers in the range 0 through 255, or a binary, depending on the port driver. The meaning of the
returned data also depends on the port driver.

erlang

118 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Failure: badarg if Port is not an open port or the registered name of an open port, if Operation cannot fit in a
32-bit integer, if the port driver does not support synchronous control operations, or if the port driver so decides for
any reason (probably something wrong with Operation or Data).

erlang:port_call(Port, Operation, Data) -> term()

Types:

Port = port() | atom()

Operation = int()

Data = term()

Performs a synchronous call to a port. The meaning of Operation and Data depends on the port, i.e., on the port
driver. Not all port drivers support this feature.

Port is a port identifier, referring to a driver.

Operation is an integer, which is passed on to the driver.

Data is any Erlang term. This data is converted to binary term format and sent to the port.

Returns: a term from the driver. The meaning of the returned data also depends on the port driver.

Failure: badarg if Port is not an open port or the registered name of an open port, if Operation cannot fit in a
32-bit integer, if the port driver does not support synchronous control operations, or if the port driver so decides for
any reason (probably something wrong with Operation or Data).

erlang:port_info(Port) -> [{Item, Info}] | undefined

Types:

Port = port() | atom()

Item, Info -- see below

Returns a list containing tuples with information about the Port, or undefined if the port is not open. The order
of the tuples is not defined, nor are all the tuples mandatory.

{registered_name, RegName}

RegName (an atom) is the registered name of the port. If the port has no registered name, this tuple is not present
in the list.

{id, Index}

Index (an integer) is the internal index of the port. This index may be used to separate ports.

{connected, Pid}

Pid is the process connected to the port.

{links, Pids}

Pids is a list of pids to which processes the port is linked.

{name, String}

String is the command name set by open_port.

{input, Bytes}

Bytes is the total number of bytes read from the port.

{output, Bytes}

Bytes is the total number of bytes written to the port.

Failure: badarg if Port is not a local port.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 119

erlang:port_info(Port, Item) -> {Item, Info} | undefined | []

Types:

Port = port() | atom()

Item, Info -- see below

Returns information about Port as specified by Item, or undefined if the port is not open. Also, if Item ==
registered_name and the port has no registered name, [] is returned.

For valid values of Item, and corresponding values of Info, see erlang:port_info/1.

Failure: badarg if Port is not a local port.

erlang:port_to_list(Port) -> string()

Types:

Port = port()

Returns a string which corresponds to the text representation of the port identifier Port.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It should not be used in application
programs.

erlang:ports() -> [port()]

Returns a list of all ports on the local node.

pre_loaded() -> [Module]

Types:

Module = atom()

Returns a list of Erlang modules which are pre-loaded in the system. As all loading of code is done through the file
system, the file system must have been loaded previously. Hence, at least the module init must be pre-loaded.

erlang:process_display(Pid, Type) -> void()

Types:

Pid = pid()

Type = backtrace

Writes information about the local process Pid on standard error. The currently allowed value for the atom Type is
backtrace, which shows the contents of the call stack, including information about the call chain, with the current
function printed first. The format of the output is not further defined.

process_flag(Flag, Value) -> OldValue

Types:

Flag, Value, OldValue -- see below

Sets certain flags for the process which calls this function. Returns the old value of the flag.

erlang

120 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

process_flag(trap_exit, Boolean)

When trap_exit is set to true, exit signals arriving to a process are converted to {'EXIT', From,
Reason} messages, which can be received as ordinary messages. If trap_exit is set to false, the process
exits if it receives an exit signal other than normal and the exit signal is propagated to its linked processes.
Application processes should normally not trap exits.

See also exit/2.

process_flag(error_handler, Module)

This is used by a process to redefine the error handler for undefined function calls and undefined registered
processes. Inexperienced users should not use this flag since code auto-loading is dependent on the correct
operation of the error handling module.

process_flag(min_heap_size, MinHeapSize)

This changes the minimum heap size for the calling process.

process_flag(min_bin_vheap_size, MinBinVHeapSize)

This changes the minimum binary virtual heap size for the calling process.

process_flag(priority, Level)

This sets the process priority. Level is an atom. There are currently four priority levels: low, normal, high,
and max. The default priority level is normal. NOTE: The max priority level is reserved for internal use in the
Erlang runtime system, and should not be used by others.

Internally in each priority level processes are scheduled in a round robin fashion.

Execution of processes on priority normal and priority low will be interleaved. Processes on priority low will
be selected for execution less frequently than processes on priority normal.

When there are runnable processes on priority high no processes on priority low, or normal will be selected
for execution. Note, however, that this does not mean that no processes on priority low, or normal will be able
to run when there are processes on priority high running. On the runtime system with SMP support there might
be more processes running in parallel than processes on priority high, i.e., a low, and a high priority process
might execute at the same time.

When there are runnable processes on priority max no processes on priority low, normal, or high will be
selected for execution. As with the high priority, processes on lower priorities might execute in parallel with
processes on priority max.

Scheduling is preemptive. Regardless of priority, a process is preempted when it has consumed more than a
certain amount of reductions since the last time it was selected for execution.

NOTE: You should not depend on the scheduling to remain exactly as it is today. Scheduling, at least on the
runtime system with SMP support, is very likely to be modified in the future in order to better utilize available
processor cores.

There is currently no automatic mechanism for avoiding priority inversion, such as priority inheritance, or priority
ceilings. When using priorities you have to take this into account and handle such scenarios by yourself.

Making calls from a high priority process into code that you don't have control over may cause the high priority
process to wait for a processes with lower priority, i.e., effectively decreasing the priority of the high priority
process during the call. Even if this isn't the case with one version of the code that you don't have under your
control, it might be the case in a future version of it. This might, for example, happen if a high priority process
triggers code loading, since the code server runs on priority normal.

Other priorities than normal are normally not needed. When other priorities are used, they need to be used with
care, especially the high priority must be used with care. A process on high priority should only perform work

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 121

for short periods of time. Busy looping for long periods of time in a high priority process will most likely cause
problems, since there are important servers in OTP running on priority normal.

process_flag(save_calls, N)

When there are runnable processes on priority max no processes on priority low, normal, or high will be
selected for execution. As with the high priority, processes on lower priorities might execute in parallel with
processes on priority max.

N must be an integer in the interval 0..10000. If N > 0, call saving is made active for the process, which means
that information about the N most recent global function calls, BIF calls, sends and receives made by the process
are saved in a list, which can be retrieved with process_info(Pid, last_calls). A global function
call is one in which the module of the function is explicitly mentioned. Only a fixed amount of information is
saved: a tuple {Module, Function, Arity} for function calls, and the mere atoms send, 'receive'
and timeout for sends and receives ('receive' when a message is received and timeout when a receive
times out). If N = 0, call saving is disabled for the process, which is the default. Whenever the size of the call
saving list is set, its contents are reset.

process_flag(sensitive, Boolean)

Set or clear the sensitive flag for the current process. When a process has been marked as sensitive by calling
process_flag(sensitive, true), features in the run-time system that can be used for examining the
data and/or inner working of the process are silently disabled.

Features that are disabled include (but are not limited to) the following:

Tracing: Trace flags can still be set for the process, but no trace messages of any kind will be generated. (If the
sensitive flag is turned off, trace messages will again be generated if there are any trace flags set.)

Sequential tracing: The sequential trace token will be propagated as usual, but no sequential trace messages will
be generated.

process_info/1,2 cannot be used to read out the message queue or the process dictionary (both will be
returned as empty lists).

Stack back-traces cannot be displayed for the process.

In crash dumps, the stack, messages, and the process dictionary will be omitted.

If {save_calls,N} has been set for the process, no function calls will be saved to the call saving list. (The
call saving list will not be cleared; furthermore, send, receive, and timeout events will still be added to the list.)

process_flag(Pid, Flag, Value) -> OldValue

Types:

Pid = pid()

Flag, Value, OldValue -- see below

Sets certain flags for the process Pid, in the same manner as process_flag/2. Returns the old value of the flag. The
allowed values for Flag are only a subset of those allowed in process_flag/2, namely: save_calls.

Failure: badarg if Pid is not a local process.

process_info(Pid) -> InfoResult

Types:

Pid = pid()

Item = atom()

Info = term()

InfoTuple = {Item, Info}

erlang

122 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

InfoTupleList = [InfoTuple]

InfoResult = InfoTupleList | undefined

Returns a list containing InfoTuples with miscellaneous information about the process identified by Pid, or
undefined if the process is not alive.

The order of the InfoTuples is not defined, nor are all the InfoTuples mandatory. The InfoTuples
part of the result may be changed without prior notice. Currently InfoTuples with the following Items are
part of the result: current_function, initial_call, status, message_queue_len, messages,
links, dictionary, trap_exit, error_handler, priority, group_leader, total_heap_size,
heap_size, stack_size, reductions, and garbage_collection. If the process identified by Pid has a
registered name also an InfoTuple with Item == registered_name will appear.

See process_info/2 for information about specific InfoTuples.

Warning:
This BIF is intended for debugging only, use process_info/2 for all other purposes.

Failure: badarg if Pid is not a local process.

process_info(Pid, ItemSpec) -> InfoResult

Types:

Pid = pid()

Item = atom()

Info = term()

ItemList = [Item]

ItemSpec = Item | ItemList

InfoTuple = {Item, Info}

InfoTupleList = [InfoTuple]

InfoResult = InfoTuple | InfoTupleList | undefined | []

Returns information about the process identified by Pid as specified by the ItemSpec, or undefined if the process
is not alive.

If the process is alive and ItemSpec is a single Item, the returned value is the corresponding InfoTuple unless
ItemSpec == registered_name and the process has no registered name. In this case [] is returned. This
strange behavior is due to historical reasons, and is kept for backward compatibility.

If ItemSpec is an ItemList, the result is an InfoTupleList. The InfoTuples in the InfoTupleList
will appear with the corresponding Items in the same order as the Items appeared in the ItemList. Valid Items
may appear multiple times in the ItemList.

Note:
If registered_name is part of an ItemList and the process has no name registered a
{registered_name, []} InfoTuple will appear in the resulting InfoTupleList. This behavior is
different than when ItemSpec == registered_name, and than when process_info/1 is used.

Currently the following InfoTuples with corresponding Items are valid:

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 123

{backtrace, Bin}

The binary Bin contains the same information as the output from erlang:process_display(Pid,
backtrace). Use binary_to_list/1 to obtain the string of characters from the binary.

{binary, BinInfo}

BinInfo is a list containing miscellaneous information about binaries currently being referred to by this process.
This InfoTuple may be changed or removed without prior notice.

{catchlevel, CatchLevel}

CatchLevel is the number of currently active catches in this process. This InfoTuple may be changed or
removed without prior notice.

{current_function, {Module, Function, Args}}

Module, Function, Args is the current function call of the process.

{dictionary, Dictionary}

Dictionary is the dictionary of the process.

{error_handler, Module}

Module is the error handler module used by the process (for undefined function calls, for example).

{garbage_collection, GCInfo}

GCInfo is a list which contains miscellaneous information about garbage collection for this process. The content
of GCInfo may be changed without prior notice.

{group_leader, GroupLeader}

GroupLeader is group leader for the IO of the process.

{heap_size, Size}

Size is the size in words of youngest heap generation of the process. This generation currently include the stack of
the process. This information is highly implementation dependent, and may change if the implementation change.

{initial_call, {Module, Function, Arity}}

Module, Function, Arity is the initial function call with which the process was spawned.

{links, Pids}

Pids is a list of pids, with processes to which the process has a link.

{last_calls, false|Calls}

The value is false if call saving is not active for the process (see process_flag/3). If call saving is active, a list
is returned, in which the last element is the most recent called.

{memory, Size}

Size is the size in bytes of the process. This includes call stack, heap and internal structures.

{message_binary, BinInfo}

BinInfo is a list containing miscellaneous information about binaries currently being referred to by the message
area. This InfoTuple is only valid on an emulator using the hybrid heap type. This InfoTuple may be
changed or removed without prior notice.

{message_queue_len, MessageQueueLen}

MessageQueueLen is the number of messages currently in the message queue of the process. This is the length
of the list MessageQueue returned as the info item messages (see below).

erlang

124 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

{messages, MessageQueue}

MessageQueue is a list of the messages to the process, which have not yet been processed.

{min_heap_size, MinHeapSize}

MinHeapSize is the minimum heap size for the process.

{min_bin_vheap_size, MinBinVHeapSize}

MinBinVHeapSize is the minimum binary virtual heap size for the process.

{monitored_by, Pids}

A list of pids that are monitoring the process (with monitor/2).

{monitors, Monitors}

A list of monitors (started by monitor/2) that are active for the process. For a local process monitor or a remote
process monitor by pid, the list item is {process, Pid}, and for a remote process monitor by name, the list
item is {process, {RegName, Node}}.

{priority, Level}

Level is the current priority level for the process. For more information on priorities see process_flag(priority,
Level).

{reductions, Number}

Number is the number of reductions executed by the process.

{registered_name, Atom}

Atom is the registered name of the process. If the process has no registered name, this tuple is not present in
the list.

{sequential_trace_token, [] | SequentialTraceToken}

SequentialTraceToken the sequential trace token for the process. This InfoTuple may be changed or
removed without prior notice.

{stack_size, Size}

Size is the stack size of the process in words.

{status, Status}

Status is the status of the process. Status is exiting, garbage_collecting, waiting (for a
message), running, runnable (ready to run, but another process is running), or suspended (suspended on
a "busy" port or by the erlang:suspend_process/[1,2] BIF).

{suspending, SuspendeeList}

SuspendeeList is a list of {Suspendee, ActiveSuspendCount,
OutstandingSuspendCount} tuples. Suspendee is the pid of a process that have been or is
to be suspended by the process identified by Pid via the erlang:suspend_process/2 BIF, or the
erlang:suspend_process/1 BIF. ActiveSuspendCount is the number of times the Suspendee has been
suspended by Pid. OutstandingSuspendCount is the number of not yet completed suspend requests sent
by Pid. That is, if ActiveSuspendCount /= 0, Suspendee is currently in the suspended state, and if
OutstandingSuspendCount /= 0 the asynchronous option of erlang:suspend_process/2
has been used and the suspendee has not yet been suspended by Pid. Note that the ActiveSuspendCount
and OutstandingSuspendCount are not the total suspend count on Suspendee, only the parts contributed
by Pid.

{total_heap_size, Size}

Size is the total size in words of all heap fragments of the process. This currently include the stack of the process.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 125

{trace, InternalTraceFlags}

InternalTraceFlags is an integer representing internal trace flag for this process. This InfoTuple may
be changed or removed without prior notice.

{trap_exit, Boolean}

Boolean is true if the process is trapping exits, otherwise it is false.

Note however, that not all implementations support every one of the above Items.

Failure: badarg if Pid is not a local process, or if Item is not a valid Item.

processes() -> [pid()]

Returns a list of process identifiers corresponding to all the processes currently existing on the local node.

Note that a process that is exiting, exists but is not alive, i.e., is_process_alive/1 will return false for a
process that is exiting, but its process identifier will be part of the result returned from processes/0.

> processes().
[<0.0.0>,<0.2.0>,<0.4.0>,<0.5.0>,<0.7.0>,<0.8.0>]

purge_module(Module) -> void()

Types:

Module = atom()

Removes old code for Module. Before this BIF is used, erlang:check_process_code/2 should be called to
check that no processes are executing old code in the module.

Warning:
This BIF is intended for the code server (see code(3)) and should not be used elsewhere.

Failure: badarg if there is no old code for Module.

put(Key, Val) -> OldVal | undefined

Types:

Key = Val = OldVal = term()

Adds a new Key to the process dictionary, associated with the value Val, and returns undefined. If Key already
exists, the old value is deleted and replaced by Val and the function returns the old value.

Note:
The values stored when put is evaluated within the scope of a catch will not be retracted if a throw is
evaluated, or if an error occurs.

> X = put(name, walrus), Y = put(name, carpenter),
Z = get(name),

erlang

126 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

{X, Y, Z}.
{undefined,walrus,carpenter}

erlang:raise(Class, Reason, Stacktrace)

Types:

Class = error | exit | throw

Reason = term()

Stacktrace = [{Module, Function, Arity | Args} | {Fun, Args}]

 Module = Function = atom()

 Arity = int()

 Args = [term()]

 Fun = [fun()]

Stops the execution of the calling process with an exception of given class, reason and call stack backtrace (stacktrace).

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. In general, it should be avoided
in applications, unless you know very well what you are doing.

Class is one of error, exit or throw, so if it were not for the stacktrace erlang:raise(Class, Reason,
Stacktrace) is equivalent to erlang:Class(Reason). Reason is any term and Stacktrace is a list as
returned from get_stacktrace(), that is a list of 3-tuples {Module, Function, Arity | Args} where
Module and Function are atoms and the third element is an integer arity or an argument list. The stacktrace may
also contain {Fun, Args} tuples where Fun is a local fun and Args is an argument list.

The stacktrace is used as the exception stacktrace for the calling process; it will be truncated to the current maximum
stacktrace depth.

Because evaluating this function causes the process to terminate, it has no return value - unless the arguments are
invalid, in which case the function returns the error reason, that is badarg. If you want to be really sure not to return
you can call error(erlang:raise(Class, Reason, Stacktrace)) and hope to distinguish exceptions
later.

erlang:read_timer(TimerRef) -> int() | false

Types:

TimerRef = reference()

TimerRef is a timer reference returned by erlang:send_after/3 or erlang:start_timer/3. If the timer is active,
the function returns the time in milliseconds left until the timer will expire, otherwise false (which means that
TimerRef was never a timer, that it has been cancelled, or that it has already delivered its message).

See also erlang:send_after/3, erlang:start_timer/3, and erlang:cancel_timer/1.

erlang:ref_to_list(Ref) -> string()

Types:

Ref = reference()

Returns a string which corresponds to the text representation of Ref.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 127

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It should not be used in application
programs.

register(RegName, Pid | Port) -> true

Types:

RegName = atom()

Pid = pid()

Port = port()

Associates the name RegName with a pid or a port identifier. RegName, which must be an atom, can be used instead
of the pid / port identifier in the send operator (RegName ! Message).

> register(db, Pid).
true

Failure: badarg if Pid is not an existing, local process or port, if RegName is already in use, if the process or port
is already registered (already has a name), or if RegName is the atom undefined.

registered() -> [RegName]

Types:

RegName = atom()

Returns a list of names which have been registered using register/2.

> registered().
[code_server, file_server, init, user, my_db]

erlang:resume_process(Suspendee) -> true

Types:

Suspendee = pid()

Decreases the suspend count on the process identified by Suspendee. Suspendee should previously
have been suspended via erlang:suspend_process/2, or erlang:suspend_process/1 by the process calling
erlang:resume_process(Suspendee). When the suspend count on Suspendee reach zero, Suspendee
will be resumed, i.e., the state of the Suspendee is changed from suspended into the state Suspendee was in
before it was suspended.

Warning:
This BIF is intended for debugging only.

Failures:

erlang

128 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

badarg
If Suspendee isn't a process identifier.

badarg
If the process calling erlang:resume_process/1 had not previously increased the suspend count on the
process identified by Suspendee.

badarg
If the process identified by Suspendee is not alive.

round(Number) -> int()

Types:

Number = number()

Returns an integer by rounding Number.

> round(5.5).
6

Allowed in guard tests.

self() -> pid()

Returns the pid (process identifier) of the calling process.

> self().
<0.26.0>

Allowed in guard tests.

erlang:send(Dest, Msg) -> Msg

Types:

Dest = pid() | port() | RegName | {RegName, Node}

Msg = term()

 RegName = atom()

 Node = node()

Sends a message and returns Msg. This is the same as Dest ! Msg.

Dest may be a remote or local pid, a (local) port, a locally registered name, or a tuple {RegName, Node} for a
registered name at another node.

erlang:send(Dest, Msg, [Option]) -> Res

Types:

Dest = pid() | port() | RegName | {RegName, Node}

 RegName = atom()

 Node = node()

Msg = term()

Option = nosuspend | noconnect

Res = ok | nosuspend | noconnect

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 129

Sends a message and returns ok, or does not send the message but returns something else (see below). Otherwise the
same as erlang:send/2. See also erlang:send_nosuspend/2,3. for more detailed explanation and warnings.

The possible options are:

nosuspend

If the sender would have to be suspended to do the send, nosuspend is returned instead.

noconnect

If the destination node would have to be auto-connected before doing the send, noconnect is returned instead.

Warning:
As with erlang:send_nosuspend/2,3: Use with extreme care!

erlang:send_after(Time, Dest, Msg) -> TimerRef

Types:

Time = int()

 0 <= Time <= 4294967295

Dest = pid() | RegName

 LocalPid = pid() (of a process, alive or dead, on the local node)

Msg = term()

TimerRef = reference()

Starts a timer which will send the message Msg to Dest after Time milliseconds.

If Dest is an atom, it is supposed to be the name of a registered process. The process referred to by the name is looked
up at the time of delivery. No error is given if the name does not refer to a process.

If Dest is a pid, the timer will be automatically canceled if the process referred to by the pid is not alive, or when the
process exits. This feature was introduced in erts version 5.4.11. Note that timers will not be automatically canceled
when Dest is an atom.

See also erlang:start_timer/3, erlang:cancel_timer/1, and erlang:read_timer/1.

Failure: badarg if the arguments does not satisfy the requirements specified above.

erlang:send_nosuspend(Dest, Msg) -> bool()

Types:

Dest = pid() | port() | RegName | {RegName, Node}

 RegName = atom()

 Node = node()

Msg = term()

The same as erlang:send(Dest, Msg, [nosuspend]), but returns true if the message was sent and false if the message
was not sent because the sender would have had to be suspended.

This function is intended for send operations towards an unreliable remote node without ever blocking the sending
(Erlang) process. If the connection to the remote node (usually not a real Erlang node, but a node written in C or Java)
is overloaded, this function will not send the message but return false instead.

The same happens, if Dest refers to a local port that is busy. For all other destinations (allowed for the ordinary send
operator '!') this function sends the message and returns true.

erlang

130 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

This function is only to be used in very rare circumstances where a process communicates with Erlang nodes that can
disappear without any trace causing the TCP buffers and the drivers queue to be over-full before the node will actually
be shut down (due to tick timeouts) by net_kernel. The normal reaction to take when this happens is some kind
of premature shutdown of the other node.

Note that ignoring the return value from this function would result in unreliable message passing, which is
contradictory to the Erlang programming model. The message is not sent if this function returns false.

Note also that in many systems, transient states of overloaded queues are normal. The fact that this function returns
false does not in any way mean that the other node is guaranteed to be non-responsive, it could be a temporary
overload. Also a return value of true does only mean that the message could be sent on the (TCP) channel without
blocking, the message is not guaranteed to have arrived at the remote node. Also in the case of a disconnected non-
responsive node, the return value is true (mimics the behaviour of the ! operator). The expected behaviour as well
as the actions to take when the function returns false are application and hardware specific.

Warning:
Use with extreme care!

erlang:send_nosuspend(Dest, Msg, Options) -> bool()

Types:

Dest = pid() | port() | RegName | {RegName, Node}

 RegName = atom()

 Node = node()

Msg = term()

Option = noconnect

The same as erlang:send(Dest, Msg, [nosuspend | Options]), but with boolean return value.

This function behaves like erlang:send_nosuspend/2), but takes a third parameter, a list of options. The only currently
implemented option is noconnect. The option noconnect makes the function return false if the remote node
is not currently reachable by the local node. The normal behaviour is to try to connect to the node, which may stall
the process for a shorter period. The use of the noconnect option makes it possible to be absolutely sure not to get
even the slightest delay when sending to a remote process. This is especially useful when communicating with nodes
who expect to always be the connecting part (i.e. nodes written in C or Java).

Whenever the function returns false (either when a suspend would occur or when noconnect was specified and
the node was not already connected), the message is guaranteed not to have been sent.

Warning:
Use with extreme care!

erlang:set_cookie(Node, Cookie) -> true

Types:

Node = node()

Cookie = atom()

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 131

Sets the magic cookie of Node to the atom Cookie. If Node is the local node, the function also sets the cookie of
all other unknown nodes to Cookie (see Distributed Erlang in the Erlang Reference Manual).

Failure: function_clause if the local node is not alive.

setelement(Index, Tuple1, Value) -> Tuple2

Types:

Index = 1..tuple_size(Tuple1)

Tuple1 = Tuple2 = tuple()

Value = term()

Returns a tuple which is a copy of the argument Tuple1 with the element given by the integer argument Index (the
first element is the element with index 1) replaced by the argument Value.

> setelement(2, {10, green, bottles}, red).
{10,red,bottles}

size(Item) -> int()

Types:

Item = tuple() | binary()

Returns an integer which is the size of the argument Item, which must be either a tuple or a binary.

> size({morni, mulle, bwange}).
3

Allowed in guard tests.

spawn(Fun) -> pid()

Types:

Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list []. Otherwise works like spawn/3.

spawn(Node, Fun) -> pid()

Types:

Node = node()

Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list [] on Node. If Node does not
exist, a useless pid is returned. Otherwise works like spawn/3.

spawn(Module, Function, Args) -> pid()

Types:

Module = Function = atom()

Args = [term()]

Returns the pid of a new process started by the application of Module:Function to Args. The new process created
will be placed in the system scheduler queue and be run some time later.

erlang

132 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

error_handler:undefined_function(Module, Function, Args) is evaluated by the new process
if Module:Function/Arity does not exist (where Arity is the length of Args). The error handler can
be redefined (see process_flag/2). If error_handler is undefined, or the user has redefined the default
error_handler its replacement is undefined, a failure with the reason undef will occur.

> spawn(speed, regulator, [high_speed, thin_cut]).
<0.13.1>

spawn(Node, Module, Function, Args) -> pid()

Types:

Node = node()

Module = Function = atom()

Args = [term()]

Returns the pid of a new process started by the application of Module:Function to Args on Node. If Node does
not exists, a useless pid is returned. Otherwise works like spawn/3.

spawn_link(Fun) -> pid()

Types:

Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list []. A link is created between the
calling process and the new process, atomically. Otherwise works like spawn/3.

spawn_link(Node, Fun) -> pid()

Types:

Node = node()

Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list [] on Node. A link is created
between the calling process and the new process, atomically. If Node does not exist, a useless pid is returned (and due
to the link, an exit signal with exit reason noconnection will be received). Otherwise works like spawn/3.

spawn_link(Module, Function, Args) -> pid()

Types:

Module = Function = atom()

Args = [term()]

Returns the pid of a new process started by the application of Module:Function to Args. A link is created between
the calling process and the new process, atomically. Otherwise works like spawn/3.

spawn_link(Node, Module, Function, Args) -> pid()

Types:

Node = node()

Module = Function = atom()

Args = [term()]

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 133

Returns the pid of a new process started by the application of Module:Function to Args on Node. A link is
created between the calling process and the new process, atomically. If Node does not exist, a useless pid is returned
(and due to the link, an exit signal with exit reason noconnection will be received). Otherwise works like spawn/3.

spawn_monitor(Fun) -> {pid(),reference()}

Types:

Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list [] and reference for a monitor
created to the new process. Otherwise works like spawn/3.

spawn_monitor(Module, Function, Args) -> {pid(),reference()}

Types:

Module = Function = atom()

Args = [term()]

A new process is started by the application of Module:Function to Args, and the process is monitored at the
same time. Returns the pid and a reference for the monitor. Otherwise works like spawn/3.

spawn_opt(Fun, [Option]) -> pid() | {pid(),reference()}

Types:

Fun = fun()

Option = link | monitor | {priority, Level} | {fullsweep_after, Number} | {min_heap_size, Size} |
{min_bin_vheap_size, VSize}

 Level = low | normal | high

 Number = int()

 Size = int()

 VSize = int()

Returns the pid of a new process started by the application of Fun to the empty list []. Otherwise works like
spawn_opt/4.

If the option monitor is given, the newly created process will be monitored and both the pid and reference for the
monitor will be returned.

spawn_opt(Node, Fun, [Option]) -> pid()

Types:

Node = node()

Fun = fun()

Option = link | {priority, Level} | {fullsweep_after, Number} | {min_heap_size, Size} |
{min_bin_vheap_size, VSize}

 Level = low | normal | high

 Number = int()

 Size = int()

 VSize = int()

Returns the pid of a new process started by the application of Fun to the empty list [] on Node. If Node does not
exist, a useless pid is returned. Otherwise works like spawn_opt/4.

erlang

134 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

spawn_opt(Module, Function, Args, [Option]) -> pid() | {pid(),reference()}

Types:

Module = Function = atom()

Args = [term()]

Option = link | monitor | {priority, Level} | {fullsweep_after, Number} | {min_heap_size, Size} |
{min_bin_vheap_size, VSize}

 Level = low | normal | high

 Number = int()

 Size = int()

 VSize = int()

Works exactly like spawn/3, except that an extra option list is given when creating the process.

If the option monitor is given, the newly created process will be monitored and both the pid and reference for the
monitor will be returned.

link

Sets a link to the parent process (like spawn_link/3 does).

monitor

Monitor the new process (just like monitor/2 does).

{priority, Level}

Sets the priority of the new process. Equivalent to executing process_flag(priority, Level) in the start function of
the new process, except that the priority will be set before the process is selected for execution for the first time.
For more information on priorities see process_flag(priority, Level).

{fullsweep_after, Number}

This option is only useful for performance tuning. In general, you should not use this option unless you know
that there is problem with execution times and/or memory consumption, and you should measure to make sure
that the option improved matters.

The Erlang runtime system uses a generational garbage collection scheme, using an "old heap" for data that
has survived at least one garbage collection. When there is no more room on the old heap, a fullsweep garbage
collection will be done.

The fullsweep_after option makes it possible to specify the maximum number of generational collections
before forcing a fullsweep even if there is still room on the old heap. Setting the number to zero effectively
disables the general collection algorithm, meaning that all live data is copied at every garbage collection.

Here are a few cases when it could be useful to change fullsweep_after. Firstly, if binaries that are no
longer used should be thrown away as soon as possible. (Set Number to zero.) Secondly, a process that mostly
have short-lived data will be fullsweeped seldom or never, meaning that the old heap will contain mostly garbage.
To ensure a fullsweep once in a while, set Number to a suitable value such as 10 or 20. Thirdly, in embedded
systems with limited amount of RAM and no virtual memory, one might want to preserve memory by setting
Number to zero. (The value may be set globally, see erlang:system_flag/2.)

{min_heap_size, Size}

This option is only useful for performance tuning. In general, you should not use this option unless you know
that there is problem with execution times and/or memory consumption, and you should measure to make sure
that the option improved matters.

Gives a minimum heap size in words. Setting this value higher than the system default might speed up some
processes because less garbage collection is done. Setting too high value, however, might waste memory and

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 135

slow down the system due to worse data locality. Therefore, it is recommended to use this option only for fine-
tuning an application and to measure the execution time with various Size values.

{min_bin_vheap_size, VSize}

This option is only useful for performance tuning. In general, you should not use this option unless you know
that there is problem with execution times and/or memory consumption, and you should measure to make sure
that the option improved matters.

Gives a minimum binary virtual heap size in words. Setting this value higher than the system default might speed
up some processes because less garbage collection is done. Setting too high value, however, might waste memory.
Therefore, it is recommended to use this option only for fine-tuning an application and to measure the execution
time with various VSize values.

spawn_opt(Node, Module, Function, Args, [Option]) -> pid()

Types:

Node = node()

Module = Function = atom()

Args = [term()]

Option = link | {priority, Level} | {fullsweep_after, Number} | {min_heap_size, Size} |
{min_bin_vheap_size, VSize}

 Level = low | normal | high

 Number = int()

 Size = int()

 VSize = int()

Returns the pid of a new process started by the application of Module:Function to Args on Node. If Node does
not exist, a useless pid is returned. Otherwise works like spawn_opt/4.

split_binary(Bin, Pos) -> {Bin1, Bin2}

Types:

Bin = Bin1 = Bin2 = binary()

Pos = 0..byte_size(Bin)

Returns a tuple containing the binaries which are the result of splitting Bin into two parts at position Pos. This is not
a destructive operation. After the operation, there will be three binaries altogether.

> B = list_to_binary("0123456789").
<<"0123456789">>
> byte_size(B).
10
> {B1, B2} = split_binary(B,3).
{<<"012">>,<<"3456789">>}
> byte_size(B1).
3
> byte_size(B2).
7

erlang:start_timer(Time, Dest, Msg) -> TimerRef

Types:

Time = int()

erlang

136 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

 0 <= Time <= 4294967295

Dest = LocalPid | RegName

 LocalPid = pid() (of a process, alive or dead, on the local node)

 RegName = atom()

Msg = term()

TimerRef = reference()

Starts a timer which will send the message {timeout, TimerRef, Msg} to Dest after Time milliseconds.

If Dest is an atom, it is supposed to be the name of a registered process. The process referred to by the name is looked
up at the time of delivery. No error is given if the name does not refer to a process.

If Dest is a pid, the timer will be automatically canceled if the process referred to by the pid is not alive, or when the
process exits. This feature was introduced in erts version 5.4.11. Note that timers will not be automatically canceled
when Dest is an atom.

See also erlang:send_after/3, erlang:cancel_timer/1, and erlang:read_timer/1.

Failure: badarg if the arguments does not satisfy the requirements specified above.

statistics(Type) -> Res

Types:

Type, Res -- see below

Returns information about the system as specified by Type:

context_switches

Returns {ContextSwitches, 0}, where ContextSwitches is the total number of context switches since
the system started.

exact_reductions

Returns {Total_Exact_Reductions, Exact_Reductions_Since_Last_Call}.

NOTE:statistics(exact_reductions) is a more expensive operation than statistics(reductions)
especially on an Erlang machine with SMP support.

garbage_collection

Returns {Number_of_GCs, Words_Reclaimed, 0}. This information may not be valid for all
implementations.

io

Returns {{input, Input}, {output, Output}}, where Input is the total number of bytes received
through ports, and Output is the total number of bytes output to ports.

reductions

Returns {Total_Reductions, Reductions_Since_Last_Call}.

NOTE: From erts version 5.5 (OTP release R11B) this value does not include reductions performed in current
time slices of currently scheduled processes. If an exact value is wanted, use statistics(exact_reductions).

run_queue

Returns the length of the run queue, that is, the number of processes that are ready to run.

runtime

Returns {Total_Run_Time, Time_Since_Last_Call}. Note that the run-time is the sum of the run-
time for all threads in the Erlang run-time system and may therefore be greater than the wall-clock time.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 137

wall_clock

Returns {Total_Wallclock_Time, Wallclock_Time_Since_Last_Call}. wall_clock can be
used in the same manner as runtime, except that real time is measured as opposed to runtime or CPU time.

All times are in milliseconds.

> statistics(runtime).
{1690,1620}
> statistics(reductions).
{2046,11}
> statistics(garbage_collection).
{85,23961,0}

erlang:suspend_process(Suspendee, OptList) -> true | false

Types:

Suspendee = pid()

OptList = [Opt]

Opt = atom()

Increases the suspend count on the process identified by Suspendee and puts it in the suspended state if it isn't already
in the suspended state. A suspended process will not be scheduled for execution until the process has been resumed.

A process can be suspended by multiple processes and can be suspended multiple times by a single process.
A suspended process will not leave the suspended state until its suspend count reach zero. The suspend count
of Suspendee is decreased when erlang:resume_process(Suspendee) is called by the same process that called
erlang:suspend_process(Suspendee). All increased suspend counts on other processes acquired by a
process will automatically be decreased when the process terminates.

Currently the following options (Opts) are available:

asynchronous
A suspend request is sent to the process identified by Suspendee. Suspendee will eventually suspend
unless it is resumed before it was able to suspend. The caller of erlang:suspend_process/2 will return
immediately, regardless of whether the Suspendee has suspended yet or not. Note that the point in time when
the Suspendee will actually suspend cannot be deduced from other events in the system. The only guarantee
given is that the Suspendee will eventually suspend (unless it is resumed). If the asynchronous option
has not been passed, the caller of erlang:suspend_process/2 will be blocked until the Suspendee
has actually suspended.

unless_suspending
The process identified by Suspendee will be suspended unless the calling process already is suspending the
Suspendee. If unless_suspending is combined with the asynchronous option, a suspend request
will be sent unless the calling process already is suspending the Suspendee or if a suspend request already
has been sent and is in transit. If the calling process already is suspending the Suspendee, or if combined
with the asynchronous option and a send request already is in transit, false is returned and the suspend
count on Suspendee will remain unchanged.

If the suspend count on the process identified by Suspendee was increased, true is returned; otherwise, false
is returned.

erlang

138 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Warning:
This BIF is intended for debugging only.

Failures:

badarg
If Suspendee isn't a process identifier.

badarg
If the process identified by Suspendee is same the process as the process calling
erlang:suspend_process/2.

badarg
If the process identified by Suspendee is not alive.

badarg
If the process identified by Suspendee resides on another node.

badarg
If OptList isn't a proper list of valid Opts.

system_limit
If the process identified by Suspendee has been suspended more times by the calling process than can be
represented by the currently used internal data structures. The current system limit is larger than 2 000 000 000
suspends, and it will never be less than that.

erlang:suspend_process(Suspendee) -> true

Types:

Suspendee = pid()

Suspends the process identified by Suspendee. The same as calling erlang:suspend_process(Suspendee, []). For
more information see the documentation of erlang:suspend_process/2.

Warning:
This BIF is intended for debugging only.

erlang:system_flag(Flag, Value) -> OldValue

Types:

Flag, Value, OldValue -- see below

Sets various system properties of the Erlang node. Returns the old value of the flag.

erlang:system_flag(backtrace_depth, Depth)

Sets the maximum depth of call stack back-traces in the exit reason element of 'EXIT' tuples.

erlang:system_flag(cpu_topology, CpuTopology)

Sets the user defined CpuTopology. The user defined CPU topology will override any automatically
detected CPU topology. By passing undefined as CpuTopology the system will revert back
to the CPU topology automatically detected. The returned value equals the value returned from
erlang:system_info(cpu_topology) before the change was made.

The CPU topology is used when binding schedulers to logical processors. If schedulers are already bound when
the CPU topology is changed, the schedulers will be sent a request to rebind according to the new CPU topology.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 139

The user defined CPU topology can also be set by passing the +sct command line argument to erl.

For information on the CpuTopology type and more, see the documentation of
erlang:system_info(cpu_topology), the erl +sct emulator flag, and erlang:system_flag(scheduler_bind_type,
How).

erlang:system_flag(fullsweep_after, Number)

Number is a non-negative integer which indicates how many times generational garbage collections can be done
without forcing a fullsweep collection. The value applies to new processes; processes already running are not
affected.

In low-memory systems (especially without virtual memory), setting the value to 0 can help to conserve memory.

An alternative way to set this value is through the (operating system) environment variable
ERL_FULLSWEEP_AFTER.

erlang:system_flag(min_heap_size, MinHeapSize)

Sets the default minimum heap size for processes. The size is given in words. The new min_heap_size only
effects processes spawned after the change of min_heap_size has been made. The min_heap_size can
be set for individual processes by use of spawn_opt/N or process_flag/2.

erlang:system_flag(min_bin_vheap_size, MinBinVHeapSize)

Sets the default minimum binary virtual heap size for processes. The size is given in words. The new
min_bin_vhheap_size only effects processes spawned after the change of min_bin_vhheap_size
has been made. The min_bin_vheap_size can be set for individual processes by use of spawn_opt/N or
process_flag/2.

erlang:system_flag(multi_scheduling, BlockState)

BlockState = block | unblock

If multi-scheduling is enabled, more than one scheduler thread is used by the emulator. Multi-scheduling can be
blocked. When multi-scheduling has been blocked, only one scheduler thread will schedule Erlang processes.

If BlockState =:= block, multi-scheduling will be blocked. If BlockState =:= unblock and no-one
else is blocking multi-scheduling and this process has only blocked one time, multi-scheduling will be unblocked.
One process can block multi-scheduling multiple times. If a process has blocked multiple times, it has to unblock
exactly as many times as it has blocked before it has released its multi-scheduling block. If a process that has
blocked multi-scheduling exits, it will release its blocking of multi-scheduling.

The return values are disabled, blocked, or enabled. The returned value describes the state just after the
call to erlang:system_flag(multi_scheduling, BlockState) has been made. The return values
are described in the documentation of erlang:system_info(multi_scheduling).

NOTE: Blocking of multi-scheduling should normally not be needed. If you feel that you need to block multi-
scheduling, think through the problem at least a couple of times again. Blocking multi-scheduling should only be
used as a last resort since it will most likely be a very inefficient way to solve the problem.

See also erlang:system_info(multi_scheduling), erlang:system_info(multi_scheduling_blockers), and
erlang:system_info(schedulers).

erlang:system_flag(scheduler_bind_type, How)

Controls if and how schedulers are bound to logical processors.

When erlang:system_flag(scheduler_bind_type, How) is called, an asynchronous signal is sent
to all schedulers online which causes them to try to bind or unbind as requested. NOTE: If a scheduler fails to bind,
this will often be silently ignored. This since it isn't always possible to verify valid logical processor identifiers. If
an error is reported, it will be reported to the error_logger. If you want to verify that the schedulers actually
have bound as requested, call erlang:system_info(scheduler_bindings).

erlang

140 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Schedulers can currently only be bound on newer Linux, Solaris, FreeBSD, and Windows systems, but more
systems will be supported in the future.

In order for the runtime system to be able to bind schedulers, the CPU topology needs to be known. If the runtime
system fails to automatically detect the CPU topology, it can be defined. For more information on how to define
the CPU topology, see erlang:system_flag(cpu_topology, CpuTopology).

The runtime system will by default bind schedulers to logical processors using the default_bind bind type if
the amount of schedulers are at least equal to the amount of logical processors configured, binding of schedulers
is supported, and a CPU topology is available at startup.

NOTE: If the Erlang runtime system is the only operating system process that binds threads to logical processors,
this improves the performance of the runtime system. However, if other operating system processes (as for
example another Erlang runtime system) also bind threads to logical processors, there might be a performance
penalty instead. If this is the case you, are are advised to unbind the schedulers using the +sbtu command line
argument, or erlang:system_flag(scheduler_bind_type, unbound).

Schedulers can be bound in different ways. The How argument determines how schedulers are bound. How can
currently be one of:

unbound

Schedulers will not be bound to logical processors, i.e., the operating system decides where the scheduler threads
execute, and when to migrate them. This is the default.

no_spread

Schedulers with close scheduler identifiers will be bound as close as possible in hardware.

thread_spread

Thread refers to hardware threads (e.g. Intels hyper-threads). Schedulers with low scheduler identifiers, will be
bound to the first hardware thread of each core, then schedulers with higher scheduler identifiers will be bound
to the second hardware thread of each core, etc.

processor_spread

Schedulers will be spread like thread_spread, but also over physical processor chips.

spread

Schedulers will be spread as much as possible.

no_node_thread_spread

Like thread_spread, but if multiple NUMA (Non-Uniform Memory Access) nodes exists, schedulers will be
spread over one NUMA node at a time, i.e., all logical processors of one NUMA node will be bound to schedulers
in sequence.

no_node_processor_spread

Like processor_spread, but if multiple NUMA nodes exists, schedulers will be spread over one NUMA
node at a time, i.e., all logical processors of one NUMA node will be bound to schedulers in sequence.

thread_no_node_processor_spread

A combination of thread_spread, and no_node_processor_spread. Schedulers will be spread over
hardware threads across NUMA nodes, but schedulers will only be spread over processors internally in one
NUMA node at a time.

default_bind

Binds schedulers the default way. Currently the default is thread_no_node_processor_spread (which
might change in the future).

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 141

How schedulers are bound matters. For example, in situations when there are fewer running processes than
schedulers online, the runtime system tries to migrate processes to schedulers with low scheduler identifiers. The
more the schedulers are spread over the hardware, the more resources will be available to the runtime system
in such situations.

The value returned equals How before the scheduler_bind_type flag was changed.

Failure:

notsup

If binding of schedulers is not supported.

badarg

If How isn't one of the documented alternatives.

badarg

If no CPU topology information is available.

The scheduler bind type can also be set by passing the +sbt command line argument to erl.

For more information, see erlang:system_info(scheduler_bind_type), erlang:system_info(scheduler_bindings),
the erl +sbt emulator flag, and erlang:system_flag(cpu_topology, CpuTopology).

erlang:system_flag(schedulers_online, SchedulersOnline)

Sets the amount of schedulers online. Valid range is 1 <= SchedulerId <= erlang:system_info(schedulers).

For more information see, erlang:system_info(schedulers), and erlang:system_info(schedulers_online).

erlang:system_flag(trace_control_word, TCW)

Sets the value of the node's trace control word to TCW. TCW should be an unsigned integer. For more information
see documentation of the set_tcw function in the match specification documentation in the ERTS User's Guide.

Note:
The schedulers option has been removed as of erts version 5.5.3. The number of scheduler threads is
determined at emulator boot time, and cannot be changed after that.

erlang:system_info(Type) -> Res

Types:

Type, Res -- see below

Returns various information about the current system (emulator) as specified by Type:

allocated_areas

Returns a list of tuples with information about miscellaneous allocated memory areas.

Each tuple contains an atom describing type of memory as first element and amount of allocated memory in bytes
as second element. In those cases when there is information present about allocated and used memory, a third
element is present. This third element contains the amount of used memory in bytes.

erlang:system_info(allocated_areas) is intended for debugging, and the content is highly
implementation dependent. The content of the results will therefore change when needed without prior notice.

Note: The sum of these values is not the total amount of memory allocated by the emulator. Some values are part
of other values, and some memory areas are not part of the result. If you are interested in the total amount of
memory allocated by the emulator see erlang:memory/0,1.

erlang

142 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

allocator

Returns {Allocator, Version, Features, Settings}.

Types:

• Allocator = undefined | glibc

• Version = [int()]

• Features = [atom()]

• Settings = [{Subsystem, [{Parameter, Value}]}]

• Subsystem = atom()

• Parameter = atom()

• Value = term()

Explanation:

• Allocator corresponds to the malloc() implementation used. If Allocator equals undefined,
the malloc() implementation used could not be identified. Currently glibc can be identified.

• Version is a list of integers (but not a string) representing the version of the malloc() implementation
used.

• Features is a list of atoms representing allocation features used.

• Settings is a list of subsystems, their configurable parameters, and used values. Settings may differ
between different combinations of platforms, allocators, and allocation features. Memory sizes are given in
bytes.

See also "System Flags Effecting erts_alloc" in erts_alloc(3).

alloc_util_allocators

Returns a list of the names of all allocators using the ERTS internal alloc_util framework as atoms. For
more information see the "the alloc_util framework" section in the erts_alloc(3) documentation.

{allocator, Alloc}

Returns information about the specified allocator. As of erts version 5.6.1 the return value is a list of
{instance, InstanceNo, InstanceInfo} tuples where InstanceInfo contains information about
a specific instance of the allocator. If Alloc is not a recognized allocator, undefined is returned. If Alloc
is disabled, false is returned.

Note: The information returned is highly implementation dependent and may be changed, or removed at any time
without prior notice. It was initially intended as a tool when developing new allocators, but since it might be of
interest for others it has been briefly documented.

The recognized allocators are listed in erts_alloc(3). After reading the erts_alloc(3) documentation, the
returned information should more or less speak for itself. But it can be worth explaining some things. Call
counts are presented by two values. The first value is giga calls, and the second value is calls. mbcs, and
sbcs are abbreviations for, respectively, multi-block carriers, and single-block carriers. Sizes are presented
in bytes. When it is not a size that is presented, it is the amount of something. Sizes and amounts are often
presented by three values, the first is current value, the second is maximum value since the last call to
erlang:system_info({allocator, Alloc}), and the third is maximum value since the emulator was
started. If only one value is present, it is the current value. fix_alloc memory block types are presented by
two values. The first value is memory pool size and the second value used memory size.

{allocator_sizes, Alloc}

Returns various size information for the specified allocator. The information returned is a subset of the information
returned by erlang:system_info({allocator, Alloc}).

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 143

build_type

Returns an atom describing the build type of the runtime system. This is normally the atom opt for optimized.
Other possible return values are debug, purify, quantify, purecov, gcov, valgrind, gprof, and
lcnt. Possible return values may be added and/or removed at any time without prior notice.

c_compiler_used

Returns a two-tuple describing the C compiler used when compiling the runtime system. The first element is an
atom describing the name of the compiler, or undefined if unknown. The second element is a term describing
the version of the compiler, or undefined if unknown.

check_io

Returns a list containing miscellaneous information regarding the emulators internal I/O checking. Note, the
content of the returned list may vary between platforms and over time. The only thing guaranteed is that a list
is returned.

compat_rel

Returns the compatibility mode of the local node as an integer. The integer returned represents the Erlang/OTP
release which the current emulator has been set to be backward compatible with. The compatibility mode can be
configured at startup by using the command line flag +R, see erl(1).

cpu_topology

Returns the CpuTopology which currently is used by the emulator. The CPU topology is used when binding
schedulers to logical processors. The CPU topology used is the user defined CPU topology if such exist; otherwise,
the automatically detected CPU topology if such exist. If no CPU topology exist undefined is returned.

Types:

• CpuTopology = LevelEntryList | undefined

• LevelEntryList = [LevelEntry] (all LevelEntrys of a LevelEntryList must contain the
same LevelTag, except on the top level where both node and processor LevelTags may co-exist)

• LevelEntry = {LevelTag, SubLevel} | {LevelTag, InfoList, SubLevel}
({LevelTag, SubLevel} == {LevelTag, [], SubLevel})

• LevelTag = node|processor|core|thread (more LevelTags may be introduced in the
future)

• SubLevel = [LevelEntry] | LogicalCpuId

• LogicalCpuId = {logical, integer()}

• InfoList = [] (the InfoList may be extended in the future)

node refers to NUMA (non-uniform memory access) nodes, and thread refers to hardware threads (e.g. Intels
hyper-threads).

A level in the CpuTopology term can be omitted if only one entry exists and the InfoList is empty.

thread can only be a sub level to core. core can be a sub level to either processor or node. processor
can either be on the top level or a sub level to node. node can either be on the top level or a sub level to
processor. That is, NUMA nodes can be processor internal or processor external. A CPU topology can consist
of a mix of processor internal and external NUMA nodes, as long as each logical CPU belongs to one and only one
NUMA node. Cache hierarchy is not part of the CpuTopology type yet, but will be in the future. Other things
may also make it into the CPU topology in the future. In other words, expect the CpuTopology type to change.

{cpu_topology, defined}

Returns the user defined CpuTopology. For more information see the documentation of
erlang:system_flag(cpu_topology, CpuTopology) and the documentation of the cpu_topology argument.

erlang

144 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

{cpu_topology, detected}

Returns the automatically detected CpuTopology. The emulator currently only detects the CPU topology on
some newer Linux, Solaris, FreeBSD, and Windows systems. On Windows system with more than 32 logical
processors the CPU topology is not detected.

For more information see the documentation of the cpu_topology argument.

{cpu_topology, used}

Returns the CpuTopology which is used by the emulator. For more information see the documentation of the
cpu_topology argument.

creation

Returns the creation of the local node as an integer. The creation is changed when a node is restarted. The creation
of a node is stored in process identifiers, port identifiers, and references. This makes it (to some extent) possible
to distinguish between identifiers from different incarnations of a node. Currently valid creations are integers in
the range 1..3, but this may (probably will) change in the future. If the node is not alive, 0 is returned.

debug_compiled

Returns true if the emulator has been debug compiled; otherwise, false.

dist

Returns a binary containing a string of distribution information formatted as in Erlang crash dumps. For more
information see the "How to interpret the Erlang crash dumps" chapter in the ERTS User's Guide.

dist_ctrl

Returns a list of tuples {Node, ControllingEntity}, one entry for each connected remote node.
The Node is the name of the node and the ControllingEntity is the port or pid responsible for the
communication to that node. More specifically, the ControllingEntity for nodes connected via TCP/IP
(the normal case) is the socket actually used in communication with the specific node.

driver_version

Returns a string containing the erlang driver version used by the runtime system. It will be on the form "<major
ver>.<minor ver>".

elib_malloc

This option will be removed in a future release. The return value will always be false since the elib_malloc
allocator has been removed.

dist_buf_busy_limit

Returns the value of the distribution buffer busy limit in bytes. This limit can be set on startup by passing the
+zdbbl command line flag to erl.

fullsweep_after

Returns {fullsweep_after, int()} which is the fullsweep_after garbage collection setting used
by default. For more information see garbage_collection described below.

garbage_collection

Returns a list describing the default garbage collection settings. A process spawned on the local node by a
spawn or spawn_link will use these garbage collection settings. The default settings can be changed by use
of system_flag/2. spawn_opt/4 can spawn a process that does not use the default settings.

global_heaps_size

Returns the current size of the shared (global) heap.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 145

heap_sizes

Returns a list of integers representing valid heap sizes in words. All Erlang heaps are sized from sizes in this list.

heap_type

Returns the heap type used by the current emulator. Currently the following heap types exist:

private

Each process has a heap reserved for its use and no references between heaps of different processes are allowed.
Messages passed between processes are copied between heaps.

shared

One heap for use by all processes. Messages passed between processes are passed by reference.

hybrid

A hybrid of the private and shared heap types. A shared heap as well as private heaps are used.

info

Returns a binary containing a string of miscellaneous system information formatted as in Erlang crash dumps.
For more information see the "How to interpret the Erlang crash dumps" chapter in the ERTS User's Guide.

kernel_poll

Returns true if the emulator uses some kind of kernel-poll implementation; otherwise, false.

loaded

Returns a binary containing a string of loaded module information formatted as in Erlang crash dumps. For more
information see the "How to interpret the Erlang crash dumps" chapter in the ERTS User's Guide.

logical_processors

Returns the detected number of logical processors configured on the system. The return value is either an integer,
or the atom unknown if the emulator wasn't able to detect logical processors configured.

logical_processors_available

Returns the detected number of logical processors available to the Erlang runtime system. The return value is
either an integer, or the atom unknown if the emulator wasn't able to detect logical processors available. The
number of logical processors available is less than or equal to the number of logical processors online.

logical_processors_online

Returns the detected number of logical processors online on the system. The return value is either an integer,
or the atom unknown if the emulator wasn't able to detect logical processors online. The number of logical
processors online is less than or equal to the number of logical processors configured.

machine

Returns a string containing the Erlang machine name.

min_heap_size

Returns {min_heap_size, MinHeapSize} where MinHeapSize is the current system wide minimum
heap size for spawned processes.

min_bin_vheap_size

Returns {min_bin_vheap_size, MinBinVHeapSize} where MinBinVHeapSize is the current
system wide minimum binary virtual heap size for spawned processes.

erlang

146 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

modified_timing_level

Returns the modified timing level (an integer) if modified timing has been enabled; otherwise, undefined. See
the +T command line flag in the documentation of the erl(1) command for more information on modified timing.

multi_scheduling

Returns disabled, blocked, or enabled. A description of the return values:

disabled

The emulator has only one scheduler thread. The emulator does not have SMP support, or have been started with
only one scheduler thread.

blocked

The emulator has more than one scheduler thread, but all scheduler threads but one have been blocked, i.e., only
one scheduler thread will schedule Erlang processes and execute Erlang code.

enabled

The emulator has more than one scheduler thread, and no scheduler threads have been blocked, i.e., all available
scheduler threads will schedule Erlang processes and execute Erlang code.

See also erlang:system_flag(multi_scheduling, BlockState), erlang:system_info(multi_scheduling_blockers), and
erlang:system_info(schedulers).

multi_scheduling_blockers

Returns a list of PIDs when multi-scheduling is blocked; otherwise, the empty list. The PIDs in the list is PIDs
of the processes currently blocking multi-scheduling. A PID will only be present once in the list, even if the
corresponding process has blocked multiple times.

See also erlang:system_flag(multi_scheduling, BlockState), erlang:system_info(multi_scheduling), and
erlang:system_info(schedulers).

otp_release

Returns a string containing the OTP release number.

process_count

Returns the number of processes currently existing at the local node as an integer. The same value as
length(processes()) returns.

process_limit

Returns the maximum number of concurrently existing processes at the local node as an integer. This limit can
be configured at startup by using the command line flag +P, see erl(1).

procs

Returns a binary containing a string of process and port information formatted as in Erlang crash dumps. For
more information see the "How to interpret the Erlang crash dumps" chapter in the ERTS User's Guide.

scheduler_bind_type

Returns information on how user has requested schedulers to be bound or not bound.

NOTE: Even though user has requested schedulers to be bound via erlang:system_flag(scheduler_bind_type,
How), they might have silently failed to bind. In order to inspect actual scheduler bindings call
erlang:system_info(scheduler_bindings).

For more information, see erlang:system_flag(scheduler_bind_type, How), and
erlang:system_info(scheduler_bindings).

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 147

scheduler_bindings

Returns information on currently used scheduler bindings.

A tuple of a size equal to erlang:system_info(schedulers) is returned. The elements of the tuple are
integers or the atom unbound. Logical processor identifiers are represented as integers. The Nth
element of the tuple equals the current binding for the scheduler with the scheduler identifier equal
to N. E.g., if the schedulers have been bound, element(erlang:system_info(scheduler_id),
erlang:system_info(scheduler_bindings)) will return the identifier of the logical processor that
the calling process is executing on.

Note that only schedulers online can be bound to logical processors.

For more information, see erlang:system_flag(scheduler_bind_type, How),
erlang:system_info(schedulers_online).

scheduler_id

Returns the scheduler id (SchedulerId) of the scheduler thread that the calling process is
executing on. SchedulerId is a positive integer; where 1 <= SchedulerId <=
erlang:system_info(schedulers). See also erlang:system_info(schedulers).

schedulers

Returns the number of scheduler threads used by the emulator. Scheduler threads online schedules Erlang
processes and Erlang ports, and execute Erlang code and Erlang linked in driver code.

The number of scheduler threads is determined at emulator boot time and cannot be changed after that. The
amount of schedulers online can however be changed at any time.

See also erlang:system_flag(schedulers_online, SchedulersOnline), erlang:system_info(schedulers_online),
erlang:system_info(scheduler_id), erlang:system_flag(multi_scheduling, BlockState),
erlang:system_info(multi_scheduling), and and erlang:system_info(multi_scheduling_blockers).

schedulers_online

Returns the amount of schedulers online. The scheduler identifiers of schedulers online satisfy the following
relationship: 1 <= SchedulerId <= erlang:system_info(schedulers_online).

For more information, see erlang:system_info(schedulers), and erlang:system_flag(schedulers_online,
SchedulersOnline).

smp_support

Returns true if the emulator has been compiled with smp support; otherwise, false.

system_version

Returns a string containing version number and some important properties such as the number of schedulers.

system_architecture

Returns a string containing the processor and OS architecture the emulator is built for.

threads

Returns true if the emulator has been compiled with thread support; otherwise, false is returned.

thread_pool_size

Returns the number of async threads in the async thread pool used for asynchronous driver calls (driver_async())
as an integer.

trace_control_word

Returns the value of the node's trace control word. For more information see documentation of the function
get_tcw in "Match Specifications in Erlang", ERTS User's Guide.

erlang

148 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

update_cpu_info

The runtime system rereads the CPU information available and updates its internally stored information about
the detected CPU topology and the amount of logical processors configured, online, and available. If the CPU
information has changed since the last time it was read, the atom changed is returned; otherwise, the atom
unchanged is returned. If the CPU information has changed you probably want to adjust the amount of
schedulers online. You typically want to have as many schedulers online as logical processors available.

version

Returns a string containing the version number of the emulator.

wordsize

Same as {wordsize, internal}

{wordsize, internal}

Returns the size of Erlang term words in bytes as an integer, i.e. on a 32-bit architecture 4 is returned, and on a
pure 64-bit architecture 8 is returned. On a halfword 64-bit emulator, 4 is returned, as the Erlang terms are stored
using a virtual wordsize of half the systems wordsize.

{wordsize, external}

Returns the true wordsize of the emulator, i.e. the size of a pointer, in bytes as an integer. On a pure 32-bit
architecture 4 is returned, on both a halfword and pure 64-bit architecture, 8 is returned.

Note:
The scheduler argument has changed name to scheduler_id. This in order to avoid mixup with the
schedulers argument. The scheduler argument was introduced in ERTS version 5.5 and renamed in ERTS
version 5.5.1.

erlang:system_monitor() -> MonSettings

Types:

MonSettings -> {MonitorPid, Options} | undefined

 MonitorPid = pid()

 Options = [Option]

 Option = {long_gc, Time} | {large_heap, Size} | busy_port | busy_dist_port

 Time = Size = int()

Returns the current system monitoring settings set by erlang:system_monitor/2 as {MonitorPid, Options}, or
undefined if there are no settings. The order of the options may be different from the one that was set.

erlang:system_monitor(undefined | {MonitorPid, Options}) -> MonSettings

Types:

MonitorPid, Options, MonSettings -- see below

When called with the argument undefined, all system performance monitoring settings are cleared.

Calling the function with {MonitorPid, Options} as argument, is the same as calling
erlang:system_monitor(MonitorPid, Options).

Returns the previous system monitor settings just like erlang:system_monitor/0.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 149

erlang:system_monitor(MonitorPid, [Option]) -> MonSettings

Types:

MonitorPid = pid()

Option = {long_gc, Time} | {large_heap, Size} | busy_port | busy_dist_port

 Time = Size = int()

MonSettings = {OldMonitorPid, [Option]}

 OldMonitorPid = pid()

Sets system performance monitoring options. MonitorPid is a local pid that will receive system monitor messages,
and the second argument is a list of monitoring options:

{long_gc, Time}

If a garbage collection in the system takes at least Time wallclock milliseconds, a message {monitor,
GcPid, long_gc, Info} is sent to MonitorPid. GcPid is the pid that was garbage collected and
Info is a list of two-element tuples describing the result of the garbage collection. One of the tuples is
{timeout, GcTime} where GcTime is the actual time for the garbage collection in milliseconds. The other
tuples are tagged with heap_size, heap_block_size, stack_size, mbuf_size, old_heap_size,
and old_heap_block_size. These tuples are explained in the documentation of the gc_start trace message
(see erlang:trace/3). New tuples may be added, and the order of the tuples in the Info list may be changed at
any time without prior notice.

{large_heap, Size}

If a garbage collection in the system results in the allocated size of a heap being at least Size words, a message
{monitor, GcPid, large_heap, Info} is sent to MonitorPid. GcPid and Info are the same as
for long_gc above, except that the tuple tagged with timeout is not present. Note: As of erts version 5.6 the
monitor message is sent if the sum of the sizes of all memory blocks allocated for all heap generations is equal
to or larger than Size. Previously the monitor message was sent if the memory block allocated for the youngest
generation was equal to or larger than Size.

busy_port

If a process in the system gets suspended because it sends to a busy port, a message {monitor, SusPid,
busy_port, Port} is sent to MonitorPid. SusPid is the pid that got suspended when sending to Port.

busy_dist_port

If a process in the system gets suspended because it sends to a process on a remote node whose inter-node
communication was handled by a busy port, a message {monitor, SusPid, busy_dist_port,
Port} is sent to MonitorPid. SusPid is the pid that got suspended when sending through the inter-node
communication port Port.

Returns the previous system monitor settings just like erlang:system_monitor/0.

Note:
If a monitoring process gets so large that it itself starts to cause system monitor messages when garbage collecting,
the messages will enlarge the process's message queue and probably make the problem worse.

Keep the monitoring process neat and do not set the system monitor limits too tight.

Failure: badarg if MonitorPid does not exist.

erlang

150 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang:system_profile() -> ProfilerSettings

Types:

ProfilerSettings -> {ProfilerPid, Options} | undefined

 ProfilerPid = pid() | port()

 Options = [Option]

 Option = runnable_procs | runnable_ports | scheduler | exclusive

Returns the current system profiling settings set by erlang:system_profile/2 as {ProfilerPid, Options}, or
undefined if there are no settings. The order of the options may be different from the one that was set.

erlang:system_profile(ProfilerPid, Options) -> ProfilerSettings

Types:

ProfilerSettings -> {ProfilerPid, Options} | undefined

 ProfilerPid = pid() | port()

 Options = [Option]

 Option = runnable_procs | runnable_ports | scheduler | exclusive

Sets system profiler options. ProfilerPid is a local pid or port that will receive profiling messages. The receiver
is excluded from all profiling. The second argument is a list of profiling options:

runnable_procs

If a process is put into or removed from the run queue a message, {profile, Pid, State, Mfa, Ts}, is
sent to ProfilerPid. Running processes that is reinserted into the run queue after having been preemptively
scheduled out will not trigger this message.

runnable_ports

If a port is put into or removed from the run queue a message, {profile, Port, State, 0, Ts}, is
sent to ProfilerPid.

scheduler

If a scheduler is put to sleep or awoken a message, {profile, scheduler, Id, State, NoScheds,
Ts}, is sent to ProfilerPid.

exclusive

If a synchronous call to a port from a process is done, the calling process is considered not runnable during the
call runtime to the port. The calling process is notified as inactive and subsequently active when the port
callback returns.

Note:
erlang:system_profile is considered experimental and its behaviour may change in the future.

term_to_binary(Term) -> ext_binary()

Types:

Term = term()

Returns a binary data object which is the result of encoding Term according to the Erlang external term format.

This can be used for a variety of purposes, for example writing a term to a file in an efficient way, or sending an Erlang
term to some type of communications channel not supported by distributed Erlang.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 151

See also binary_to_term/1.

term_to_binary(Term, [Option]) -> ext_binary()

Types:

Term = term()

Option = compressed | {compressed,Level} | {minor_version,Version}

Returns a binary data object which is the result of encoding Term according to the Erlang external term format.

If the option compressed is provided, the external term format will be compressed. The compressed format is
automatically recognized by binary_to_term/1 in R7B and later.

It is also possible to specify a compression level by giving the option {compressed,Level}, where Level is an
integer from 0 through 9. 0 means that no compression will be done (it is the same as not giving any compressed
option); 1 will take the least time but may not compress as well as the higher levels; 9 will take the most time and may
produce a smaller result. Note the "mays" in the preceding sentence; depending on the input term, level 9 compression
may or may not produce a smaller result than level 1 compression.

Currently, compressed gives the same result as {compressed,6}.

The option {minor_version,Version} can be use to control some details of the encoding. This option was
introduced in R11B-4. Currently, the allowed values for Version are 0 and 1.

{minor_version,1} forces any floats in the term to be encoded in a more space-efficient and exact way (namely
in the 64-bit IEEE format, rather than converted to a textual representation). binary_to_term/1 in R11B-4 and
later is able decode the new representation.

{minor_version,0} is currently the default, meaning that floats will be encoded using a textual representation;
this option is useful if you want to ensure that releases prior to R11B-4 can decode resulting binary.

See also binary_to_term/1.

throw(Any)

Types:

Any = term()

A non-local return from a function. If evaluated within a catch, catch will return the value Any.

> catch throw({hello, there}).
{hello,there}

Failure: nocatch if not evaluated within a catch.

time() -> {Hour, Minute, Second}

Types:

Hour = Minute = Second = int()

Returns the current time as {Hour, Minute, Second}.

The time zone and daylight saving time correction depend on the underlying OS.

> time().
{9,42,44}

erlang

152 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

tl(List1) -> List2

Types:

List1 = List2 = [term()]

Returns the tail of List1, that is, the list minus the first element.

> tl([geesties, guilies, beasties]).
[guilies, beasties]

Allowed in guard tests.

Failure: badarg if List is the empty list [].

erlang:trace(PidSpec, How, FlagList) -> int()

Types:

PidSpec = pid() | existing | new | all

How = bool()

FlagList = [Flag]

 Flag -- see below

Turns on (if How == true) or off (if How == false) the trace flags in FlagList for the process or processes
represented by PidSpec.

PidSpec is either a pid for a local process, or one of the following atoms:

existing

All processes currently existing.

new

All processes that will be created in the future.

all

All currently existing processes and all processes that will be created in the future.

FlagList can contain any number of the following flags (the "message tags" refers to the list of messages following
below):

all

Set all trace flags except {tracer, Tracer} and cpu_timestamp that are in their nature different than
the others.

send

Trace sending of messages.

Message tags: send, send_to_non_existing_process.

'receive'

Trace receiving of messages.

Message tags: 'receive'.

procs

Trace process related events.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 153

Message tags: spawn, exit, register, unregister, link, unlink, getting_linked,
getting_unlinked.

call

Trace certain function calls. Specify which function calls to trace by calling erlang:trace_pattern/3.

Message tags: call, return_from.

silent

Used in conjunction with the call trace flag. The call, return_from and return_to trace messages are
inhibited if this flag is set, but if there are match specs they are executed as normal.

Silent mode is inhibited by executing erlang:trace(_, false, [silent|_]), or by a match spec
executing the {silent, false} function.

The silent trace flag facilitates setting up a trace on many or even all processes in the system. Then the
interesting trace can be activated and deactivated using the {silent,Bool} match spec function, giving a
high degree of control of which functions with which arguments that triggers the trace.

Message tags: call, return_from, return_to. Or rather, the absence of.

return_to

Used in conjunction with the call trace flag. Trace the actual return from a traced function back to its caller.
Only works for functions traced with the local option to erlang:trace_pattern/3.

The semantics is that a trace message is sent when a call traced function actually returns, that is, when a chain
of tail recursive calls is ended. There will be only one trace message sent per chain of tail recursive calls, why
the properties of tail recursiveness for function calls are kept while tracing with this flag. Using call and
return_to trace together makes it possible to know exactly in which function a process executes at any time.

To get trace messages containing return values from functions, use the {return_trace} match_spec action
instead.

Message tags: return_to.

running

Trace scheduling of processes.

Message tags: in, and out.

exiting

Trace scheduling of an exiting processes.

Message tags: in_exiting, out_exiting, and out_exited.

garbage_collection

Trace garbage collections of processes.

Message tags: gc_start, gc_end.

timestamp

Include a time stamp in all trace messages. The time stamp (Ts) is of the same form as returned by
erlang:now().

cpu_timestamp

A global trace flag for the Erlang node that makes all trace timestamps be in CPU time, not wallclock. It is only
allowed with PidSpec==all. If the host machine operating system does not support high resolution CPU time
measurements, trace/3 exits with badarg.

erlang

154 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

arity

Used in conjunction with the call trace flag. {M, F, Arity} will be specified instead of {M, F, Args}
in call trace messages.

set_on_spawn

Makes any process created by a traced process inherit its trace flags, including the set_on_spawn flag.

set_on_first_spawn

Makes the first process created by a traced process inherit its trace flags, excluding the set_on_first_spawn
flag.

set_on_link

Makes any process linked by a traced process inherit its trace flags, including the set_on_link flag.

set_on_first_link

Makes the first process linked to by a traced process inherit its trace flags, excluding the set_on_first_link
flag.

{tracer, Tracer}

Specify where to send the trace messages. Tracer must be the pid of a local process or the port identifier of a
local port. If this flag is not given, trace messages will be sent to the process that called erlang:trace/3.

The effect of combining set_on_first_link with set_on_link is the same as having
set_on_first_link alone. Likewise for set_on_spawn and set_on_first_spawn.

If the timestamp flag is not given, the tracing process will receive the trace messages described below. Pid is the
pid of the traced process in which the traced event has occurred. The third element of the tuple is the message tag.

If the timestamp flag is given, the first element of the tuple will be trace_ts instead and the timestamp is added
last in the tuple.

{trace, Pid, 'receive', Msg}

When Pid receives the message Msg.

{trace, Pid, send, Msg, To}

When Pid sends the message Msg to the process To.

{trace, Pid, send_to_non_existing_process, Msg, To}

When Pid sends the message Msg to the non-existing process To.

{trace, Pid, call, {M, F, Args}}

When Pid calls a traced function. The return values of calls are never supplied, only the call and its arguments.

Note that the trace flag arity can be used to change the contents of this message, so that Arity is specified
instead of Args.

{trace, Pid, return_to, {M, F, Arity}}

When Pid returns to the specified function. This trace message is sent if both the call and the return_to
flags are set, and the function is set to be traced on local function calls. The message is only sent when returning
from a chain of tail recursive function calls where at least one call generated a call trace message (that is, the
functions match specification matched and {message, false} was not an action).

{trace, Pid, return_from, {M, F, Arity}, ReturnValue}

When Pid returns from the specified function. This trace message is sent if the call flag is set, and the function
has a match specification with a return_trace or exception_trace action.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 155

{trace, Pid, exception_from, {M, F, Arity}, {Class, Value}}

When Pid exits from the specified function due to an exception. This trace message is sent if the call flag is
set, and the function has a match specification with an exception_trace action.

{trace, Pid, spawn, Pid2, {M, F, Args}}

When Pid spawns a new process Pid2 with the specified function call as entry point.

Note that Args is supposed to be the argument list, but may be any term in the case of an erroneous spawn.

{trace, Pid, exit, Reason}

When Pid exits with reason Reason.

{trace, Pid, link, Pid2}

When Pid links to a process Pid2.

{trace, Pid, unlink, Pid2}

When Pid removes the link from a process Pid2.

{trace, Pid, getting_linked, Pid2}

When Pid gets linked to a process Pid2.

{trace, Pid, getting_unlinked, Pid2}

When Pid gets unlinked from a process Pid2.

{trace, Pid, register, RegName}

When Pid gets the name RegName registered.

{trace, Pid, unregister, RegName}

When Pid gets the name RegName unregistered. Note that this is done automatically when a registered process
exits.

{trace, Pid, in, {M, F, Arity} | 0}

When Pid is scheduled to run. The process will run in function {M, F, Arity}. On some rare occasions the
current function cannot be determined, then the last element Arity is 0.

{trace, Pid, out, {M, F, Arity} | 0}

When Pid is scheduled out. The process was running in function {M, F, Arity}. On some rare occasions the
current function cannot be determined, then the last element Arity is 0.

{trace, Pid, gc_start, Info}

Sent when garbage collection is about to be started. Info is a list of two-element tuples, where the first element
is a key, and the second is the value. You should not depend on the tuples have any defined order. Currently,
the following keys are defined:

heap_size
The size of the used part of the heap.
heap_block_size
The size of the memory block used for storing the heap and the stack.
old_heap_size
The size of the used part of the old heap.
old_heap_block_size
The size of the memory block used for storing the old heap.
stack_size
The actual size of the stack.

erlang

156 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

recent_size
The size of the data that survived the previous garbage collection.
mbuf_size
The combined size of message buffers associated with the process.
bin_vheap_size
The total size of unique off-heap binaries referenced from the process heap.
bin_vheap_block_size
The total size of binaries, in words, allowed in the virtual heap in the process before doing a garbage collection.
bin_old_vheap_size
The total size of unique off-heap binaries referenced from the process old heap.
bin_vheap_block_size
The total size of binaries, in words, allowed in the virtual old heap in the process before doing a garbage
collection.

All sizes are in words.

{trace, Pid, gc_end, Info}

Sent when garbage collection is finished. Info contains the same kind of list as in the gc_start message, but
the sizes reflect the new sizes after garbage collection.

If the tracing process dies, the flags will be silently removed.

Only one process can trace a particular process. For this reason, attempts to trace an already traced process will fail.

Returns: A number indicating the number of processes that matched PidSpec. If PidSpec is a pid, the return value
will be 1. If PidSpec is all or existing the return value will be the number of processes running, excluding
tracer processes. If PidSpec is new, the return value will be 0.

Failure: If specified arguments are not supported. For example cpu_timestamp is not supported on all platforms.

erlang:trace_delivered(Tracee) -> Ref

Types:

Tracee = pid() | all

Ref = reference()

The delivery of trace messages is dislocated on the time-line compared to other events in the system. If
you know that the Tracee has passed some specific point in its execution, and you want to know when
at least all trace messages corresponding to events up to this point have reached the tracer you can use
erlang:trace_delivered(Tracee). A {trace_delivered, Tracee, Ref} message is sent
to the caller of erlang:trace_delivered(Tracee) when it is guaranteed that all trace messages have
been delivered to the tracer up to the point that the Tracee had reached at the time of the call to
erlang:trace_delivered(Tracee).

Note that the trace_delivered message does not imply that trace messages have been delivered; instead, it implies
that all trace messages that should be delivered have been delivered. It is not an error if Tracee isn't, and hasn't been
traced by someone, but if this is the case, no trace messages will have been delivered when the trace_delivered
message arrives.

Note that Tracee has to refer to a process currently, or previously existing on the same node as the caller of
erlang:trace_delivered(Tracee) resides on. The special Tracee atom all denotes all processes that
currently are traced in the node.

An example: Process A is tracee, port B is tracer, and process C is the port owner of B. C wants to close B when A exits.
C can ensure that the trace isn't truncated by calling erlang:trace_delivered(A) when A exits and wait for
the {trace_delivered, A, Ref} message before closing B.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 157

Failure: badarg if Tracee does not refer to a process (dead or alive) on the same node as the caller of
erlang:trace_delivered(Tracee) resides on.

erlang:trace_info(PidOrFunc, Item) -> Res

Types:

PidOrFunc = pid() | new | {Module, Function, Arity} | on_load

 Module = Function = atom()

 Arity = int()

Item, Res -- see below

Returns trace information about a process or function.

To get information about a process, PidOrFunc should be a pid or the atom new. The atom new means that the
default trace state for processes to be created will be returned. Item must have one of the following values:

flags

Return a list of atoms indicating what kind of traces is enabled for the process. The list will be empty if
no traces are enabled, and one or more of the followings atoms if traces are enabled: send, 'receive',
set_on_spawn, call, return_to, procs, set_on_first_spawn, set_on_link, running,
garbage_collection, timestamp, and arity. The order is arbitrary.

tracer

Return the identifier for process or port tracing this process. If this process is not being traced, the return value
will be [].

To get information about a function, PidOrFunc should be a three-element tuple: {Module, Function,
Arity} or the atom on_load. No wildcards are allowed. Returns undefined if the function does not exist or
false if the function is not traced at all. Item must have one of the following values:

traced

Return global if this function is traced on global function calls, local if this function is traced on local
function calls (i.e local and global function calls), and false if neither local nor global function calls are traced.

match_spec

Return the match specification for this function, if it has one. If the function is locally or globally traced but has
no match specification defined, the returned value is [].

meta

Return the meta trace tracer process or port for this function, if it has one. If the function is not meta traced the
returned value is false, and if the function is meta traced but has once detected that the tracer proc is invalid,
the returned value is [].

meta_match_spec

Return the meta trace match specification for this function, if it has one. If the function is meta traced but has no
match specification defined, the returned value is [].

call_count

Return the call count value for this function or true for the pseudo function on_load if call count tracing is
active. Return false otherwise. See also erlang:trace_pattern/3.

call_time

Return the call time values for this function or true for the pseudo function on_load if call time tracing is
active. Returns false otherwise. The call time values returned, [{Pid, Count, S, Us}], is a list of each
process that has executed the function and its specific counters. See also erlang:trace_pattern/3.

erlang

158 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

all

Return a list containing the {Item, Value} tuples for all other items, or return false if no tracing is active
for this function.

The actual return value will be {Item, Value}, where Value is the requested information as described above. If
a pid for a dead process was given, or the name of a non-existing function, Value will be undefined.

If PidOrFunc is the on_load, the information returned refers to the default value for code that will be loaded.

erlang:trace_pattern(MFA, MatchSpec) -> int()

The same as erlang:trace_pattern(MFA, MatchSpec, []), retained for backward compatibility.

erlang:trace_pattern(MFA, MatchSpec, FlagList) -> int()

Types:

MFA, MatchSpec, FlagList -- see below

This BIF is used to enable or disable call tracing for exported functions. It must be combined with erlang:trace/3 to
set the call trace flag for one or more processes.

Conceptually, call tracing works like this: Inside the Erlang virtual machine there is a set of processes to be traced
and a set of functions to be traced. Tracing will be enabled on the intersection of the set. That is, if a process included
in the traced process set calls a function included in the traced function set, the trace action will be taken. Otherwise,
nothing will happen.

Use erlang:trace/3 to add or remove one or more processes to the set of traced processes. Use
erlang:trace_pattern/2 to add or remove exported functions to the set of traced functions.

The erlang:trace_pattern/3 BIF can also add match specifications to an exported function. A match
specification comprises a pattern that the arguments to the function must match, a guard expression which must
evaluate to true and an action to be performed. The default action is to send a trace message. If the pattern does not
match or the guard fails, the action will not be executed.

The MFA argument should be a tuple like {Module, Function, Arity} or the atom on_load (described
below). It can be the module, function, and arity for an exported function (or a BIF in any module). The '_' atom
can be used to mean any of that kind. Wildcards can be used in any of the following ways:

{Module,Function,'_'}

All exported functions of any arity named Function in module Module.

{Module,'_','_'}

All exported functions in module Module.

{'_','_','_'}

All exported functions in all loaded modules.

Other combinations, such as {Module,'_',Arity}, are not allowed. Local functions will match wildcards only
if the local option is in the FlagList.

If the MFA argument is the atom on_load, the match specification and flag list will be used on all modules that are
newly loaded.

The MatchSpec argument can take any of the following forms:

false

Disable tracing for the matching function(s). Any match specification will be removed.

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 159

true

Enable tracing for the matching function(s).

MatchSpecList

A list of match specifications. An empty list is equivalent to true. See the ERTS User's Guide for a description
of match specifications.

restart

For the FlagList option call_count and call_time: restart the existing counters. The behaviour is
undefined for other FlagList options.

pause

For the FlagList option call_count and call_time: pause the existing counters. The behaviour is
undefined for other FlagList options.

The FlagList parameter is a list of options. The following options are allowed:

global

Turn on or off call tracing for global function calls (that is, calls specifying the module explicitly). Only exported
functions will match and only global calls will generate trace messages. This is the default.

local

Turn on or off call tracing for all types of function calls. Trace messages will be sent whenever any of the
specified functions are called, regardless of how they are called. If the return_to flag is set for the process, a
return_to message will also be sent when this function returns to its caller.

meta | {meta, Pid}

Turn on or off meta tracing for all types of function calls. Trace messages will be sent to the tracer process or port
Pid whenever any of the specified functions are called, regardless of how they are called. If no Pid is specified,
self() is used as a default tracer process.

Meta tracing traces all processes and does not care about the process trace flags set by trace/3, the trace flags
are instead fixed to [call, timestamp].

The match spec function {return_trace} works with meta trace and send its trace message to the same
tracer process.

call_count

Starts (MatchSpec == true) or stops (MatchSpec == false) call count tracing for all types of function
calls. For every function a counter is incremented when the function is called, in any process. No process trace
flags need to be activated.

If call count tracing is started while already running, the count is restarted from zero. Running counters can be
paused with MatchSpec == pause. Paused and running counters can be restarted from zero with MatchSpec
== restart.

The counter value can be read with erlang:trace_info/2.

call_time

Starts (MatchSpec == true) or stops (MatchSpec == false) call time tracing for all types of function
calls. For every function a counter is incremented when the function is called. Time spent in the function is
accumulated in two other counters, seconds and micro-seconds. The counters are stored for each call traced
process.

erlang

160 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

If call time tracing is started while already running, the count and time is restarted from zero. Running counters
can be paused with MatchSpec == pause. Paused and running counters can be restarted from zero with
MatchSpec == restart.

The counter value can be read with erlang:trace_info/2.

The global and local options are mutually exclusive and global is the default (if no options are specified). The
call_count and meta options perform a kind of local tracing, and can also not be combined with global. A
function can be either globally or locally traced. If global tracing is specified for a specified set of functions; local,
meta, call time and call count tracing for the matching set of local functions will be disabled, and vice versa.

When disabling trace, the option must match the type of trace that is set on the function, so that local tracing must be
disabled with the local option and global tracing with the global option (or no option at all), and so forth.

There is no way to directly change part of a match specification list. If a function has a match specification, you can
replace it with a completely new one. If you need to change an existing match specification, use the erlang:trace_info/2
BIF to retrieve the existing match specification.

Returns the number of exported functions that matched the MFA argument. This will be zero if none matched at all.

trunc(Number) -> int()

Types:

Number = number()

Returns an integer by the truncating Number.

> trunc(5.5).
5

Allowed in guard tests.

tuple_size(Tuple) -> int()

Types:

Tuple = tuple()

Returns an integer which is the number of elements in Tuple.

> tuple_size({morni, mulle, bwange}).
3

Allowed in guard tests.

tuple_to_list(Tuple) -> [term()]

Types:

Tuple = tuple()

Returns a list which corresponds to Tuple. Tuple may contain any Erlang terms.

> tuple_to_list({share, {'Ericsson_B', 163}}).
[share,{'Ericsson_B',163}]

erlang

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 161

erlang:universaltime() -> {Date, Time}

Types:

Date = {Year, Month, Day}

Time = {Hour, Minute, Second}

 Year = Month = Day = Hour = Minute = Second = int()

Returns the current date and time according to Universal Time Coordinated (UTC), also called GMT, in the form
{{Year, Month, Day}, {Hour, Minute, Second}} if supported by the underlying operating system. If
not, erlang:universaltime() is equivalent to erlang:localtime().

> erlang:universaltime().
{{1996,11,6},{14,18,43}}

erlang:universaltime_to_localtime({Date1, Time1}) -> {Date2, Time2}

Types:

Date1 = Date2 = {Year, Month, Day}

Time1 = Time2 = {Hour, Minute, Second}

 Year = Month = Day = Hour = Minute = Second = int()

Converts Universal Time Coordinated (UTC) date and time to local date and time, if this is supported by the underlying
OS. Otherwise, no conversion is done, and {Date1, Time1} is returned.

> erlang:universaltime_to_localtime({{1996,11,6},{14,18,43}}).
{{1996,11,7},{15,18,43}}

Failure: badarg if Date1 or Time1 do not denote a valid date or time.

unlink(Id) -> true

Types:

Id = pid() | port()

Removes the link, if there is one, between the calling process and the process or port referred to by Id.

Returns true and does not fail, even if there is no link to Id, or if Id does not exist.

Once unlink(Id) has returned it is guaranteed that the link between the caller and the entity referred to by Id has
no effect on the caller in the future (unless the link is setup again). If caller is trapping exits, an {'EXIT', Id,
_} message due to the link might have been placed in the callers message queue prior to the call, though. Note, the
{'EXIT', Id, _} message can be the result of the link, but can also be the result of Id calling exit/2. Therefore,
it may be appropriate to cleanup the message queue when trapping exits after the call to unlink(Id), as follow:

 unlink(Id),
 receive
 {'EXIT', Id, _} ->
 true
 after 0 ->
 true
 end

erlang

162 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Note:
Prior to OTP release R11B (erts version 5.5) unlink/1 behaved completely asynchronous, i.e., the link was
active until the "unlink signal" reached the linked entity. This had one undesirable effect, though. You could
never know when you were guaranteed not to be effected by the link.

Current behavior can be viewed as two combined operations: asynchronously send an "unlink signal" to the linked
entity and ignore any future results of the link.

unregister(RegName) -> true

Types:

RegName = atom()

Removes the registered name RegName, associated with a pid or a port identifier.

> unregister(db).
true

Users are advised not to unregister system processes.

Failure: badarg if RegName is not a registered name.

whereis(RegName) -> pid() | port() | undefined

Returns the pid or port identifier with the registered name RegName. Returns undefined if the name is not
registered.

> whereis(db).
<0.43.0>

erlang:yield() -> true

Voluntarily let other processes (if any) get a chance to execute. Using erlang:yield() is similar to receive
after 1 -> ok end, except that yield() is faster.

Warning:
There is seldom or never any need to use this BIF, especially in the SMP-emulator as other processes will have a
chance to run in another scheduler thread anyway. Using this BIF without a thorough grasp of how the scheduler
works may cause performance degradation.

init

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 163

init
Erlang module

The init module is pre-loaded and contains the code for the init system process which coordinates the start-up of
the system. The first function evaluated at start-up is boot(BootArgs), where BootArgs is a list of command
line arguments supplied to the Erlang runtime system from the local operating system. See erl(1).

init reads the boot script which contains instructions on how to initiate the system. See script(4) for more information
about boot scripts.

init also contains functions to restart, reboot, and stop the system.

Exports

boot(BootArgs) -> void()

Types:

BootArgs = [binary()]

Starts the Erlang runtime system. This function is called when the emulator is started and coordinates system start-up.

BootArgs are all command line arguments except the emulator flags, that is, flags and plain arguments. See erl(1).

init itself interprets some of the flags, see Command Line Flags below. The remaining flags ("user flags")
and plain arguments are passed to the init loop and can be retrieved by calling get_arguments/0 and
get_plain_arguments/0, respectively.

get_args() -> [Arg]

Types:

Arg = atom()

Returns any plain command line arguments as a list of atoms (possibly empty). It is recommended that
get_plain_arguments/1 is used instead, because of the limited length of atoms.

get_argument(Flag) -> {ok, Arg} | error

Types:

Flag = atom()

Arg = [Values]

 Values = [string()]

Returns all values associated with the command line user flag Flag. If Flag is provided several times, each Values
is returned in preserved order.

% erl -a b c -a d
...
1> init:get_argument(a).
{ok,[["b","c"],["d"]]}

There are also a number of flags, which are defined automatically and can be retrieved using this function:

root

The installation directory of Erlang/OTP, $ROOT.

init

164 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

2> init:get_argument(root).
{ok,[["/usr/local/otp/releases/otp_beam_solaris8_r10b_patched"]]}

progname

The name of the program which started Erlang.

3> init:get_argument(progname).
{ok,[["erl"]]}

home

The home directory.

4> init:get_argument(home).
{ok,[["/home/harry"]]}

Returns error if there is no value associated with Flag.

get_arguments() -> Flags

Types:

Flags = [{Flag, Values}]

 Flag = atom()

 Values = [string()]

Returns all command line flags, as well as the system defined flags, see get_argument/1.

get_plain_arguments() -> [Arg]

Types:

Arg = string()

Returns any plain command line arguments as a list of strings (possibly empty).

get_status() -> {InternalStatus, ProvidedStatus}

Types:

InternalStatus = starting | started | stopping

ProvidedStatus = term()

The current status of the init process can be inspected. During system startup (initialization), InternalStatus
is starting, and ProvidedStatus indicates how far the boot script has been interpreted. Each {progress,
Info} term interpreted in the boot script affects ProvidedStatus, that is, ProvidedStatus gets the value
of Info.

reboot() -> void()

All applications are taken down smoothly, all code is unloaded, and all ports are closed before the system terminates.
If the -heart command line flag was given, the heart program will try to reboot the system. Refer to heart(3)
for more information.

init

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 165

To limit the shutdown time, the time init is allowed to spend taking down applications, the -shutdown_time
command line flag should be used.

restart() -> void()

The system is restarted inside the running Erlang node, which means that the emulator is not restarted. All applications
are taken down smoothly, all code is unloaded, and all ports are closed before the system is booted again in the same
way as initially started. The same BootArgs are used again.

To limit the shutdown time, the time init is allowed to spend taking down applications, the -shutdown_time
command line flag should be used.

script_id() -> Id

Types:

Id = term()

Get the identity of the boot script used to boot the system. Id can be any Erlang term. In the delivered boot scripts,
Id is {Name, Vsn}. Name and Vsn are strings.

stop() -> void()

All applications are taken down smoothly, all code is unloaded, and all ports are closed before the system terminates.
If the -heart command line flag was given, the heart program is terminated before the Erlang node terminates.
Refer to heart(3) for more information.

To limit the shutdown time, the time init is allowed to spend taking down applications, the -shutdown_time
command line flag should be used.

stop(Status) -> void()

Types:

Status = int()>=0 | string()

All applications are taken down smoothly, all code is unloaded, and all ports are closed before the system terminates
by calling halt(Status). If the -heart command line flag was given, the heart program is terminated before
the Erlang node terminates. Refer to heart(3) for more information.

To limit the shutdown time, the time init is allowed to spend taking down applications, the -shutdown_time
command line flag should be used.

Command Line Flags

Warning:
The support for loading of code from archive files is experimental. The sole purpose of releasing it before it is
ready is to obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future release.
The -code_path_choice flag is also experimental.

The init module interprets the following command line flags:

--

Everything following -- up to the next flag is considered plain arguments and can be retrieved using
get_plain_arguments/0.

init

166 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

-code_path_choice Choice

This flag can be set to strict or relaxed. It controls whether each directory in the code path should be
interpreted strictly as it appears in the boot script or if init should be more relaxed and try to find a
suitable directory if it can choose from a regular ebin directory and an ebin directory in an archive file. This
flag is particular useful when you want to elaborate with code loading from archives without editing the boot
script. See script(4) for more information about interpretation of boot scripts. The flag does also have a similar
affect on how the code server works. See code(3).

-eval Expr

Scans, parses and evaluates an arbitrary expression Expr during system initialization. If any of these steps fail
(syntax error, parse error or exception during evaluation), Erlang stops with an error message. Here is an example
that seeds the random number generator:

% erl -eval '{X,Y,Z}' = now(), random:seed(X,Y,Z).'

This example uses Erlang as a hexadecimal calculator:

% erl -noshell -eval 'R = 16#1F+16#A0, io:format("~.16B~n", [R])' \\
-s erlang halt
BF

If multiple -eval expressions are specified, they are evaluated sequentially in the order specified. -eval
expressions are evaluated sequentially with -s and -run function calls (this also in the order specified). As with
-s and -run, an evaluation that does not terminate, blocks the system initialization process.

-extra

Everything following -extra is considered plain arguments and can be retrieved using
get_plain_arguments/0.

-run Mod [Func [Arg1, Arg2, ...]]

Evaluates the specified function call during system initialization. Func defaults to start. If no arguments
are provided, the function is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list
[Arg1,Arg2,...] as argument. All arguments are passed as strings. If an exception is raised, Erlang stops
with an error message.

Example:

% erl -run foo -run foo bar -run foo bar baz 1 2

This starts the Erlang runtime system and evaluates the following functions:

foo:start()
foo:bar()
foo:bar(["baz", "1", "2"]).

The functions are executed sequentially in an initialization process, which then terminates normally and passes
control to the user. This means that a -run call which does not return will block further processing; to avoid
this, use some variant of spawn in such cases.

init

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 167

-s Mod [Func [Arg1, Arg2, ...]]

Evaluates the specified function call during system initialization. Func defaults to start. If no arguments
are provided, the function is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list
[Arg1,Arg2,...] as argument. All arguments are passed as atoms. If an exception is raised, Erlang stops
with an error message.

Example:

% erl -s foo -s foo bar -s foo bar baz 1 2

This starts the Erlang runtime system and evaluates the following functions:

foo:start()
foo:bar()
foo:bar([baz, '1', '2']).

The functions are executed sequentially in an initialization process, which then terminates normally and passes
control to the user. This means that a -s call which does not return will block further processing; to avoid this,
use some variant of spawn in such cases.

Due to the limited length of atoms, it is recommended that -run be used instead.

Example

% erl -- a b -children thomas claire -ages 7 3 -- x y
...

1> init:get_plain_arguments().
["a","b","x","y"]
2> init:get_argument(children).
{ok,[["thomas","claire"]]}
3> init:get_argument(ages).
{ok, [["7","3"]]}
4> init:get_argument(silly).
error

SEE ALSO
erl_prim_loader(3), heart(3)

zlib

168 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib
Erlang module

The zlib module provides an API for the zlib library (http://www.zlib.org). It is used to compress and decompress
data. The data format is described by RFCs 1950 to 1952.

A typical (compress) usage looks like:

Z = zlib:open(),
ok = zlib:deflateInit(Z,default),

Compress = fun(end_of_data, _Cont) -> [];
 (Data, Cont) ->
 [zlib:deflate(Z, Data)|Cont(Read(),Cont)]
 end,
Compressed = Compress(Read(),Compress),
Last = zlib:deflate(Z, [], finish),
ok = zlib:deflateEnd(Z),
zlib:close(Z),
list_to_binary([Compressed|Last])

In all functions errors, {'EXIT',{Reason,Backtrace}}, might be thrown, where Reason describes the error.
Typical reasons are:

badarg

Bad argument

data_error

The data contains errors

stream_error

Inconsistent stream state

einval

Bad value or wrong function called

{need_dictionary,Adler32}

See inflate/2

DATA TYPES

iodata = iolist() | binary()

iolist = [char() | binary() | iolist()]
 a binary is allowed as the tail of the list

zstream = a zlib stream, see open/0

zlib

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 169

Exports

open() -> Z

Types:

Z = zstream()

Open a zlib stream.

close(Z) -> ok

Types:

Z = zstream()

Closes the stream referenced by Z.

deflateInit(Z) -> ok

Types:

Z = zstream()

Same as zlib:deflateInit(Z, default).

deflateInit(Z, Level) -> ok

Types:

Z = zstream()

Level = none | default | best_speed | best_compression | 0..9

Initialize a zlib stream for compression.

Level decides the compression level to be used, 0 (none), gives no compression at all, 1 (best_speed) gives best
speed and 9 (best_compression) gives best compression.

deflateInit(Z, Level, Method, WindowBits, MemLevel, Strategy) -> ok

Types:

Z = zstream()

Level = none | default | best_speed | best_compression | 0..9

Method = deflated

WindowBits = 9..15|-9..-15

MemLevel = 1..9

Strategy = default|filtered|huffman_only

Initiates a zlib stream for compression.

The Level parameter decides the compression level to be used, 0 (none), gives no compression at all, 1
(best_speed) gives best speed and 9 (best_compression) gives best compression.

The Method parameter decides which compression method to use, currently the only supported method is
deflated.

The WindowBits parameter is the base two logarithm of the window size (the size of the history buffer). It should
be in the range 9 through 15. Larger values of this parameter result in better compression at the expense of memory
usage. The default value is 15 if deflateInit/2. A negative WindowBits value suppresses the zlib header (and
checksum) from the stream. Note that the zlib source mentions this only as a undocumented feature.

zlib

170 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

The MemLevel parameter specifies how much memory should be allocated for the internal compression state.
MemLevel=1 uses minimum memory but is slow and reduces compression ratio; MemLevel=9 uses maximum
memory for optimal speed. The default value is 8.

The Strategy parameter is used to tune the compression algorithm. Use the value default for normal data,
filtered for data produced by a filter (or predictor), or huffman_only to force Huffman encoding only (no
string match). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the
compression algorithm is tuned to compress them better. The effect of filteredis to force more Huffman coding
and less string matching; it is somewhat intermediate between default and huffman_only. The Strategy
parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set
appropriately.

deflate(Z, Data) -> Compressed

Types:

Z = zstream()

Data = iodata()

Compressed = iolist()

Same as deflate(Z, Data, none).

deflate(Z, Data, Flush) ->

Types:

Z = zstream()

Data = iodata()

Flush = none | sync | full | finish

Compressed = iolist()

deflate/3 compresses as much data as possible, and stops when the input buffer becomes empty. It may introduce
some output latency (reading input without producing any output) except when forced to flush.

If the parameter Flush is set to sync, all pending output is flushed to the output buffer and the output is aligned on
a byte boundary, so that the decompressor can get all input data available so far. Flushing may degrade compression
for some compression algorithms and so it should be used only when necessary.

If Flush is set to full, all output is flushed as with sync, and the compression state is reset so that decompression
can restart from this point if previous compressed data has been damaged or if random access is desired. Using full
too often can seriously degrade the compression.

If the parameter Flush is set to finish, pending input is processed, pending output is flushed and deflate/3
returns. Afterwards the only possible operations on the stream are deflateReset/1 or deflateEnd/1.

Flush can be set to finish immediately after deflateInit if all compression is to be done in one step.

zlib:deflateInit(Z),
B1 = zlib:deflate(Z,Data),
B2 = zlib:deflate(Z,<< >>,finish),
zlib:deflateEnd(Z),
list_to_binary([B1,B2])

deflateSetDictionary(Z, Dictionary) -> Adler32

Types:

zlib

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 171

Z = zstream()

Dictionary = binary()

Adler32 = integer()

Initializes the compression dictionary from the given byte sequence without producing any compressed output.
This function must be called immediately after deflateInit/[1|2|6] or deflateReset/1, before
any call of deflate/3. The compressor and decompressor must use exactly the same dictionary (see
inflateSetDictionary/2). The adler checksum of the dictionary is returned.

deflateReset(Z) -> ok

Types:

Z = zstream()

This function is equivalent to deflateEnd/1 followed by deflateInit/[1|2|6], but does not free and
reallocate all the internal compression state. The stream will keep the same compression level and any other attributes.

deflateParams(Z, Level, Strategy) -> ok

Types:

Z = zstream()

Level = none | default | best_speed | best_compression | 0..9

Strategy = default|filtered|huffman_only

Dynamically update the compression level and compression strategy. The interpretation of Level and Strategy
is as in deflateInit/6. This can be used to switch between compression and straight copy of the input data, or
to switch to a different kind of input data requiring a different strategy. If the compression level is changed, the input
available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next
call of deflate/3.

Before the call of deflateParams, the stream state must be set as for a call of deflate/3, since the currently available
input may have to be compressed and flushed.

deflateEnd(Z) -> ok

Types:

Z = zstream()

End the deflate session and cleans all data used. Note that this function will throw an data_error exception if the
last call to deflate/3 was not called with Flush set to finish.

inflateInit(Z) -> ok

Types:

Z = zstream()

Initialize a zlib stream for decompression.

inflateInit(Z, WindowBits) -> ok

Types:

Z = zstream()

WindowBits = 9..15|-9..-15

Initialize decompression session on zlib stream.

zlib

172 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

The WindowBits parameter is the base two logarithm of the maximum window size (the size of the history buffer). It
should be in the range 9 through 15. The default value is 15 if inflateInit/1 is used. If a compressed stream with
a larger window size is given as input, inflate() will throw the data_error exception. A negative WindowBits
value makes zlib ignore the zlib header (and checksum) from the stream. Note that the zlib source mentions this only
as a undocumented feature.

inflate(Z, Data) -> DeCompressed

Types:

Z = zstream()

Data = iodata()

DeCompressed = iolist()

inflate/2 decompresses as much data as possible. It may some introduce some output latency (reading input
without producing any output).

If a preset dictionary is needed at this point (see inflateSetDictionary below), inflate/2 throws a
{need_dictionary,Adler} exception where Adler is the adler32 checksum of the dictionary chosen by the
compressor.

inflateSetDictionary(Z, Dictionary) -> ok

Types:

Z = zstream()

Dictionary = binary()

Initializes the decompression dictionary from the given uncompressed byte sequence. This function must be called
immediately after a call of inflate/2 if this call threw a {need_dictionary,Adler} exception. The
dictionary chosen by the compressor can be determined from the Adler value thrown by the call to inflate/2. The
compressor and decompressor must use exactly the same dictionary (see deflateSetDictionary/2).

Example:

unpack(Z, Compressed, Dict) ->
 case catch zlib:inflate(Z, Compressed) of
 {'EXIT',{{need_dictionary,DictID},_}} ->
 zlib:inflateSetDictionary(Z, Dict),
 Uncompressed = zlib:inflate(Z, []);
 Uncompressed ->
 Uncompressed
 end.

inflateReset(Z) -> ok

Types:

Z = zstream()

This function is equivalent to inflateEnd/1 followed by inflateInit/1, but does not free and reallocate all
the internal decompression state. The stream will keep attributes that may have been set by inflateInit/[1|2].

inflateEnd(Z) -> ok

Types:

Z = zstream()

zlib

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 173

End the inflate session and cleans all data used. Note that this function will throw a data_error exception if no
end of stream was found (meaning that not all data has been uncompressed).

setBufSize(Z, Size) -> ok

Types:

Z = zstream()

Size = integer()

Sets the intermediate buffer size.

getBufSize(Z) -> Size

Types:

Z = zstream()

Size = integer()

Get the size of intermediate buffer.

crc32(Z) -> CRC

Types:

Z = zstream()

CRC = integer()

Get the current calculated CRC checksum.

crc32(Z, Binary) -> CRC

Types:

Z = zstream()

Binary = binary()

CRC = integer()

Calculate the CRC checksum for Binary.

crc32(Z, PrevCRC, Binary) -> CRC

Types:

Z = zstream()

PrevCRC = integer()

Binary = binary()

CRC = integer()

Update a running CRC checksum for Binary. If Binary is the empty binary, this function returns the required
initial value for the crc.

Crc = lists:foldl(fun(Bin,Crc0) ->
 zlib:crc32(Z, Crc0, Bin),
 end, zlib:crc32(Z,<< >>), Bins)

crc32_combine(Z, CRC1, CRC2, Size2) -> CRC

Types:

zlib

174 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Z = zstream()

CRC = integer()

CRC1 = integer()

CRC2 = integer()

Size2 = integer()

Combine two CRC checksums into one. For two binaries, Bin1 and Bin2 with sizes of Size1 and Size2, with
CRC checksums CRC1 and CRC2. crc32_combine/4 returns the CRC checksum of <<Bin1/binary,Bin2/
binary>>, requiring only CRC1, CRC2, and Size2.

adler32(Z, Binary) -> Checksum

Types:

Z = zstream()

Binary = binary()

Checksum = integer()

Calculate the Adler-32 checksum for Binary.

adler32(Z, PrevAdler, Binary) -> Checksum

Types:

Z = zstream()

PrevAdler = integer()

Binary = binary()

Checksum = integer()

Update a running Adler-32 checksum for Binary. If Binary is the empty binary, this function returns the required
initial value for the checksum.

Crc = lists:foldl(fun(Bin,Crc0) ->
 zlib:adler32(Z, Crc0, Bin),
 end, zlib:adler32(Z,<< >>), Bins)

adler32_combine(Z, Adler1, Adler2, Size2) -> Adler

Types:

Z = zstream()

Adler = integer()

Adler1 = integer()

Adler2 = integer()

Size2 = integer()

Combine two Adler-32 checksums into one. For two binaries, Bin1 and Bin2 with sizes of Size1 and Size2, with
Adler-32 checksums Adler1 and Adler2. adler32_combine/4 returns the Adler checksum of <<Bin1/
binary,Bin2/binary>>, requiring only Adler1, Adler2, and Size2.

compress(Binary) -> Compressed

Types:

Binary = Compressed = binary()

zlib

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 175

Compress a binary (with zlib headers and checksum).

uncompress(Binary) -> Decompressed

Types:

Binary = Decompressed = binary()

Uncompress a binary (with zlib headers and checksum).

zip(Binary) -> Compressed

Types:

Binary = Compressed = binary()

Compress a binary (without zlib headers and checksum).

unzip(Binary) -> Decompressed

Types:

Binary = Decompressed = binary()

Uncompress a binary (without zlib headers and checksum).

gzip(Data) -> Compressed

Types:

Binary = Compressed = binary()

Compress a binary (with gz headers and checksum).

gunzip(Bin) -> Decompressed

Types:

Binary = Decompressed = binary()

Uncompress a binary (with gz headers and checksum).

epmd

176 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

epmd
Command

Erlang Port Mapper Daemon

epmd [-d|-debug] [DbgExtra...] [-port No] [-daemon] [-relaxed_command_check]

Starts the port mapper daemon

epmd [-d|-debug] [-port No] [-names|-kill|-stop Name]

Communicates with a running port mapper daemon

This daemon acts as a name server on all hosts involved in distributed Erlang computations. When an Erlang node
starts, the node has a name and it obtains an address from the host OS kernel. The name and the address are sent to the
epmd daemon running on the local host. In a TCP/IP environment, the address consists of the IP address and a port
number. The name of the node is an atom on the form of Name@Node. The job of the epmd daemon is to keep track
of which node name listens on which address. Hence, epmd map symbolic node names to machine addresses.

The TCP/IP epmd daemon actually only keeps track of the Name (first) part of an Erlang node name, the Host part
(whatever is after the @ is implicit in the node name where the epmd daemon was actually contacted, as is the IP
address where the Erlang node can be reached. Consistent and correct TCP naming services are therefore required for
an Erlang network to function correctly.

Starting the port mapper daemon

The daemon is started automatically by the erl command if the node is to be distributed and there is no running
instance present. If automatically launched, environment variables has to be used to alter the behavior of the
daemon. See the Environment variables section below.

If the -daemon argument is not given, the epmd runs as a normal program with the controlling terminal of the
shell in which it is started. Normally, it should run as a daemon.

Regular start-up options are described in the Regular options section below.

The DbgExtra options are described in the DbgExtra options section below.

Communicating with a running port mapper daemon

Communicating with the running epmd daemon by means of the epmd program is done primarily for debugging
purposes.

The different queries are described in the Interactive options section below.

Regular options
These options are available when starting the actual name server. The name server is normally started automatically
by the erl command (if not already available), but it can also be started at i.e. system start-up.

-port No

Let this instance of epmd listen to another TCP port than default 4369. This can also be set using the
ERL_EPMD_PORT environment variable, see the section Environment variables below

-d | -debug

Enable debug output. The more -d flags given, the more debug output you will get (to a certain limit). This option
is most useful when the epmd daemon is not started as a daemon.

epmd

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 177

-daemon

Start epmd detached from the controlling terminal. Logging will end up in syslog when available and correctly
configured. If the epmd daemon is started at boot, this option should definitely be used. It is also used when the
erl command automatically starts epmd.

-relaxed_command_check

Start the epmd program with relaxed command checking (mostly for backward compatibility). This affects the
following:

• With relaxed command checking, the epmd daemon can be killed from the localhost with i.e. epmd -kill
even if there are active nodes registered. Normally only daemons with an empty node database can be killed
with the epmd -kill command.

• The epmd -stop command (and the corresponding messages to epmd, as can be given using
erl_interface/ei) is normally always ignored, as it opens up for strange situation when two nodes
of the same name can be alive at the same time. A node unregisters itself by just closing the connection to
epmd, why the stop command was only intended for use in debugging situations.

With relaxed command checking enabled, you can forcibly unregister live nodes.

Relaxed command checking can also be enabled by setting the environment variable
ERL_EPMD_RELAXED_COMMAND_CHECK prior to starting epmd.

Only use relaxed command checking on systems with very limited interactive usage.

DbgExtra options
These options are purely for debugging and testing epmd clients, they should not be used in normal operation.

-packet_timeout Seconds

Set the number of seconds a connection can be inactive before epmd times out and closes the connection (default
60).

-delay_accept Seconds

To simulate a busy server you can insert a delay between epmd gets notified about that a new connection is
requested and when the connections gets accepted.

-delay_write Seconds

Also a simulation of a busy server. Inserts a delay before a reply is sent.

Interactive options
These options make epmd run as an interactive command displaying the results of sending queries ta an already
running instance of epmd. The epmd contacted is always on the local node, but the -port option can be used to
select between instances if several are running using different port on the host.

-port No

Contacts the epmd listening on the given TCP port number (default 4369). This can also be set using the
ERL_EPMD_PORT environment variable, see the section Environment variables below

-names

List names registered with the currently running epmd

-kill

Kill the currently running epmd.

epmd

178 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Killing the running epmd is only allowed if epmd -names show an empty database or -
relaxed_command_check was given when the running instance of epmd was started. Note that -
relaxed_command_check is given when starting the daemon that is to accept killing when it has live nodes
registered. When running epmd interactively, -relaxed_command_check has no effect. A daemon that is
started without relaxed command checking has to be killed using i.e. signals or some other OS specific method
if it has active clients registered.

-stop Name

Forcibly unregister a live node from epmd's database

This command can only be used when contacting epmd instances started with the -
relaxed_command_check flag. Note that relaxed command checking has to be enabled for the epmd
daemon contacted, When running epmd interactively, -relaxed_command_check has no effect.

Environment variables
ERL_EPMD_PORT

This environment variable can contain the port number epmd will use. The default port will work fine in most
cases. A different port can be specified to allow several instances of epmd, representing independent clusters of
nodes, to co-exist on the same host. All nodes in a cluster must use the same epmd port number.

ERL_EPMD_RELAXED_COMMAND_CHECK

If set prior to start, the epmd daemon will behave as if the -relaxed_command_check option was given at
start-up. If consequently setting this option before starting the Erlang virtual machine, the automatically started
epmd will accept the -kill and -stop commands without restrictions.

Logging
On some operating systems syslog will be used for error reporting when epmd runs as an daemon. To enable the error
logging you have to edit /etc/syslog.conf file and add an entry

 !epmd
 .<TABs>/var/log/epmd.log

where <TABs> are at least one real tab character. Spaces will silently be ignored.

Access restrictions
The epmd daemon accepts messages from both localhost and remote hosts. However, only the query commands are
answered (and acted upon) if the query comes from a remote host. It is always an error to try to register a nodename
if the client is not a process located on the same host as the epmd instance is running on, why such requests are
considered hostile and the connection is immediately closed.

The queries accepted from remote nodes are:

• Port queries - i.e. on which port does the node with a given name listen

• Name listing - i.e. give a list of all names registered on the host

To restrict access further, firewall software has to be used.

erl

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 179

erl
Command

The erl program starts an Erlang runtime system. The exact details (for example, whether erl is a script or a program
and which other programs it calls) are system-dependent.

Windows users probably wants to use the werl program instead, which runs in its own window with scrollbars and
supports command-line editing. The erl program on Windows provides no line editing in its shell, and on Windows
95 there is no way to scroll back to text which has scrolled off the screen. The erl program must be used, however,
in pipelines or if you want to redirect standard input or output.

Note:
As of ERTS version 5.8 (OTP-R14A) the runtime system will by default bind schedulers to logical processors
using the default_bind bind type if the amount of schedulers are at least equal to the amount of logical
processors configured, binding of schedulers is supported, and a CPU topology is available at startup.

If the Erlang runtime system is the only operating system process that binds threads to logical processors, this
improves the performance of the runtime system. However, if other operating system processes (as for example
another Erlang runtime system) also bind threads to logical processors, there might be a performance penalty
instead. If this is the case you, are are advised to unbind the schedulers using the +sbtu command line argument,
or by invoking erlang:system_flag(scheduler_bind_type, unbound).

Exports

erl <arguments>

Starts an Erlang runtime system.

The arguments can be divided into emulator flags, flags and plain arguments:

• Any argument starting with the character + is interpreted as an emulator flag.

As indicated by the name, emulator flags controls the behavior of the emulator.

• Any argument starting with the character - (hyphen) is interpreted as a flag which should be passed to the Erlang
part of the runtime system, more specifically to the init system process, see init(3).

The init process itself interprets some of these flags, the init flags. It also stores any remaining flags, the user
flags. The latter can be retrieved by calling init:get_argument/1.

It can be noted that there are a small number of "-" flags which now actually are emulator flags, see the description
below.

• Plain arguments are not interpreted in any way. They are also stored by the init process and can be retrieved by
calling init:get_plain_arguments/0. Plain arguments can occur before the first flag, or after a -- flag.
Additionally, the flag -extra causes everything that follows to become plain arguments.

Example:

% erl +W w -sname arnie +R 9 -s my_init -extra +bertie
(arnie@host)1> init:get_argument(sname).
{ok,[["arnie"]]}
(arnie@host)2> init:get_plain_arguments().

erl

180 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

["+bertie"]

Here +W w and +R 9 are emulator flags. -s my_init is an init flag, interpreted by init. -sname arnie is a
user flag, stored by init. It is read by Kernel and will cause the Erlang runtime system to become distributed. Finally,
everything after -extra (that is, +bertie) is considered as plain arguments.

% erl -myflag 1
1> init:get_argument(myflag).
{ok,[["1"]]}
2> init:get_plain_arguments().
[]

Here the user flag -myflag 1 is passed to and stored by the init process. It is a user defined flag, presumably
used by some user defined application.

Flags
In the following list, init flags are marked (init flag). Unless otherwise specified, all other flags are user flags, for which
the values can be retrieved by calling init:get_argument/1. Note that the list of user flags is not exhaustive,
there may be additional, application specific flags which instead are documented in the corresponding application
documentation.

--(init flag)

Everything following -- up to the next flag (-flag or +flag) is considered plain arguments and can be
retrieved using init:get_plain_arguments/0.

-Application Par Val

Sets the application configuration parameter Par to the value Val for the application Application, see app(4)
and application(3).

-args_file FileName

Command line arguments are read from the file FileName. The arguments read from the file replace the '-
args_file FileName' flag on the resulting command line.

The file FileName should be a plain text file and may contain comments and command line arguments. A
comment begins with a # character and continues until next end of line character. Backslash (\\) is used as quoting
character. All command line arguments accepted by erl are allowed, also the -args_file FileName flag.
Be careful not to cause circular dependencies between files containing the -args_file flag, though.

The -extra flag is treated specially. Its scope ends at the end of the file. Arguments following an -extra
flag are moved on the command line into the -extra section, i.e. the end of the command line following after
an -extra flag.

-async_shell_start

The initial Erlang shell does not read user input until the system boot procedure has been completed (Erlang 5.4
and later). This flag disables the start synchronization feature and lets the shell start in parallel with the rest of
the system.

-boot File

Specifies the name of the boot file, File.boot, which is used to start the system. See init(3). Unless File
contains an absolute path, the system searches for File.boot in the current and $ROOT/bin directories.

Defaults to $ROOT/bin/start.boot.

erl

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 181

-boot_var Var Dir

If the boot script contains a path variable Var other than $ROOT, this variable is expanded to Dir. Used when
applications are installed in another directory than $ROOT/lib, see systools:make_script/1,2.

-code_path_cache

Enables the code path cache of the code server, see code(3).

-compile Mod1 Mod2 ...

Compiles the specified modules and then terminates (with non-zero exit code if the compilation of some file did
not succeed). Implies -noinput. Not recommended - use erlc instead.

-config Config

Specifies the name of a configuration file, Config.config, which is used to configure applications. See app(4)
and application(3).

-connect_all false

If this flag is present, global will not maintain a fully connected network of distributed Erlang nodes, and then
global name registration cannot be used. See global(3).

-cookie Cookie

Obsolete flag without any effect and common misspelling for -setcookie. Use -setcookie instead.

-detached

Starts the Erlang runtime system detached from the system console. Useful for running daemons and backgrounds
processes. Implies -noinput.

-emu_args

Useful for debugging. Prints out the actual arguments sent to the emulator.

-env Variable Value

Sets the host OS environment variable Variable to the value Value for the Erlang runtime system. Example:

% erl -env DISPLAY gin:0

In this example, an Erlang runtime system is started with the DISPLAY environment variable set to gin:0.

-eval Expr(init flag)

Makes init evaluate the expression Expr, see init(3).

-extra(init flag)

Everything following -extra is considered plain arguments and can be retrieved using
init:get_plain_arguments/0.

-heart

Starts heart beat monitoring of the Erlang runtime system. See heart(3).

-hidden

Starts the Erlang runtime system as a hidden node, if it is run as a distributed node. Hidden nodes always establish
hidden connections to all other nodes except for nodes in the same global group. Hidden connections are not
published on either of the connected nodes, i.e. neither of the connected nodes are part of the result from nodes/0
on the other node. See also hidden global groups, global_group(3).

erl

182 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

-hosts Hosts

Specifies the IP addresses for the hosts on which Erlang boot servers are running, see erl_boot_server(3). This
flag is mandatory if the -loader inet flag is present.

The IP addresses must be given in the standard form (four decimal numbers separated by periods, for example
"150.236.20.74". Hosts names are not acceptable, but a broadcast address (preferably limited to the local
network) is.

-id Id

Specifies the identity of the Erlang runtime system. If it is run as a distributed node, Id must be identical to the
name supplied together with the -sname or -name flag.

-init_debug

Makes init write some debug information while interpreting the boot script.

-instr(emulator flag)

Selects an instrumented Erlang runtime system (virtual machine) to run, instead of the ordinary one. When
running an instrumented runtime system, some resource usage data can be obtained and analysed using the module
instrument. Functionally, it behaves exactly like an ordinary Erlang runtime system.

-loader Loader

Specifies the method used by erl_prim_loader to load Erlang modules into the system. See
erl_prim_loader(3). Two Loader methods are supported, efile and inet. efile means use the local file
system, this is the default. inet means use a boot server on another machine, and the -id, -hosts and -
setcookie flags must be specified as well. If Loader is something else, the user supplied Loader port
program is started.

-make

Makes the Erlang runtime system invoke make:all() in the current working directory and then terminate. See
make(3). Implies -noinput.

-man Module

Displays the manual page for the Erlang module Module. Only supported on Unix.

-mode interactive | embedded

Indicates if the system should load code dynamically (interactive), or if all code should be loaded during
system initialization (embedded), see code(3). Defaults to interactive.

-name Name

Makes the Erlang runtime system into a distributed node. This flag invokes all network servers necessary for a
node to become distributed. See net_kernel(3). It is also ensured that epmd runs on the current host before Erlang
is started. See epmd(1).

The name of the node will be Name@Host, where Host is the fully qualified host name of the current host. For
short names, use the -sname flag instead.

-noinput

Ensures that the Erlang runtime system never tries to read any input. Implies -noshell.

-noshell

Starts an Erlang runtime system with no shell. This flag makes it possible to have the Erlang runtime system as
a component in a series of UNIX pipes.

-nostick

Disables the sticky directory facility of the Erlang code server, see code(3).

erl

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 183

-oldshell

Invokes the old Erlang shell from Erlang 3.3. The old shell can still be used.

-pa Dir1 Dir2 ...

Adds the specified directories to the beginning of the code path, similar to code:add_pathsa/1. See code(3).
As an alternative to -pa, if several directories are to be prepended to the code and the directories have a common
parent directory, that parent directory could be specified in the ERL_LIBS environment variable. See code(3).

-pz Dir1 Dir2 ...

Adds the specified directories to the end of the code path, similar to code:add_pathsz/1. See code(3).

-remsh Node

Starts Erlang with a remote shell connected to Node.

-rsh Program

Specifies an alternative to rsh for starting a slave node on a remote host. See slave(3).

-run Mod [Func [Arg1, Arg2, ...]](init flag)

Makes init call the specified function. Func defaults to start. If no arguments are provided, the function
is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list [Arg1,Arg2,...] as
argument. All arguments are passed as strings. See init(3).

-s Mod [Func [Arg1, Arg2, ...]](init flag)

Makes init call the specified function. Func defaults to start. If no arguments are provided, the function
is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list [Arg1,Arg2,...] as
argument. All arguments are passed as atoms. See init(3).

-setcookie Cookie

Sets the magic cookie of the node to Cookie, see erlang:set_cookie/2.

-shutdown_time Time

Specifies how long time (in milliseconds) the init process is allowed to spend shutting down the system. If
Time ms have elapsed, all processes still existing are killed. Defaults to infinity.

-sname Name

Makes the Erlang runtime system into a distributed node, similar to -name, but the host name portion of the
node name Name@Host will be the short name, not fully qualified.

This is sometimes the only way to run distributed Erlang if the DNS (Domain Name System) is not running. There
can be no communication between nodes running with the -sname flag and those running with the -name flag,
as node names must be unique in distributed Erlang systems.

-smp [enable|auto|disable]

-smp enable and -smp starts the Erlang runtime system with SMP support enabled. This may fail if no
runtime system with SMP support is available. -smp auto starts the Erlang runtime system with SMP support
enabled if it is available and more than one logical processor are detected. -smp disable starts a runtime
system without SMP support. By default -smp auto will be used unless a conflicting parameter has been
passed, then -smp disable will be used. Currently only the -hybrid parameter conflicts with -smp auto.

NOTE: The runtime system with SMP support will not be available on all supported platforms. See also the +S
flag.

-version(emulator flag)

Makes the emulator print out its version number. The same as erl +V.

erl

184 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Emulator Flags
erl invokes the code for the Erlang emulator (virtual machine), which supports the following flags:

+a size

Suggested stack size, in kilowords, for threads in the async-thread pool. Valid range is 16-8192 kilowords. The
default suggested stack size is 16 kilowords, i.e, 64 kilobyte on 32-bit architectures. This small default size
has been chosen since the amount of async-threads might be quite large. The default size is enough for drivers
delivered with Erlang/OTP, but might not be sufficiently large for other dynamically linked in drivers that use
the driver_async() functionality. Note that the value passed is only a suggestion, and it might even be ignored
on some platforms.

+A size

Sets the number of threads in async thread pool, valid range is 0-1024. Default is 0.

+B [c | d | i]

The c option makes Ctrl-C interrupt the current shell instead of invoking the emulator break handler. The
d option (same as specifying +B without an extra option) disables the break handler. The i option makes the
emulator ignore any break signal.

If the c option is used with oldshell on Unix, Ctrl-C will restart the shell process rather than interrupt it.

Note that on Windows, this flag is only applicable for werl, not erl (oldshell). Note also that Ctrl-
Break is used instead of Ctrl-C on Windows.

+c

Disable compensation for sudden changes of system time.

Normally, erlang:now/0 will not immediately reflect sudden changes in the system time, in order to keep
timers (including receive-after) working. Instead, the time maintained by erlang:now/0 is slowly
adjusted towards the new system time. (Slowly means in one percent adjustments; if the time is off by one minute,
the time will be adjusted in 100 minutes.)

When the +c option is given, this slow adjustment will not take place. Instead erlang:now/0 will always
reflect the current system time. Note that timers are based on erlang:now/0. If the system time jumps, timers
then time out at the wrong time.

+d

If the emulator detects an internal error (or runs out of memory), it will by default generate both a crash dump
and a core dump. The core dump will, however, not be very useful since the content of process heaps is destroyed
by the crash dump generation.

The +d option instructs the emulator to only produce a core dump and no crash dump if an internal error is
detected.

Calling erlang:halt/1 with a string argument will still produce a crash dump.

+e Number

Set max number of ETS tables.

+ec

Force the compressed option on all ETS tables. Only intended for test and evaluation.

+fnl

The VM works with file names as if they are encoded using the ISO-latin-1 encoding, disallowing Unicode
characters with codepoints beyond 255. This is default on operating systems that have transparent file naming,
i.e. all Unixes except MacOSX.

erl

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 185

+fnu

The VM works with file names as if they are encoded using UTF-8 (or some other system specific Unicode
encoding). This is the default on operating systems that enforce Unicode encoding, i.e. Windows and MacOSX.

By enabling Unicode file name translation on systems where this is not default, you open up to the possibility that
some file names can not be interpreted by the VM and therefore will be returned to the program as raw binaries.
The option is therefore considered experimental.

+fna

Selection between +fnl and +fnu is done based on the current locale settings in the OS, meaning that if you
have set your terminal for UTF-8 encoding, the filesystem is expected to use the same encoding for filenames
(use with care).

+hms Size

Sets the default heap size of processes to the size Size.

+hmbs Size

Sets the default binary virtual heap size of processes to the size Size.

+K true | false

Enables or disables the kernel poll functionality if the emulator supports it. Default is false (disabled). If the
emulator does not support kernel poll, and the +K flag is passed to the emulator, a warning is issued at startup.

+l

Enables auto load tracing, displaying info while loading code.

+MFlag Value

Memory allocator specific flags, see erts_alloc(3) for further information.

+P Number

Sets the maximum number of concurrent processes for this system. Number must be in the range 16..134217727.
Default is 32768.

+R ReleaseNumber

Sets the compatibility mode.

The distribution mechanism is not backwards compatible by default. This flags sets the emulator in compatibility
mode with an earlier Erlang/OTP release ReleaseNumber. The release number must be in the range
7..<current release>. This limits the emulator, making it possible for it to communicate with Erlang
nodes (as well as C- and Java nodes) running that earlier release.

For example, an R10 node is not automatically compatible with an R9 node, but R10 nodes started with the +R
9 flag can co-exist with R9 nodes in the same distributed Erlang system, they are R9-compatible.

Note: Make sure all nodes (Erlang-, C-, and Java nodes) of a distributed Erlang system is of the same Erlang/
OTP release, or from two different Erlang/OTP releases X and Y, where all Y nodes have compatibility mode X.

For example: A distributed Erlang system can consist of R10 nodes, or of R9 nodes and R9-compatible R10
nodes, but not of R9 nodes, R9-compatible R10 nodes and "regular" R10 nodes, as R9 and "regular" R10 nodes
are not compatible.

+r

Force ets memory block to be moved on realloc.

erl

186 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

+rg ReaderGroupsLimit

Limits the amount of reader groups used by read/write locks optimized for read operations in the Erlang runtime
system. By default the reader groups limit equals 8.

When the amount of schedulers is less than or equal to the reader groups limit, each scheduler has its own
reader group. When the amount of schedulers is larger than the reader groups limit, schedulers share reader
groups. Shared reader groups degrades read lock and read unlock performance while a large amount of reader
groups degrades write lock performance, so the limit is a tradeoff between performance for read operations and
performance for write operations. Each reader group currently consumes 64 byte in each read/write lock. Also
note that a runtime system using shared reader groups benefits from binding schedulers to logical processors,
since the reader groups are distributed better between schedulers.

+S Schedulers:SchedulerOnline

Sets the amount of scheduler threads to create and scheduler threads to set online when SMP support has been
enabled. Valid range for both values are 1-1024. If the Erlang runtime system is able to determine the amount of
logical processors configured and logical processors available, Schedulers will default to logical processors
configured, and SchedulersOnline will default to logical processors available; otherwise, the default values
will be 1. Schedulers may be omitted if :SchedulerOnline is not and vice versa. The amount of
schedulers online can be changed at run time via erlang:system_flag(schedulers_online, SchedulersOnline).

This flag will be ignored if the emulator doesn't have SMP support enabled (see the -smp flag).

+sFlag Value

Scheduling specific flags.

+sbt BindType

Set scheduler bind type. Currently valid BindTypes:

u

Same as erlang:system_flag(scheduler_bind_type, unbound).

ns

Same as erlang:system_flag(scheduler_bind_type, no_spread).

ts

Same as erlang:system_flag(scheduler_bind_type, thread_spread).

ps

Same as erlang:system_flag(scheduler_bind_type, processor_spread).

s

Same as erlang:system_flag(scheduler_bind_type, spread).

nnts

Same as erlang:system_flag(scheduler_bind_type, no_node_thread_spread).

nnps

Same as erlang:system_flag(scheduler_bind_type, no_node_processor_spread).

tnnps

Same as erlang:system_flag(scheduler_bind_type, thread_no_node_processor_spread).

db

Same as erlang:system_flag(scheduler_bind_type, default_bind).

erl

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 187

Binding of schedulers is currently only supported on newer Linux, Solaris, FreeBSD, and Windows systems.

If no CPU topology is available when the +sbt flag is processed and BindType is any other type than u, the
runtime system will fail to start. CPU topology can be defined using the +sct flag. Note that the +sct flag may
have to be passed before the +sbt flag on the command line (in case no CPU topology has been automatically
detected).

The runtime system will by default bind schedulers to logical processors using the default_bind bind type if
the amount of schedulers are at least equal to the amount of logical processors configured, binding of schedulers
is supported, and a CPU topology is available at startup.

NOTE: If the Erlang runtime system is the only operating system process that binds threads to logical processors,
this improves the performance of the runtime system. However, if other operating system processes (as for
example another Erlang runtime system) also bind threads to logical processors, there might be a performance
penalty instead. If this is the case you, are advised to unbind the schedulers using the +sbtu command line
argument, or by invoking erlang:system_flag(scheduler_bind_type, unbound).

For more information, see erlang:system_flag(scheduler_bind_type, SchedulerBindType).

+sct CpuTopology

• <Id> = integer(); when 0 =< <Id> =< 65535

• <IdRange> = <Id>-<Id>

• <IdOrIdRange> = <Id> | <IdRange>

• <IdList> = <IdOrIdRange>,<IdOrIdRange> | <IdOrIdRange>

• <LogicalIds> = L<IdList>

• <ThreadIds> = T<IdList> | t<IdList>

• <CoreIds> = C<IdList> | c<IdList>

• <ProcessorIds> = P<IdList> | p<IdList>

• <NodeIds> = N<IdList> | n<IdList>

• <IdDefs> = <LogicalIds><ThreadIds><CoreIds><ProcessorIds><NodeIds> |
<LogicalIds><ThreadIds><CoreIds><NodeIds><ProcessorIds>

• CpuTopology = <IdDefs>:<IdDefs> | <IdDefs>

Upper-case letters signify real identifiers and lower-case letters signify fake identifiers only used for description
of the topology. Identifiers passed as real identifiers may be used by the runtime system when trying to access
specific hardware and if they are not correct the behavior is undefined. Faked logical CPU identifiers are not
accepted since there is no point in defining the CPU topology without real logical CPU identifiers. Thread, core,
processor, and node identifiers may be left out. If left out, thread id defaults to t0, core id defaults to c0, processor
id defaults to p0, and node id will be left undefined. Either each logical processor must belong to one and only
one NUMA node, or no logical processors must belong to any NUMA nodes.

Both increasing and decreasing <IdRange>s are allowed.

NUMA node identifiers are system wide. That is, each NUMA node on the system have to have a unique identifier.
Processor identifiers are also system wide. Core identifiers are processor wide. Thread identifiers are core wide.

The order of the identifier types imply the hierarchy of the CPU topology. Valid
orders are either <LogicalIds><ThreadIds><CoreIds><ProcessorIds><NodeIds>, or
<LogicalIds><ThreadIds><CoreIds><NodeIds><ProcessorIds>. That is, thread is part of a
core which is part of a processor which is part of a NUMA node, or thread is part of a core which is part of a NUMA
node which is part of a processor. A cpu topology can consist of both processor external, and processor internal
NUMA nodes as long as each logical processor belongs to one and only one NUMA node. If <ProcessorIds>
is left out, its default position will be before <NodeIds>. That is, the default is processor external NUMA nodes.

If a list of identifiers is used in an <IdDefs>:

erl

188 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

• <LogicalIds> have to be a list of identifiers.

• At least one other identifier type apart from <LogicalIds> also have to have a list of identifiers.

• All lists of identifiers have to produce the same amount of identifiers.

A simple example. A single quad core processor may be described this way:

% erl +sct L0-3c0-3
1> erlang:system_info(cpu_topology).
[{processor,[{core,{logical,0}},
 {core,{logical,1}},
 {core,{logical,2}},
 {core,{logical,3}}]}]

A little more complicated example. Two quad core processors. Each processor in its own NUMA node. The
ordering of logical processors is a little weird. This in order to give a better example of identifier lists:

% erl +sct L0-1,3-2c0-3p0N0:L7,4,6-5c0-3p1N1
1> erlang:system_info(cpu_topology).
[{node,[{processor,[{core,{logical,0}},
 {core,{logical,1}},
 {core,{logical,3}},
 {core,{logical,2}}]}]},
 {node,[{processor,[{core,{logical,7}},
 {core,{logical,4}},
 {core,{logical,6}},
 {core,{logical,5}}]}]}]

As long as real identifiers are correct it is okay to pass a CPU topology that is not a correct description of the
CPU topology. When used with care this can actually be very useful. This in order to trick the emulator to bind its
schedulers as you want. For example, if you want to run multiple Erlang runtime systems on the same machine,
you want to reduce the amount of schedulers used and manipulate the CPU topology so that they bind to different
logical CPUs. An example, with two Erlang runtime systems on a quad core machine:

% erl +sct L0-3c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname one
% erl +sct L3-0c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname two

In this example each runtime system have two schedulers each online, and all schedulers online will run on
different cores. If we change to one scheduler online on one runtime system, and three schedulers online on the
other, all schedulers online will still run on different cores.

Note that a faked CPU topology that does not reflect how the real CPU topology looks like is likely to decrease
the performance of the runtime system.

For more information, see erlang:system_flag(cpu_topology, CpuTopology).

+swt very_low|low|medium|high|very_high

Set scheduler wakeup threshold. Default is medium. The threshold determines when to wake up sleeping
schedulers when more work than can be handled by currently awake schedulers exist. A low threshold will cause
earlier wakeups, and a high threshold will cause later wakeups. Early wakeups will distribute work over multiple
schedulers faster, but work will more easily bounce between schedulers.

NOTE: This flag may be removed or changed at any time without prior notice.

erl

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 189

+sss size

Suggested stack size, in kilowords, for scheduler threads. Valid range is 4-8192 kilowords. The default stack size
is OS dependent.

+t size

Set the maximum number of atoms the VM can handle. Default is 1048576.

+T Level

Enables modified timing and sets the modified timing level. Currently valid range is 0-9. The timing of the runtime
system will change. A high level usually means a greater change than a low level. Changing the timing can be
very useful for finding timing related bugs.

Currently, modified timing affects the following:

Process spawning

A process calling spawn, spawn_link, spawn_monitor, or spawn_opt will be scheduled out
immediately after completing the call. When higher modified timing levels are used, the caller will also sleep
for a while after being scheduled out.

Context reductions
The amount of reductions a process is a allowed to use before being scheduled out is increased or reduced.
Input reductions
The amount of reductions performed before checking I/O is increased or reduced.

NOTE: Performance will suffer when modified timing is enabled. This flag is only intended for testing and
debugging. Also note that return_to and return_from trace messages will be lost when tracing on the
spawn BIFs. This flag may be removed or changed at any time without prior notice.

+V

Makes the emulator print out its version number.

+v

Verbose.

+W w | i

Sets the mapping of warning messages for error_logger. Messages sent to the error logger using one of
the warning routines can be mapped either to errors (default), warnings (+W w), or info reports (+W i). The
current mapping can be retrieved using error_logger:warning_map/0. See error_logger(3) for further
information.

+zFlag Value

Miscellaneous flags.

+zdbbl size

Set the distribution buffer busy limit (dist_buf_busy_limit) in kilobytes. Valid range is 1-2097151. Default is 1024.

A larger buffer limit will allow processes to buffer more outgoing messages over the distribution. When the buffer
limit has been reached, sending processes will be suspended until the buffer size has shrunk. The buffer limit is
per distribution channel. A higher limit will give lower latency and higher throughput at the expense of higher
memory usage.

erl

190 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Environment variables
ERL_CRASH_DUMP

If the emulator needs to write a crash dump, the value of this variable will be the file name of the crash dump file.
If the variable is not set, the name of the crash dump file will be erl_crash.dump in the current directory.

ERL_CRASH_DUMP_NICE

Unix systems: If the emulator needs to write a crash dump, it will use the value of this variable to set the nice value
for the process, thus lowering its priority. The allowable range is 1 through 39 (higher values will be replaced
with 39). The highest value, 39, will give the process the lowest priority.

ERL_CRASH_DUMP_SECONDS

Unix systems: This variable gives the number of seconds that the emulator will be allowed to spend writing a crash
dump. When the given number of seconds have elapsed, the emulator will be terminated by a SIGALRM signal.

ERL_AFLAGS

The content of this environment variable will be added to the beginning of the command line for erl.

The -extra flag is treated specially. Its scope ends at the end of the environment variable content. Arguments
following an -extra flag are moved on the command line into the -extra section, i.e. the end of the command
line following after an -extra flag.

ERL_ZFLAGSand ERL_FLAGS

The content of these environment variables will be added to the end of the command line for erl.

The -extra flag is treated specially. Its scope ends at the end of the environment variable content. Arguments
following an -extra flag are moved on the command line into the -extra section, i.e. the end of the command
line following after an -extra flag.

ERL_LIBS

This environment variable contains a list of additional library directories that the code server will search for
applications and add to the code path. See code(3).

ERL_EPMD_PORT

This environment variable can contain the port number to use when communicating with epmd. The default port
will work fine in most cases. A different port can be specified to allow nodes of independent clusters to co-exist
on the same host. All nodes in a cluster must use the same epmd port number.

SEE ALSO
init(3), erl_prim_loader(3), erl_boot_server(3), code(3), application(3), heart(3), net_kernel(3), auth(3), make(3),
epmd(1), erts_alloc(3)

erlc

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 191

erlc
Command

The erlc program provides a common way to run all compilers in the Erlang system. Depending on the extension
of each input file, erlc will invoke the appropriate compiler. Regardless of which compiler is used, the same flags
are used to provide parameters such as include paths and output directory.

The current working directory, ".", will not be included in the code path when running the compiler (to avoid loading
Beam files from the current working directory that could potentially be in conflict with the compiler or Erlang/OTP
system used by the compiler).

Exports

erlc flags file1.ext file2.ext...

Erlc compiles one or more files. The files must include the extension, for example .erl for Erlang source code, or
.yrl for Yecc source code. Erlc uses the extension to invoke the correct compiler.

Generally Useful Flags
The following flags are supported:

-I directory

Instructs the compiler to search for include files in the specified directory. When encountering an -include or
-include_dir directive, the compiler searches for header files in the following directories:

• ".", the current working directory of the file server;

• the base name of the compiled file;

• the directories specified using the -I option. The directory specified last is searched first.

-o directory

The directory where the compiler should place the output files. If not specified, output files will be placed in the
current working directory.

-Dname

Defines a macro.

-Dname=value

Defines a macro with the given value. The value can be any Erlang term. Depending on the platform, the value
may need to be quoted if the shell itself interprets certain characters. On Unix, terms which contain tuples and
list must be quoted. Terms which contain spaces must be quoted on all platforms.

-Werror

Makes all warnings into errors.

-Wnumber

Sets warning level to number. Default is 1. Use -W0 to turn off warnings.

-W

Same as -W1. Default.

-v

Enables verbose output.

erlc

192 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

-b output-type

Specifies the type of output file. Generally, output-type is the same as the file extension of the output file but
without the period. This option will be ignored by compilers that have a a single output format.

-hybrid

Compile using the hybrid-heap emulator. This is mainly useful for compiling native code, which needs to be
compiled with the same run-time system that it should be run on.

-smp

Compile using the SMP emulator. This is mainly useful for compiling native code, which needs to be compiled
with the same run-time system that it should be run on.

-M

Produces a Makefile rule to track headers dependencies. The rule is sent to stdout. No object file is produced.

-MF Makefile

Like the -M option above, except that the Makefile is written to Makefile. No object file is produced.

-MD

Same as -M -MF <File>.Pbeam.

-MT Target

In conjunction with -M or -MF, change the name of the rule emitted to Target.

-MQ Target

Like the -MT option above, except that characters special to make(1) are quoted.

-MP

In conjunction with -M or -MF, add a phony target for each dependency.

-MG

In conjunction with -M or -MF, consider missing headers as generated files and add them to the dependencies.

--

Signals that no more options will follow. The rest of the arguments will be treated as file names, even if they
start with hyphens.

+term

A flag starting with a plus ('+') rather than a hyphen will be converted to an Erlang term and passed unchanged
to the compiler. For instance, the export_all option for the Erlang compiler can be specified as follows:

erlc +export_all file.erl

Depending on the platform, the value may need to be quoted if the shell itself interprets certain characters. On
Unix, terms which contain tuples and list must be quoted. Terms which contain spaces must be quoted on all
platforms.

Special Flags
The flags in this section are useful in special situations such as re-building the OTP system.

erlc

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 193

-pa directory

Appends directory to the front of the code path in the invoked Erlang emulator. This can be used to invoke another
compiler than the default one.

-pz directory

Appends directory to the code path in the invoked Erlang emulator.

Supported Compilers
.erl

Erlang source code. It generates a .beam file.

The options -P, -E, and -S are equivalent to +'P', +'E', and +'S', except that it is not necessary to include the single
quotes to protect them from the shell.

Supported options: -I, -o, -D, -v, -W, -b.

.yrl

Yecc source code. It generates an .erl file.

Use the -I option with the name of a file to use that file as a customized prologue file (the includefile option).

Supported options: -o, -v, -I, -W (see above).

.mib

MIB for SNMP. It generates a .bin file.

Supported options: -I, -o, -W.

.bin

A compiled MIB for SNMP. It generates a .hrl file.

Supported options: -o, -v.

.rel

Script file. It generates a boot file.

Use the -I to name directories to be searched for application files (equivalent to the path in the option list for
systools:make_script/2).

Supported options: -o.

.asn1

ASN1 file.

Creates an .erl, .hrl, and .asn1db file from an .asn1 file. Also compiles the .erl using the Erlang
compiler unless the +noobj options is given.

Supported options: -I, -o, -b, -W.

.idl

IC file.

Runs the IDL compiler.

Supported options: -I, -o.

erlc

194 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Environment Variables
ERLC_EMULATOR

The command for starting the emulator. Default is erl in the same directory as the erlc program itself, or if it
doesn't exist, erl in any of the directories given in the PATH environment variable.

SEE ALSO
erl(1), compile(3), yecc(3), snmp(3)

werl

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 195

werl
Command

On Windows, the preferred way to start the Erlang system for interactive use is:

werl <arguments>

This will start Erlang in its own window, with fully functioning command-line editing and scrollbars. All flags except
-oldshell work as they do for the erl command.

Ctrl-C is reserved for copying text to the clipboard (Ctrl-V to paste). To interrupt the runtime system or the shell
process (depending on what has been specified with the +B system flag), you should use Ctrl-Break.

In cases where you want to redirect standard input and/or standard output or use Erlang in a pipeline, the werl is not
suitable, and the erl program should be used instead.

The werl window is in many ways modelled after the xterm window present on other platforms, as the xterm
model fits well with line oriented command based interaction. This means that selecting text is line oriented rather
than rectangle oriented.

To select text in the werl window , simply press and hold the left mouse button and drag the mouse over the text you
want to select. If the selection crosses line boundaries, the selected text will consist of complete lines where applicable
(just like in a word processor). To select more text than fits in the window, start by selecting a small portion in the
beginning of the text you want, then use the scrollbar to view the end of the desired selection, point to it and press
the right mouse-button. The whole area between your first selection and the point where you right-clicked will be
included in the selection.

The selected text is copied to the clipboard by either pressing Ctrl-C, using the menu or pressing the copy button
in the toolbar.

Pasted text is always inserted at the current prompt position and will be interpreted by Erlang as usual keyboard input.

Previous command lines can be retrieved by pressing the Up arrow or by pressing Ctrl-P. There is also a drop
down box in the toolbar containing the command history. Selecting a command in the drop down box will insert it at
the prompt, just as if you used the keyboard to retrieve the command.

Closing the werl window will stop the Erlang emulator.

escript

196 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

escript
Command

escript provides support for running short Erlang programs without having to compile them first and an easy way
to retrieve the command line arguments.

Exports

script-name script-arg1 script-arg2...

escript escript-flags script-name script-arg1 script-arg2...

escript runs a script written in Erlang.

Here follows an example.

$ cat factorial
#!/usr/bin/env escript
%% -*- erlang -*-
%%! -smp enable -sname factorial -mnesia debug verbose
main([String]) ->
 try
 N = list_to_integer(String),
 F = fac(N),
 io:format("factorial ~w = ~w\n", [N,F])
 catch
 : ->
 usage()
 end;
main(_) ->
 usage().

usage() ->
 io:format("usage: factorial integer\n"),
 halt(1).

fac(0) -> 1;
fac(N) -> N * fac(N-1).
$ factorial 5
factorial 5 = 120
$ factorial
usage: factorial integer
$ factorial five
usage: factorial integer

The header of the Erlang script in the example differs from a normal Erlang module. The first line is intended to be
the interpreter line, which invokes escript. However if you invoke the escript like this

$ escript factorial 5

the contents of the first line does not matter, but it cannot contain Erlang code as it will be ignored.

The second line in the example, contains an optional directive to the Emacs editor which causes it to enter the major
mode for editing Erlang source files. If the directive is present it must be located on the second line.

escript

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 197

On the third line (or second line depending on the presence of the Emacs directive), it is possible to give arguments
to the emulator, such as

%%! -smp enable -sname factorial -mnesia debug verbose

Such an argument line must start with %%! and the rest of the line will interpreted as arguments to the emulator.

If you know the location of the escript executable, the first line can directly give the path to escript. For instance:

#!/usr/local/bin/escript

As any other kind of scripts, Erlang scripts will not work on Unix platforms if the execution bit for the script file is
not set. (Use chmod +x script-name to turn on the execution bit.)

The rest of the Erlang script file may either contain Erlang source code, an inlined beam file or an
inlined archive file.

An Erlang script file must always contain the function main/1. When the script is run, the main/1 function will be
called with a list of strings representing the arguments given to the script (not changed or interpreted in any way).

If the main/1 function in the script returns successfully, the exit status for the script will be 0. If an exception is
generated during execution, a short message will be printed and the script terminated with exit status 127.

To return your own non-zero exit code, call halt(ExitCode); for instance:

halt(1).

Call escript:script_name() from your to script to retrieve the pathname of the script (the pathname is usually, but not
always, absolute).

If the file contains source code (as in the example above), it will be processed by the preprocessor epp. This means
that you for example may use pre-defined macros (such as ?MODULE) as well as include directives like the -
include_lib directive. For instance, use

-include_lib("kernel/include/file.hrl").

to include the record definitions for the records used by the file:read_link_info/1 function.

The script will be checked for syntactic and semantic correctness before being run. If there are warnings (such as
unused variables), they will be printed and the script will still be run. If there are errors, they will be printed and the
script will not be run and its exit status will be 127.

Both the module declaration and the export declaration of the main/1 function are optional.

By default, the script will be interpreted. You can force it to be compiled by including the following line somewhere
in the script file:

-mode(compile).

Execution of interpreted code is slower than compiled code. If much of the execution takes place in interpreted code it
may be worthwhile to compile it, even though the compilation itself will take a little while. It is also possible to supply

escript

198 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

native instead of compile, this will compile the script using the native flag, again depending on the characteristics
of the escript this could or could not be worth while.

As mentioned earlier, it is possible to have a script which contains precompiled beam code. In a precompiled script,
the interpretation of the script header is exactly the same as in a script containing source code. That means that you
can make a beam file executable by prepending the file with the lines starting with #! and %%! mentioned above. In
a precompiled script, the function main/1 must be exported.

As yet another option it is possible to have an entire Erlang archive in the script. In a archive script, the interpretation
of the script header is exactly the same as in a script containing source code. That means that you can make an archive
file executable by prepending the file with the lines starting with #! and %%! mentioned above. In an archive script,
the function main/1 must be exported. By default the main/1 function in the module with the same name as the
basename of the escript file will be invoked. This behavior can be overridden by setting the flag -escript main
Module as one of the emulator flags. The Module must be the name of a module which has an exported main/1
function. See code(3) for more information about archives and code loading.

In many cases it is very convenient to have a header in the escript, especially on Unix platforms. But the header is in
fact optional. This means that you directly can "execute" an Erlang module, beam file or archive file without adding
any header to them. But then you have to invoke the script like this:

$ escript factorial.erl 5
factorial 5 = 120
$ escript factorial.beam 5
factorial 5 = 120
$ escript factorial.zip 5
factorial 5 = 120

escript:create(FileOrBin, Sections) -> ok | {ok, binary()} | {error, term()}

Types:

FileOrBin = filename() | 'binary'

Sections = [Header] Body | Body

Header = shebang | {shebang, Shebang} | comment | {comment, Comment} | {emu_args, EmuArgs}

Shebang = string() | 'default' | 'undefined'

Comment = string() | 'default' | 'undefined'

EmuArgs = string() | 'undefined'

Body = {source, SourceCode} | {beam, BeamCode} | {archive, ZipArchive}

SourceCode = BeamCode = ZipArchive = binary()

The create/2 function creates an escript from a list of sections. The sections can be given in any order. An escript
begins with an optional Header followed by a mandatory Body. If the header is present, it does always begin
with a shebang, possibly followed by a comment and emu_args. The shebang defaults to "/usr/bin/env
escript". The comment defaults to "This is an -*- erlang -*- file". The created escript can either
be returned as a binary or written to file.

As an example of how the function can be used, we create an interpreted escript which uses emu_args to set some
emulator flag. In this case it happens to disable the smp_support. We do also extract the different sections from the
newly created script:

> Source = "%% Demo\nmain(_Args) ->\n io:format(erlang:system_info(smp_support)).\n".
"%% Demo\nmain(_Args) ->\n io:format(erlang:system_info(smp_support)).\n"
> io:format("~s\n", [Source]).
%% Demo

escript

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 199

main(_Args) ->
 io:format(erlang:system_info(smp_support)).

ok
> {ok, Bin} = escript:create(binary, [shebang, comment, {emu_args, "-smp disable"},
 {source, list_to_binary(Source)}]).
{ok,<<"#!/usr/bin/env escript\n%% This is an -*- erlang -*- file\n%%!-smp disabl"...>>}
> file:write_file("demo.escript", Bin).
ok
> os:cmd("escript demo.escript").
"false"
> escript:extract("demo.escript", []).
{ok,[{shebang,default}, {comment,default}, {emu_args,"-smp disable"},
 {source,<<"%% Demo\nmain(_Args) ->\n io:format(erlang:system_info(smp_su"...>>}]}

An escript without header can be created like this:

> file:write_file("demo.erl",
 ["%% demo.erl\n-module(demo).\n-export([main/1]).\n\n", Source]).
ok
> {ok, _, BeamCode} = compile:file("demo.erl", [binary, debug_info]).
{ok,demo,
 <<70,79,82,49,0,0,2,208,66,69,65,77,65,116,111,109,0,0,0,
 79,0,0,0,9,4,100,...>>}
> escript:create("demo.beam", [{beam, BeamCode}]).
ok
> escript:extract("demo.beam", []).
{ok,[{shebang,undefined}, {comment,undefined}, {emu_args,undefined},
 {beam,<<70,79,82,49,0,0,3,68,66,69,65,77,65,116,
 111,109,0,0,0,83,0,0,0,9,...>>}]}
> os:cmd("escript demo.beam").
"true"

Here we create an archive script containing both Erlang code as well as beam code. Then we iterate over all files in
the archive and collect their contents and some info about them.

> {ok, SourceCode} = file:read_file("demo.erl").
{ok,<<"%% demo.erl\n-module(demo).\n-export([main/1]).\n\n%% Demo\nmain(_Arg"...>>}
> escript:create("demo.escript",
 [shebang,
 {archive, [{"demo.erl", SourceCode},
 {"demo.beam", BeamCode}], []}]).
ok
> {ok, [{shebang,default}, {comment,undefined}, {emu_args,undefined},
 {archive, ArchiveBin}]} = escript:extract("demo.escript", []).
{ok,[{shebang,default}, {comment,undefined}, {emu_args,undefined},
 {{archive,<<80,75,3,4,20,0,0,0,8,0,118,7,98,60,105,
 152,61,93,107,0,0,0,118,0,...>>}]}
> file:write_file("demo.zip", ArchiveBin).
ok
> zip:foldl(fun(N, I, B, A) -> [{N, I(), B()} | A] end, [], "demo.zip").
{ok,[{"demo.beam",
 {file_info,748,regular,read_write,
 {{2010,3,2},{0,59,22}},
 {{2010,3,2},{0,59,22}},
 {{2010,3,2},{0,59,22}},
 54,1,0,0,0,0,0},
 <<70,79,82,49,0,0,2,228,66,69,65,77,65,116,111,109,0,0,0,
 83,0,0,...>>},

escript

200 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

 {"demo.erl",
 {file_info,118,regular,read_write,
 {{2010,3,2},{0,59,22}},
 {{2010,3,2},{0,59,22}},
 {{2010,3,2},{0,59,22}},
 54,1,0,0,0,0,0},
 <<"%% demo.erl\n-module(demo).\n-export([main/1]).\n\n%% Demo\nmain(_Arg"...>>}]}

escript:extract(File, Options) -> {ok, Sections} | {error, term()}

Types:

File = filename()

Options = [] | [compile_source]

Sections = Headers Body

Headers = {shebang, Shebang} {comment, Comment} {emu_args, EmuArgs}

Shebang = string() | 'default' | 'undefined'

Comment = string() | 'default' | 'undefined'

EmuArgs = string() | 'undefined'

Body = {source, SourceCode} | {source, BeamCode} | {beam, BeamCode} | {archive, ZipArchive}

SourceCode = BeamCode = ZipArchive = binary()

The extract/2 function parses an escript and extracts its sections. This is the reverse of create/2.

All sections are returned even if they do not exist in the escript. If a particular section happens to have the same value
as the default value, the extracted value is set to the atom default. If a section is missing, the extracted value is
set to the atom undefined.

The compile_source option only affects the result if the escript contains source code. In that case the Erlang
code is automatically compiled and {source, BeamCode} is returned instead of {source, SourceCode}.

> escript:create("demo.escript",
 [shebang, {archive, [{"demo.erl", SourceCode},
 {"demo.beam", BeamCode}], []}]).
ok
> {ok, [{shebang,default}, {comment,undefined}, {emu_args,undefined},
 {archive, ArchiveBin}]} =
 escript:extract("demo.escript", []).
{ok,[{{archive,<<80,75,3,4,20,0,0,0,8,0,118,7,98,60,105,
 152,61,93,107,0,0,0,118,0,...>>}
 {emu_args,undefined}]}

escript:script_name() -> File

Types:

File = filename()

The script_name/0 function returns the name of the escript being executed. If the function is invoked outside the
context of an escript, the behavior is undefined.

Options accepted by escript
-c

Compile the escript regardless of the value of the mode attribute.

escript

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 201

-d
Debug the escript. Starts the debugger, loads the module containing the main/1 function into the debugger,
sets a breakpoint in main/1 and invokes main/1. If the module is precompiled, it must be explicitly
compiled with the debug_info option.

-i
Interpret the escript regardless of the value of the mode attribute.

-s
Only perform a syntactic and semantic check of the script file. Warnings and errors (if any) are written to
the standard output, but the script will not be run. The exit status will be 0 if there were no errors, and 127
otherwise.

-n
Compile the escript using the +native flag.

erlsrv

202 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlsrv
Command

This utility is specific to Windows NT/2000/XP® (and subsequent versions of Windows) It allows Erlang emulators
to run as services on the Windows system, allowing embedded systems to start without any user needing to log in.
The emulator started in this way can be manipulated through the Windows® services applet in a manner similar to
other services.

Note that erlsrv is not a general service utility for Windows, but designed for embedded Erlang systems.

As well as being the actual service, erlsrv also provides a command line interface for registering, changing, starting
and stopping services.

To manipulate services, the logged in user should have Administrator privileges on the machine. The Erlang machine
itself is (default) run as the local administrator. This can be changed with the Services applet in Windows ®.

The processes created by the service can, as opposed to normal services, be "killed" with the task manager. Killing a
emulator that is started by a service will trigger the "OnFail" action specified for that service, which may be a reboot.

The following parameters may be specified for each Erlang service:

• StopAction: This tells erlsrv how to stop the Erlang emulator. Default is to kill it (Win32
TerminateProcess), but this action can specify any Erlang shell command that will be executed in the emulator to
make it stop. The emulator is expected to stop within 30 seconds after the command is issued in the shell. If the
emulator is not stopped, it will report a running state to the service manager.

• OnFail: This can be either of reboot, restart, restart_always or ignore (the default). In case of
reboot, the NT system is rebooted whenever the emulator stops (a more simple form of watchdog), this could
be useful for less critical systems, otherwise use the heart functionality to accomplish this. The restart value makes
the Erlang emulator be restarted (with whatever parameters are registered for the service at the occasion) when
it stops. If the emulator stops again within 10 seconds, it is not restarted to avoid an infinite loop which could
completely hang the NT system. restart_always is similar to restart, but does not try to detect cyclic restarts,
it is expected that some other mechanism is present to avoid the problem. The default (ignore) just reports the
service as stopped to the service manager whenever it fails, it has to be manually restarted.

On a system where release handling is used, this should always be set to ignore. Use heart to restart the
service on failure instead.

• Machine: The location of the Erlang emulator. The default is the erl.exe located in the same directory as
erlsrv.exe. Do not specify werl.exe as this emulator, it will not work.

If the system uses release handling, this should be set to a program similar to start_erl.exe.

• Env: Specifies an additional environment for the emulator. The environment variables specified here are added
to the system wide environment block that is normally present when a service starts up. Variables present in both
the system wide environment and in the service environment specification will be set to the value specified in
the service.

• WorkDir: The working directory for the Erlang emulator, has to be on a local drive (there are no network drives
mounted when a service starts). Default working directory for services is %SystemDrive%%SystemPath%.
Debug log files will be placed in this directory.

• Priority: The process priority of the emulator, this can be one of realtime, high, low or default (the
default). Real-time priority is not recommended, the machine will possibly be inaccessible to interactive users.
High priority could be used if two Erlang nodes should reside on one dedicated system and one should have
precedence over the other. Low process priority may be used if interactive performance should not be affected
by the emulator process.

erlsrv

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 203

• SName or Name: Specifies the short or long node-name of the Erlang emulator. The Erlang services are always
distributed, default is to use the service name as (short) node-name.

• DebugType: Can be one of none (default), new, reuse or console. Specifies that output from
the Erlang shell should be sent to a "debug log". The log file is named <servicename>.debug or
<servicename>.debug.<N>, where <N> is an integer between 1 and 99. The log-file is placed in the
working directory of the service (as specified in WorkDir). The reuse option always reuses the same log
file (<servicename>.debug) and the new option uses a separate log file for every invocation of the service
(<servicename>.debug.<N>). The console option opens an interactive Windows® console window for the
Erlang shell of the service. The console option automatically disables the StopAction and a service started
with an interactive console window will not survive logouts, OnFail actions do not work with debug-consoles
either. If no DebugType is specified (none), the output of the Erlang shell is discarded.

The consoleDebugType is not in any way intended for production. It is only a convenient way to debug Erlang
services during development. The new and reuse options might seem convenient to have in a production system,
but one has to take into account that the logs will grow indefinitely during the systems lifetime and there is no
way, short of restarting the service, to truncate those logs. In short, the DebugType is intended for debugging
only. Logs during production are better produced with the standard Erlang logging facilities.

• Args: Additional arguments passed to the emulator startup program erl.exe (or start_erl.exe).
Arguments that cannot be specified here are -noinput (StopActions would not work), -name and -sname
(they are specified in any way. The most common use is for specifying cookies and flags to be passed to init:boot()
(-s).

• InternalServiceName: Specifies the Windows® internal service name (not the display name, which is the
one erlsrv uses to identify the service).

This internal name can not be changed, it is fixed even if the service is renamed. Erlsrv generates a unique
internal name when a service is created, it is recommended to keep to the defaut if release-handling is to be used
for the application.

The internal service name can be seen in the Windows® service manager if viewing Properties for an erlang
service.

• Comment: A textual comment describing the service. Not mandatory, but shows up as the service description
in the Windows® service manager.

The naming of the service in a system that uses release handling has to follow the convention NodeName_Release,
where NodeName is the first part of the Erlang nodename (up to, but not including the "@") and Release is the current
release of the application.

Exports

erlsrv {set | add} <service-name> [<service options>]

The set and add commands adds or modifies a Erlang service respectively. The simplest form of an add command
would be completely without options in which case all default values (described above) apply. The service name is
mandatory.

Every option can be given without parameters, in which case the default value is applied. Values to the options are
supplied only when the default should not be used (i.e. erlsrv set myservice -prio -arg sets the default
priority and removes all arguments).

The following service options are currently available:

-st[opaction] [<erlang shell command>]
Defines the StopAction, the command given to the Erlang shell when the service is stopped. Default is none.

-on[fail] [{reboot | restart | restart_always}]
Specifies the action to take when the Erlang emulator stops unexpectedly. Default is to ignore.

erlsrv

204 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

-m[achine] [<erl-command>]
The complete path to the Erlang emulator, never use the werl program for this. Default is the erl.exe in the
same directory as erlsrv.exe. When release handling is used, this should be set to a program similar to
start_erl.exe.

-e[nv] [<variable>[=<value>]] ...
Edits the environment block for the service. Every environment variable specified will add to the system
environment block. If a variable specified here has the same name as a system wide environment variable,
the specified value overrides the system wide. Environment variables are added to this list by specifying
<variable>=<value> and deleted from the list by specifying <variable> alone. The environment block is
automatically sorted. Any number of -env options can be specified in one command. Default is to use the
system environment block unmodified (except for two additions, see below).

-w[orkdir] [<directory>]
The initial working directory of the Erlang emulator. Default is the system directory.

-p[riority] [{low|high|realtime}]
The priority of the Erlang emulator. The default is the Windows® default priority.

{-sn[ame] | -n[ame]} [<node-name>]
The node-name of the Erlang machine, distribution is mandatory. Default is -sname <service name>.

-d[ebugtype] [{new|reuse|console}]
Specifies where shell output should be sent, default is that shell output is discarded. To be used only for
debugging.

-ar[gs] [<limited erl arguments>]
Additional arguments to the Erlang emulator, avoid -noinput, -noshell and -sname/-name. Default is
no additional arguments. Remember that the services cookie file is not necessarily the same as the interactive
users. The service runs as the local administrator. All arguments should be given together in one string, use
double quotes (") to give an argument string containing spaces and use quoted quotes (\") to give an quote
within the argument string if necessary.

-i[nternalservicename] [<internal name>]
Only allowed for add. Specifies a Windows® internal service name for the service, which by default is set to
something unique (prefixed with the original service name) by erlsrv when adding a new service. Specifying
this is a purely cosmethic action and is not recommended if release handling is to be performed. The internal
service name cannot be changed once the service is created. The internal name is not to be confused with the
ordinary service name, which is the name used to identify a service to erlsrv.

-c[omment] [<short description>]
Specifies a textual comment describing the service. This comment will show upp as the service description in
the Windows® service manager.

erlsrv {start | stop | disable | enable} <service-name>

These commands are only added for convenience, the normal way to manipulate the state of a service is through the
control panels services applet. The start and stop commands communicates with the service manager for stopping
and starting a service. The commands wait until the service is actually stopped or started. When disabling a service, it
is not stopped, the disabled state will not take effect until the service actually is stopped. Enabling a service sets it in
automatic mode, that is started at boot. This command cannot set the service to manual.

erlsrv remove <service-name>

This command removes the service completely with all its registered options. It will be stopped before it is removed.

erlsrv list [<service-name>]

If no service name is supplied, a brief listing of all Erlang services is presented. If a service-name is supplied, all
options for that service are presented.

erlsrv

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 205

erlsrv help

ENVIRONMENT
The environment of an Erlang machine started as a service will contain two special variables,
ERLSRV_SERVICE_NAME, which is the name of the service that started the machine and ERLSRV_EXECUTABLE
which is the full path to the erlsrv.exe that can be used to manipulate the service. This will come in handy when
defining a heart command for your service. A command file for restarting a service will simply look like this:

@echo off
%ERLSRV_EXECUTABLE% stop %ERLSRV_SERVICE_NAME%
%ERLSRV_EXECUTABLE% start %ERLSRV_SERVICE_NAME%

This command file is then set as heart command.

The environment variables can also be used to detect that we are running as a service and make port programs react
correctly to the control events generated on logout (see below).

PORT PROGRAMS
When a program runs in the service context, it has to handle the control events that is sent to every program in the
system when the interactive user logs off. This is done in different ways for programs running in the console subsystem
and programs running as window applications. An application which runs in the console subsystem (normal for port
programs) uses the win32 function SetConsoleCtrlHandler to a control handler that returns TRUE in answer
to the CTRL_LOGOFF_EVENT. Other applications just forward WM_ENDSESSION and WM_QUERYENDSESSION
to the default window procedure. Here is a brief example in C of how to set the console control handler:

#include <windows.h>
/*
** A Console control handler that ignores the log off events,
** and lets the default handler take care of other events.
*/
BOOL WINAPI service_aware_handler(DWORD ctrl){
 if(ctrl == CTRL_LOGOFF_EVENT)
 return TRUE;
 return FALSE;
}

void initialize_handler(void){
 char buffer[2];
 /*
 * We assume we are running as a service if this
 * environment variable is defined
 */
 if(GetEnvironmentVariable("ERLSRV_SERVICE_NAME",buffer,
 (DWORD) 2)){
 /*
 ** Actually set the control handler
 */
 SetConsoleCtrlHandler(&service_aware_handler, TRUE);
 }
}

erlsrv

206 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

NOTES
Even though the options are described in a Unix-like format, the case of the options or commands is not relevant, and
the "/" character for options can be used as well as the "-" character.

Note that the program resides in the emulators bin-directory, not in the bin-directory directly under the Erlang root.
The reasons for this are the subtle problem of upgrading the emulator on a running system, where a new version of
the runtime system should not need to overwrite existing (and probably used) executables.

To easily manipulate the Erlang services, put the <erlang_root>\erts-<version>\bin directory in the
path instead of <erlang_root>\bin. The erlsrv program can be found from inside Erlang by using the
os:find_executable/1 Erlang function.

For release handling to work, use start_erl as the Erlang machine. It is also worth mentioning again that the name
of the service is significant (see above).

SEE ALSO
start_erl(1), release_handler(3)

start_erl

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 207

start_erl
Command

This describes the start_erl program specific to Windows NT. Although there exists programs with the same
name on other platforms, their functionality is not the same.

The start_erl program is distributed both in compiled form (under <Erlang root>\\erts-<version>\\bin) and in
source form (under <Erlang root>\\erts-<version>\\src). The purpose of the source code is to make it possible to easily
customize the program for local needs, such as cyclic restart detection etc. There is also a "make"-file, written for the
nmake program distributed with Microsoft® Visual C++®. The program can however be compiled with any Win32
C compiler (possibly with slight modifications).

The purpose of the program is to aid release handling on Windows NT®. The program should be called by the erlsrv
program, read up the release data file start_erl.data and start Erlang. Certain options to start_erl are added and removed
by the release handler during upgrade with emulator restart (more specifically the -data option).

Exports

start_erl [<erl options>] ++ [<start_erl options>]

The start_erl program in its original form recognizes the following options:

++
Mandatory, delimits start_erl options from normal Erlang options. Everything on the command line before
the ++ is interpreted as options to be sent to the erl program. Everything after++ is interpreted as options to
start_erl itself.

-reldir <release root>
Mandatory if the environment variable RELDIR is not specified. Tells start_erl where the root of the release
tree is placed in the file-system (like <Erlang root>\\releases). The start_erl.data file is expected to be
placed in this directory (if not otherwise specified).

-data <data file name>
Optional, specifies another data file than start_erl.data in the <release root>. It is specified relative to the
<release root> or absolute (including drive letter etc.). This option is used by the release handler during
upgrade and should not be used during normal operation. The release data file should not normally be named
differently.

-bootflags <boot flags file name>
Optional, specifies a file name relative to actual release directory (that is the subdirectory of <release root>
where the .boot file etc. are placed). The contents of this file is appended to the command line when Erlang is
started. This makes it easy to start the emulator with different options for different releases.

NOTES
As the source code is distributed, it can easily be modified to accept other options. The program must still accept the
-data option with the semantics described above for the release handler to work correctly.

The Erlang emulator is found by examining the registry keys for the emulator version specified in the release data file.
The new emulator needs to be properly installed before the upgrade for this to work.

Although the program is located together with files specific to emulator version, it is not expected to be specific to
the emulator version. The release handler does not change the -machine option to erlsrv during emulator restart.
Place the (possibly customized) start_erl program so that it is not overwritten during upgrade.

The erlsrv program's default options are not sufficient for release handling. The machine erlsrv starts should be
specified as the start_erl program and the arguments should contain the ++ followed by desired options.

start_erl

208 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

SEE ALSO
erlsrv(1), release_handler(3)

erl_set_memory_block

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 209

erl_set_memory_block
C Library

This documentation is specific to VxWorks.

The erl_set_memory_block function/command initiates custom memory allocation for the Erlang emulator. It
has to be called before the Erlang emulator is started and makes Erlang use one single large memory block for all
memory allocation.

The memory within the block can be utilized by other tasks than Erlang. This is accomplished by calling the functions
sys_alloc, sys_realloc and sys_free instead of malloc, realloc and free respectively.

The purpose of this is to avoid problems inherent in the VxWorks systems malloc library. The memory allocation
within the large memory block avoids fragmentation by using an "address order first fit" algorithm. Another advantage
of using a separate memory block is that resource reclamation can be made more easily when Erlang is stopped.

The erl_set_memory_block function is callable from any C program as an ordinary 10 argument function as
well as from the commandline.

Exports

int erl_set_memory_block(size_t size, void *ptr, int warn_mixed_malloc, int
realloc_always_moves, int use_reclaim, ...)

The function is called before Erlang is started to specify a large memory block where Erlang can maintain memory
internally.

Parameters:

size_t size
The size in bytes of Erlang's internal memory block. Has to be specified. Note that the VxWorks system uses
dynamic memory allocation heavily, so leave some memory to the system.

void *ptr

A pointer to the actual memory block of size size. If this is specified as 0 (NULL), Erlang will allocate the
memory when starting and will reclaim the memory block (as a whole) when stopped.

If a memory block is allocated and provided here, the sys_alloc etc routines can still be used after the Erlang
emulator is stopped. The Erlang emulator can also be restarted while other tasks using the memory block are
running without destroying the memory. If Erlang is to be restarted, also set the use_reclaim flag.

If 0 is specified here, the Erlang system should not be stopped while some other task uses the memory block
(has called sys_alloc).

int warn_mixed_malloc

If this flag is set to true (anything else than 0), the system will write a warning message on the console if a program
is mixing normal malloc with sys_realloc or sys_free.

int realloc_always_moves

If this flag is set to true (anything else than 0), all calls to sys_realloc result in a moved memory block. This
can in certain conditions give less fragmentation. This flag may be removed in future releases.

int use_reclaim

If this flag is set to true (anything else than 0), all memory allocated with sys_alloc is automatically reclaimed
as soon as a task exits. This is very useful to make writing port programs (and other programs as well) easier.

erl_set_memory_block

210 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Combine this with using the routines save_open etc. specified in the reclaim.h file delivered in the Erlang
distribution.

Return Value:

Returns 0 (OK) on success, otherwise a value <> 0.

int erl_memory_show(...)

Return Value:

Returns 0 (OK) on success, otherwise a value <> 0.

int erl_mem_info_get(MEM_PART_STATS *stats)

Parameter:

MEM_PART_STATS *stats
A pointer to a MEM_PART_STATS structure as defined in <memLib.h>. A successful call will fill in all
fields of the structure, on error all fields are left untouched.

Return Value:

Returns 0 (OK) on success, otherwise a value <> 0

NOTES
The memory block used by Erlang actually does not need to be inside the area known to ordinary malloc. It is
possible to set the USER_RESERVED_MEM preprocessor symbol when compiling the wind kernel and then use user
reserved memory for Erlang. Erlang can therefor utilize memory above the 32 Mb limit of VxWorks on the PowerPC
architecture.

Example:

In config.h for the wind kernel:

 #undef LOCAL_MEM_AUTOSIZE
 #undef LOCAL_MEM_SIZE
 #undef USER_RESERVED_MEM

 #define LOCAL_MEM_SIZE 0x05000000
 #define USER_RESERVED_MEM 0x03000000

In the start-up script/code for the VxWorks node:

erl_set_memory_block(sysPhysMemTop()-sysMemTop(),sysMemTop(),0,0,1);

Setting the use_reclaim flag decreases performance of the system, but makes programming much easier. Other
similar facilities are present in the Erlang system even without using a separate memory block. The routines called
save_malloc, save_realloc and save_free provide the same facilities by using VxWorks own malloc.
Similar routines exist for files, see the file reclaim.h in the distribution.

run_erl

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 211

run_erl
Command

This describes the run_erl program specific to Solaris/Linux. This program redirect the standard input and standard
output streams so that all output can be logged. It also let the program to_erl connect to the Erlang console making
it possible to monitor and debug an embedded system remotely.

You can read more about the use in the Embedded System User's Guide.

Exports

run_erl [-daemon] pipe_dir/ log_dir "exec command [command_arguments]"

The run_erl program arguments are:

-daemon
This option is highly recommended. It makes run_erl run in the background completely detached from any
controlling terminal and the command returns to the caller immediately. Without this option, run_erl must be
started using several tricks in the shell to detach it completely from the terminal in use when starting it. The
option must be the first argument to run_erl on the command line.

pipe_dir
This is where to put the named pipe, usually /tmp/. It shall be suffixed by a / (slash), i.e. not /tmp/
epipies, but /tmp/epipes/.

log_dir
This is where the log files are written. There will be one log file, run_erl.log that log progress and
warnings from the run_erl program itself and there will be up to five log files at maximum 100KB each
(both number of logs and sizes can be changed by environment variables, see below) with the content of the
standard streams from and to the command. When the logs are full run_erl will delete and reuse the oldest
log file.

"exec command [command_arguments]"
In the third argument command is the to execute where everything written to stdin and stdout is logged to
log_dir.

Notes concerning the log files
While running, run_erl (as stated earlier) sends all output, uninterpreted, to a log file. The file is called
erlang.log.N, where N is a number. When the log is "full", default after 100KB, run_erl starts to log in file
erlang.log.(N+1), until N reaches a certain number (default 5), where after N starts at 1 again and the oldest
files start getting overwritten. If no output comes from the erlang shell, but the erlang machine still seems to be alive,
an "ALIVE" message is written to the log, it is a timestamp and is written, by default, after 15 minutes of inactivity.
Also, if output from erlang is logged but it's been more than 5 minutes (default) since last time we got anything from
erlang, a timestamp is written in the log. The "ALIVE" messages look like this:

 ===== ALIVE <date-time-string>

while the other timestamps look like this:

 ===== <date-time-string>

run_erl

212 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

The date-time-string is the date and time the message is written, default in local time (can be changed to GMT
if one wants to) and is formatted with the ANSI-C function strftime using the format string %a %b %e %T %Z
%Y, which produces messages on the line of ===== ALIVE Thu May 15 10:13:36 MEST 2003, this can
be changed, see below.

Environment variables
The following environment variables are recognized by run_erl and change the logging behavior. Also see the notes
above to get more info on how the log behaves.

RUN_ERL_LOG_ALIVE_MINUTES
How long to wait for output (in minutes) before writing an "ALIVE" message to the log. Default is 15, can
never be less than 1.

RUN_ERL_LOG_ACTIVITY_MINUTES
How long erlang need to be inactive before output will be preceded with a timestamp. Default is
RUN_ERL_LOG_ALIVE_MINUTES div 3, but never less than 1.

RUN_ERL_LOG_ALIVE_FORMAT
Specifies another format string to be used in the strftime C library call. i.e specifying this to "%e-%b-%Y, %T
%Z" will give log messages with timestamps looking like 15-May-2003, 10:23:04 MET etc. See the
documentation for the C library function strftime for more information. Default is "%a %b %e %T %Z %Y".

RUN_ERL_LOG_ALIVE_IN_UTC
If set to anything else than "0", it will make all times displayed by run_erl to be in UTC (GMT,CET,MET,
without DST), rather than in local time. This does not affect data coming from erlang, only the logs output
directly by run_erl. The application sasl can be modified accordingly by setting the erlang application
variable utc_log to true.

RUN_ERL_LOG_GENERATIONS
Controls the number of log files written before older files are being reused. Default is 5, minimum is 2,
maximum is 1000.

RUN_ERL_LOG_MAXSIZE
The size (in bytes) of a log file before switching to a new log file. Default is 100000, minimum is 1000 and
maximum is approximately 2^30.

SEE ALSO
start(1), start_erl(1)

start

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 213

start
Command

This describes the start script that is an example script on how to startup the Erlang system in embedded mode
on Unix.

You can read more about the use in the Embedded System User's Guide.

Exports

start [data_file]

In the example there is one argument

data_file
Optional, specifies what start_erl.data file to use.

There is also an environment variable RELDIR that can be set prior to calling this example that set the directory where
to find the release files.

SEE ALSO
run_erl(1), start_erl(1)

erl_driver

214 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver
C Library

As of erts version 5.5.3 the driver interface has been extended (see extended marker). The extended interface
introduce version management, the possibility to pass capability flags (see driver flags) to the runtime system at driver
initialization, and some new driver API functions.

Note:
Old drivers (compiled with an erl_driver.h from an earlier erts version than 5.5.3) have to be recompiled
(but does not have to use the extended interface).

The driver calls back to the emulator, using the API functions declared in erl_driver.h. They are used for
outputting data from the driver, using timers, etc.

A driver is a library with a set of function that the emulator calls, in response to Erlang functions and message sending.
There may be multiple instances of a driver, each instance is connected to an Erlang port. Every port has a port owner
process. Communication with the port is normally done through the port owner process.

Most of the functions takes the port handle as an argument. This identifies the driver instance. Note that this port
handle must be stored by the driver, it is not given when the driver is called from the emulator (see driver_entry).

Some of the functions takes a parameter of type ErlDrvBinary, a driver binary. It should be both allocated and
freed by the caller. Using a binary directly avoid one extra copying of data.

Many of the output functions has a "header buffer", with hbuf and hlen parameters. This buffer is sent as a list
before the binary (or list, depending on port mode) that is sent. This is convenient when matching on messages received
from the port. (Although in the latest versions of Erlang, there is the binary syntax, that enables you to match on the
beginning of a binary.)

In the runtime system with SMP support, drivers are locked either on driver level or port level (driver instance level).
By default driver level locking will be used, i.e., only one emulator thread will execute code in the driver at a time. If
port level locking is used, multiple emulator threads may execute code in the driver at the same time. There will only
be one thread at a time calling driver call-backs corresponding to the same port, though. In order to enable port level
locking set the ERL_DRV_FLAG_USE_PORT_LOCKING driver flag in the driver_entry used by the driver. When
port level locking is used it is the responsibility of the driver writer to synchronize all accesses to data shared by the
ports (driver instances).

Most drivers written before the runtime system with SMP support existed will be able to run in the runtime system
with SMP support without being rewritten if driver level locking is used.

Note:
It is assumed that drivers does not access other drivers. If drivers should access each other they have to provide
their own mechanism for thread safe synchronization. Such "inter driver communication" is strongly discouraged.

Previously, in the runtime system without SMP support, specific driver call-backs were always called from the same
thread. This is not the case in the runtime system with SMP support. Regardless of locking scheme used, calls to driver
call-backs may be made from different threads, e.g., two consecutive calls to exactly the same call-back for exactly the
same port may be made from two different threads. This will for most drivers not be a problem, but it might. Drivers

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 215

that depend on all call-backs being called in the same thread, have to be rewritten before being used in the runtime
system with SMP support.

Note:
Regardless of locking scheme used, calls to driver call-backs may be made from different threads.

Most functions in this API are not thread-safe, i.e., they may not be called from an arbitrary thread. Function that are
not documented as thread-safe may only be called from driver call-backs or function calls descending from a driver
call-back call. Note that driver call-backs may be called from different threads. This, however, is not a problem for
any functions in this API, since the emulator have control over these threads.

Note:
Functions not explicitly documented as thread-safe are not thread-safe. Also note that some functions are only
thread safe when used in a runtime system with SMP support.

FUNCTIONALITY
All functions that a driver needs to do with Erlang are performed through driver API functions. There are functions
for the following functionality:

Timer functions
Timer functions are used to control the timer that a driver may use. The timer will have the emulator call the
timeout entry function after a specified time. Only one timer is available for each driver instance.

Queue handling

Every driver instance has an associated queue. This queue is a SysIOVec that works as a buffer. It's mostly
used for the driver to buffer data that should be written to a device, it is a byte stream. If the port owner process
closes the driver, and the queue is not empty, the driver will not be closed. This enables the driver to flush its
buffers before closing.

The queue can be manipulated from arbitrary threads if a port data lock is used. See documentation of the
ErlDrvPDL type for more information.

Output functions
With the output functions, the driver sends data back the emulator. They will be received as messages by the
port owner process, see open_port/2. The vector function and the function taking a driver binary is faster,
because that avoid copying the data buffer. There is also a fast way of sending terms from the driver, without
going through the binary term format.

Failure
The driver can exit and signal errors up to Erlang. This is only for severe errors, when the driver can't possibly
keep open.

Asynchronous calls
The latest Erlang versions (R7B and later) has provision for asynchronous function calls, using a thread pool
provided by Erlang. There is also a select call, that can be used for asynchronous drivers.

Multi-threading

A POSIX thread like API for multi-threading is provided. The Erlang driver thread API only provide a subset of
the functionality provided by the POSIX thread API. The subset provided is more or less the basic functionality
needed for multi-threaded programming:

erl_driver

216 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

• Threads

• Mutexes

• Condition variables

• Read/Write locks

• Thread specific data

The Erlang driver thread API can be used in conjunction with the POSIX thread API on UN-ices and with the
Windows native thread API on Windows. The Erlang driver thread API has the advantage of being portable, but
there might exist situations where you want to use functionality from the POSIX thread API or the Windows
native thread API.

The Erlang driver thread API only return error codes when it is reasonable to recover from an error condition.
If it isn't reasonable to recover from an error condition, the whole runtime system is terminated. For example,
if a create mutex operation fails, an error code is returned, but if a lock operation on a mutex fails, the whole
runtime system is terminated.

Note that there exist no "condition variable wait with timeout" in the Erlang driver thread API. This is due to issues
with pthread_cond_timedwait(). When the system clock suddenly is changed, it isn't always guaranteed
that you will wake up from the call as expected. An Erlang runtime system has to be able to cope with sudden
changes of the system clock. Therefore, we have omitted it from the Erlang driver thread API. In the Erlang driver
case, timeouts can and should be handled with the timer functionality of the Erlang driver API.

In order for the Erlang driver thread API to function, thread support has to be enabled in the runtime system. An
Erlang driver can check if thread support is enabled by use of driver_system_info(). Note that some functions in
the Erlang driver API are thread-safe only when the runtime system has SMP support, also this information can
be retrieved via driver_system_info(). Also note that a lot of functions in the Erlang driver API are not thread-
safe regardless of whether SMP support is enabled or not. If a function isn't documented as thread-safe it is not
thread-safe.

NOTE: When executing in an emulator thread, it is very important that you unlock all locks you have locked
before letting the thread out of your control; otherwise, you are very likely to deadlock the whole emulator. If you
need to use thread specific data in an emulator thread, only have the thread specific data set while the thread is
under your control, and clear the thread specific data before you let the thread out of your control.

In the future there will probably be debug functionality integrated with the Erlang driver thread API. All functions
that create entities take a name argument. Currently the name argument is unused, but it will be used when the
debug functionality has been implemented. If you name all entities created well, the debug functionality will be
able to give you better error reports.

Adding / remove drivers
A driver can add and later remove drivers.

Monitoring processes
A driver can monitor a process that does not own a port.

Version management

Version management is enabled for drivers that have set the
extended_marker field of their driver_entry to ERL_DRV_EXTENDED_MARKER.
erl_driver.h defines ERL_DRV_EXTENDED_MARKER, ERL_DRV_EXTENDED_MAJOR_VERSION, and
ERL_DRV_EXTENDED_MINOR_VERSION. ERL_DRV_EXTENDED_MAJOR_VERSION will be incremented
when driver incompatible changes are made to the Erlang runtime system. Normally it will suffice to
recompile drivers when the ERL_DRV_EXTENDED_MAJOR_VERSION has changed, but it could, under rare
circumstances, mean that drivers have to be slightly modified. If so, this will of course be documented.
ERL_DRV_EXTENDED_MINOR_VERSION will be incremented when new features are added. The runtime
system use the minor version of the driver to determine what features to use. The runtime system will refuse to
load a driver if the major versions differ, or if the major versions are equal and the minor version used by the
driver is greater than the one used by the runtime system.

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 217

The emulator tries to check that a driver that doesn't use the extended driver interface isn't incompatible when
loading it. It can, however, not make sure that it isn't incompatible. Therefore, when loading a driver that doesn't
use the extended driver interface, there is a risk that it will be loaded also when the driver is incompatible. When
the driver use the extended driver interface, the emulator can verify that it isn't of an incompatible driver version.
You are therefore advised to use the extended driver interface.

DATA TYPES
ErlDrvSysInfo

typedef struct ErlDrvSysInfo {
 int driver_major_version;
 int driver_minor_version;
 char *erts_version;
 char *otp_release;
 int thread_support;
 int smp_support;
 int async_threads;
 int scheduler_threads;
 int nif_major_version;
 int nif_minor_version;
} ErlDrvSysInfo;

The ErlDrvSysInfo structure is used for storage of information about the Erlang runtime system.
driver_system_info() will write the system information when passed a reference to a ErlDrvSysInfo structure.
A description of the fields in the structure follow:

driver_major_version
The value of ERL_DRV_EXTENDED_MAJOR_VERSION when the runtime system was compiled. This value
is the same as the value of ERL_DRV_EXTENDED_MAJOR_VERSION used when compiling the driver;
otherwise, the runtime system would have refused to load the driver.
driver_minor_version
The value of ERL_DRV_EXTENDED_MINOR_VERSION when the runtime system was compiled. This value
might differ from the value of ERL_DRV_EXTENDED_MINOR_VERSION used when compiling the driver.
erts_version
A string containing the version number of the runtime system (the same as returned by
erlang:system_info(version)).
otp_release
A string containing the OTP release number (the same as returned by erlang:system_info(otp_release)).
thread_support
A value != 0 if the runtime system has thread support; otherwise, 0.
smp_support
A value != 0 if the runtime system has SMP support; otherwise, 0.
thread_support
A value != 0 if the runtime system has thread support; otherwise, 0.
smp_support
A value != 0 if the runtime system has SMP support; otherwise, 0.
async_threads
The number of async threads in the async thread pool used by driver_async() (the same as returned by
erlang:system_info(thread_pool_size)).
scheduler_threads
The number of scheduler threads used by the runtime system (the same as returned by
erlang:system_info(schedulers)).

erl_driver

218 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

nif_major_version
The value of ERL_NIF_MAJOR_VERSION when the runtime system was compiled.
nif_minor_version
The value of ERL_NIF_MINOR_VERSION when the runtime system was compiled.

ErlDrvBinary

typedef struct ErlDrvBinary {
 int orig_size;
 char orig_bytes[];
} ErlDrvBinary;

The ErlDrvBinary structure is a binary, as sent between the emulator and the driver. All binaries are reference
counted; when driver_binary_free is called, the reference count is decremented, when it reaches zero,
the binary is deallocated. The orig_size is the size of the binary, and orig_bytes is the buffer. The
ErlDrvBinary does not have a fixed size, its size is orig_size + 2 * sizeof(int).

Note:
The refc field has been removed. The reference count of an ErlDrvBinary is now stored
elsewhere. The reference count of an ErlDrvBinary can be accessed via driver_binary_get_refc(),
driver_binary_inc_refc(), and driver_binary_dec_refc().

Some driver calls, such as driver_enq_binary, increments the driver reference count, and others, such as
driver_deq decrements it.

Using a driver binary instead of a normal buffer, is often faster, since the emulator doesn't need to copy the data,
only the pointer is used.

A driver binary allocated in the driver, with driver_alloc_binary, should be freed in the driver (unless
otherwise stated), with driver_free_binary. (Note that this doesn't necessarily deallocate it, if the driver
is still referred in the emulator, the ref-count will not go to zero.)

Driver binaries are used in the driver_output2 and driver_outputv calls, and in the queue. Also the
driver call-back outputv uses driver binaries.

If the driver of some reason or another, wants to keep a driver binary around, in a static variable for instance,
the reference count should be incremented, and the binary can later be freed in the stop call-back, with
driver_free_binary.

Note that since a driver binary is shared by the driver and the emulator, a binary received from the emulator or
sent to the emulator, must not be changed by the driver.

From erts version 5.5 (OTP release R11B), orig_bytes is guaranteed to be properly aligned for storage of an array
of doubles (usually 8-byte aligned).

ErlDrvData

The ErlDrvData is a handle to driver-specific data, passed to the driver call-backs. It is a pointer, and is most
often casted to a specific pointer in the driver.

SysIOVec

This is a system I/O vector, as used by writev on unix and WSASend on Win32. It is used in ErlIOVec.

ErlIOVec

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 219

typedef struct ErlIOVec {
 int vsize;
 int size;
 SysIOVec* iov;
 >ErlDrvBinary** binv;
} ErlIOVec;

The I/O vector used by the emulator and drivers, is a list of binaries, with a SysIOVec pointing to the buffers
of the binaries. It is used in driver_outputv and the outputv driver call-back. Also, the driver queue is an
ErlIOVec.

ErlDrvMonitor

When a driver creates a monitor for a process, a ErlDrvMonitor is filled in. This is an opaque data-type which
can be assigned to but not compared without using the supplied compare function (i.e. it behaves like a struct).

The driver writer should provide the memory for storing the monitor when calling driver_monitor_process. The
address of the data is not stored outside of the driver, so the ErlDrvMonitor can be used as any other datum,
it can be copied, moved in memory, forgotten etc.

ErlDrvNowData

The ErlDrvNowData structure holds a timestamp consisting of three values measured from some arbitrary
point in the past. The three structure members are:

megasecs
The number of whole megaseconds elapsed since the arbitrary point in time
secs
The number of whole seconds elapsed since the arbitrary point in time
microsecs
The number of whole microseconds elapsed since the arbitrary point in time

ErlDrvPDL

If certain port specific data have to be accessed from other threads than those calling the driver call-backs, a port
data lock can be used in order to synchronize the operations on the data. Currently, the only port specific data
that the emulator associates with the port data lock is the driver queue.

Normally a driver instance does not have a port data lock. If the driver instance want to use a port data lock, it
has to create the port data lock by calling driver_pdl_create(). NOTE: Once the port data lock has been created,
every access to data associated with the port data lock have to be done while having the port data lock locked.
The port data lock is locked, and unlocked, respectively, by use of driver_pdl_lock(), and driver_pdl_unlock().

A port data lock is reference counted, and when the reference count reach zero, it will be destroyed. The emulator
will at least increment the reference count once when the lock is created and decrement it once when the port
associated with the lock terminates. The emulator will also increment the reference count when an async job is
enqueued and decrement it after an async job has been invoked, or canceled. Besides this, it is the responsibility
of the driver to ensure that the reference count does not reach zero before the last use of the lock by the
driver has been made. The reference count can be read, incremented, and decremented, respectively, by use of
driver_pdl_get_refc(), driver_pdl_inc_refc(), and driver_pdl_dec_refc().

ErlDrvTid

Thread identifier.

See also: erl_drv_thread_create(), erl_drv_thread_exit(), erl_drv_thread_join(), erl_drv_thread_self(), and
erl_drv_equal_tids().

ErlDrvThreadOpts

erl_driver

220 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

 int suggested_stack_size;

Thread options structure passed to erl_drv_thread_create(). Currently the following fields exist:

suggested_stack_size
A suggestion, in kilo-words, on how large stack to use. A value less than zero means default size.

See also: erl_drv_thread_opts_create(), erl_drv_thread_opts_destroy(), and erl_drv_thread_create().

ErlDrvMutex

Mutual exclusion lock. Used for synchronizing access to shared data. Only one thread at a time can lock a mutex.

See also: erl_drv_mutex_create(), erl_drv_mutex_destroy(), erl_drv_mutex_lock(), erl_drv_mutex_trylock(), and
erl_drv_mutex_unlock().

ErlDrvCond

Condition variable. Used when threads need to wait for a specific condition to appear before continuing execution.
Condition variables need to be used with associated mutexes.

See also: erl_drv_cond_create(), erl_drv_cond_destroy(), erl_drv_cond_signal(), erl_drv_cond_broadcast(),
and erl_drv_cond_wait().

ErlDrvRWLock

Read/write lock. Used to allow multiple threads to read shared data while only allowing one thread to write the
same data. Multiple threads can read lock an rwlock at the same time, while only one thread can read/write lock
an rwlock at a time.

See also: erl_drv_rwlock_create(), erl_drv_rwlock_destroy(), erl_drv_rwlock_rlock(),
erl_drv_rwlock_tryrlock(), erl_drv_rwlock_runlock(), erl_drv_rwlock_rwlock(), erl_drv_rwlock_tryrwlock(),
and erl_drv_rwlock_rwunlock().

ErlDrvTSDKey

Key which thread specific data can be associated with.

See also: erl_drv_tsd_key_create(), erl_drv_tsd_key_destroy(), erl_drv_tsd_set(), and erl_drv_tsd_get().

Exports

void driver_system_info(ErlDrvSysInfo *sys_info_ptr, size_t size)

This function will write information about the Erlang runtime system into the ErlDrvSysInfo structure referred
to by the first argument. The second argument should be the size of the ErlDrvSysInfo structure, i.e.,
sizeof(ErlDrvSysInfo).

See the documentation of the ErlDrvSysInfo structure for information about specific fields.

int driver_output(ErlDrvPort port, char *buf, int len)

The driver_output function is used to send data from the driver up to the emulator. The data will be received as
terms or binary data, depending on how the driver port was opened.

The data is queued in the port owner process' message queue. Note that this does not yield to the emulator. (Since the
driver and the emulator runs in the same thread.)

The parameter buf points to the data to send, and len is the number of bytes.

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 221

The return value for all output functions is 0. (Unless the driver is used for distribution, in which case it can fail and
return -1. For normal use, the output function always returns 0.)

int driver_output2(ErlDrvPort port, char *hbuf, int hlen, char *buf, int len)

The driver_output2 function first sends hbuf (length in hlen) data as a list, regardless of port settings. Then
buf is sent as a binary or list. E.g. if hlen is 3 then the port owner process will receive [H1, H2, H3 | T].

The point of sending data as a list header, is to facilitate matching on the data received.

The return value is 0 for normal use.

int driver_output_binary(ErlDrvPort port, char *hbuf, int hlen, ErlDrvBinary*
bin, int offset, int len)

This function sends data to port owner process from a driver binary, it has a header buffer (hbuf and hlen) just like
driver_output2. The hbuf parameter can be NULL.

The parameter offset is an offset into the binary and len is the number of bytes to send.

Driver binaries are created with driver_alloc_binary.

The data in the header is sent as a list and the binary as an Erlang binary in the tail of the list.

E.g. if hlen is 2, then the port owner process will receive [H1, H2 | <<T>>].

The return value is 0 for normal use.

Note that, using the binary syntax in Erlang, the driver application can match the header directly from the binary, so
the header can be put in the binary, and hlen can be set to 0.

int driver_outputv(ErlDrvPort port, char* hbuf, int hlen, ErlIOVec *ev, int
skip)

This function sends data from an IO vector, ev, to the port owner process. It has a header buffer (hbuf and hlen),
just like driver_output2.

The skip parameter is a number of bytes to skip of the ev vector from the head.

You get vectors of ErlIOVec type from the driver queue (see below), and the outputv driver entry function. You
can also make them yourself, if you want to send several ErlDrvBinary buffers at once. Often it is faster to use
driver_output or driver_output_binary.

E.g. if hlen is 2 and ev points to an array of three binaries, the port owner process will receive [H1, H2, <<B1>>,
<<B2>> | <<B3>>].

The return value is 0 for normal use.

The comment for driver_output_binary applies for driver_outputv too.

int driver_vec_to_buf(ErlIOVec *ev, char *buf, int len)

This function collects several segments of data, referenced by ev, by copying them in order to the buffer buf, of
the size len.

If the data is to be sent from the driver to the port owner process, it is faster to use driver_outputv.

The return value is the space left in the buffer, i.e. if the ev contains less than len bytes it's the difference, and if
ev contains len bytes or more, it's 0. This is faster if there is more than one header byte, since the binary syntax can
construct integers directly from the binary.

erl_driver

222 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

int driver_set_timer(ErlDrvPort port, unsigned long time)

This function sets a timer on the driver, which will count down and call the driver when it is timed out. The time
parameter is the time in milliseconds before the timer expires.

When the timer reaches 0 and expires, the driver entry function timeout is called.

Note that there is only one timer on each driver instance; setting a new timer will replace an older one.

Return value i 0 (-1 only when the timeout driver function is NULL).

int driver_cancel_timer(ErlDrvPort port)

This function cancels a timer set with driver_set_timer.

The return value is 0.

int driver_read_timer(ErlDrvPort port, unsigned long *time_left)

This function reads the current time of a timer, and places the result in time_left. This is the time in milliseconds,
before the timeout will occur.

The return value is 0.

int driver_get_now(ErlDrvNowData *now)

This function reads a timestamp into the memory pointed to by the parameter now. See the description of
ErlDrvNowData for specification of its fields.

The return value is 0 unless the now pointer is not valid, in which case it is < 0.

int driver_select(ErlDrvPort port, ErlDrvEvent event, int mode, int on)

This function is used by drivers to provide the emulator with events to check for. This enables the emulator to call the
driver when something has happened asynchronously.

The event argument identifies an OS-specific event object. On Unix systems, the functions select/poll are used.
The event object must be a socket or pipe (or other object that select/poll can use). On windows, the Win32
API function WaitForMultipleObjects is used. This places other restriction on the event object. Refer to the
Win32 SDK documentation.

The on parameter should be 1 for setting events and 0 for clearing them.

The mode argument is bitwise-or combination of ERL_DRV_READ, ERL_DRV_WRITE and ERL_DRV_USE. The
first two specifies whether to wait for read events and/or write events. A fired read event will call ready_input while
a fired write event will call ready_output.

Note:
Some OS (Windows) does not differ between read and write events. The call-back for a fired event then only
depends on the value of mode.

ERL_DRV_USE specifies if we are using the event object or if we want to close it. On an emulator with SMP support, it
is not safe to clear all events and then close the event object after driver_select has returned. Another thread may
still be using the event object internally. To safely close an event object call driver_select with ERL_DRV_USE
and on==0. That will clear all events and then call stop_select when it is safe to close the event object. ERL_DRV_USE
should be set together with the first event for an event object. It is harmless to set ERL_DRV_USE even though it

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 223

already has been done. Clearing all events but keeping ERL_DRV_USE set will indicate that we are using the event
object and probably will set events for it again.

Note:
ERL_DRV_USE was added in OTP release R13. Old drivers will still work as before. But it is recommended to
update them to use ERL_DRV_USE and stop_select to make sure that event objects are closed in a safe way.

The return value is 0 (Failure, -1, only if the ready_input/ready_output is NULL.

void * driver_alloc(size_t size)

This function allocates a memory block of the size specified in size, and returns it. This only fails on out of memory,
in that case NULL is returned. (This is most often a wrapper for malloc).

Memory allocated must be explicitly freed with a corresponding call to driver_free (unless otherwise stated).

This function is thread-safe.

void * driver_realloc(void *ptr, size_t size)

This function resizes a memory block, either in place, or by allocating a new block, copying the data and freeing the
old block. A pointer is returned to the reallocated memory. On failure (out of memory), NULL is returned. (This is
most often a wrapper for realloc.)

This function is thread-safe.

void driver_free(void *ptr)

This function frees the memory pointed to by ptr. The memory should have been allocated with driver_alloc.
All allocated memory should be deallocated, just once. There is no garbage collection in drivers.

This function is thread-safe.

ErlDrvBinary* driver_alloc_binary(int size)

This function allocates a driver binary with a memory block of at least size bytes, and returns a pointer to it, or
NULL on failure (out of memory). When a driver binary has been sent to the emulator, it must not be altered. Every
allocated binary should be freed by a corresponding call to driver_free_binary (unless otherwise stated).

Note that a driver binary has an internal reference counter, this means that calling driver_free_binary it may
not actually dispose of it. If it's sent to the emulator, it may be referenced there.

The driver binary has a field, orig_bytes, which marks the start of the data in the binary.

This function is thread-safe.

ErlDrvBinary* driver_realloc_binary(ErlDrvBinary *bin, int size)

This function resizes a driver binary, while keeping the data. The resized driver binary is returned. On failure (out
of memory), NULL is returned.

This function is only thread-safe when the emulator with SMP support is used.

erl_driver

224 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

void driver_free_binary(ErlDrvBinary *bin)

This function frees a driver binary bin, allocated previously with driver_alloc_binary. Since binaries in
Erlang are reference counted, the binary may still be around.

This function is only thread-safe when the emulator with SMP support is used.

long driver_binary_get_refc(ErlDrvBinary *bin)

Returns current reference count on bin.

This function is only thread-safe when the emulator with SMP support is used.

long driver_binary_inc_refc(ErlDrvBinary *bin)

Increments the reference count on bin and returns the reference count reached after the increment.

This function is only thread-safe when the emulator with SMP support is used.

long driver_binary_dec_refc(ErlDrvBinary *bin)

Decrements the reference count on bin and returns the reference count reached after the decrement.

This function is only thread-safe when the emulator with SMP support is used.

Note:
You should normally decrement the reference count of a driver binary by calling driver_free_binary().
driver_binary_dec_refc() does not free the binary if the reference count reaches zero. Only use
driver_binary_dec_refc() when you are sure not to reach a reference count of zero.

int driver_enq(ErlDrvPort port, char* buf, int len)

This function enqueues data in the driver queue. The data in buf is copied (len bytes) and placed at the end of the
driver queue. The driver queue is normally used in a FIFO way.

The driver queue is available to queue output from the emulator to the driver (data from the driver to the emulator is
queued by the emulator in normal erlang message queues). This can be useful if the driver has to wait for slow devices
etc, and wants to yield back to the emulator. The driver queue is implemented as an ErlIOVec.

When the queue contains data, the driver won't close, until the queue is empty.

The return value is 0.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

int driver_pushq(ErlDrvPort port, char* buf, int len)

This function puts data at the head of the driver queue. The data in buf is copied (len bytes) and placed at the
beginning of the queue.

The return value is 0.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 225

int driver_deq(ErlDrvPort port, int size)

This function dequeues data by moving the head pointer forward in the driver queue by size bytes. The data in the
queue will be deallocated.

The return value is the number of bytes remaining in the queue or -1 on failure.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

int driver_sizeq(ErlDrvPort port)

This function returns the number of bytes currently in the driver queue.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

int driver_enq_bin(ErlDrvPort port, ErlDrvBinary *bin, int offset, int len)

This function enqueues a driver binary in the driver queue. The data in bin at offset with length len is placed at
the end of the queue. This function is most often faster than driver_enq, because the data doesn't have to be copied.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

The return value is 0.

int driver_pushq_bin(ErlDrvPort port, ErlDrvBinary *bin, int offset, int len)

This function puts data in the binary bin, at offset with length len at the head of the driver queue. It is most often
faster than driver_pushq, because the data doesn't have to be copied.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

The return value is 0.

SysIOVec* driver_peekq(ErlDrvPort port, int *vlen)

This function retrieves the driver queue as a pointer to an array of SysIOVecs. It also returns the number of elements
in vlen. This is the only way to get data out of the queue.

Nothing is remove from the queue by this function, that must be done with driver_deq.

The returned array is suitable to use with the Unix system call writev.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

int driver_enqv(ErlDrvPort port, ErlIOVec *ev, int skip)

This function enqueues the data in ev, skipping the first skip bytes of it, at the end of the driver queue. It is faster
than driver_enq, because the data doesn't have to be copied.

The return value is 0.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

erl_driver

226 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

int driver_pushqv(ErlDrvPort port, ErlIOVec *ev, int skip)

This function puts the data in ev, skipping the first skip bytes of it, at the head of the driver queue. It is faster than
driver_pushq, because the data doesn't have to be copied.

The return value is 0.

This function can be called from an arbitrary thread if a port data lock associated with the port is locked by the
calling thread during the call.

ErlDrvPDL driver_pdl_create(ErlDrvPort port)

This function creates a port data lock associated with the port. NOTE: Once a port data lock has been created, it has
to be locked during all operations on the driver queue of the port.

On success a newly created port data lock is returned. On failure NULL is returned. driver_pdl_create() will
fail if port is invalid or if a port data lock already has been associated with the port.

void driver_pdl_lock(ErlDrvPDL pdl)

This function locks the port data lock passed as argument (pdl).

This function is thread-safe.

void driver_pdl_unlock(ErlDrvPDL pdl)

This function unlocks the port data lock passed as argument (pdl).

This function is thread-safe.

long driver_pdl_get_refc(ErlDrvPDL pdl)

This function returns the current reference count of the port data lock passed as argument (pdl).

This function is thread-safe.

long driver_pdl_inc_refc(ErlDrvPDL pdl)

This function increments the reference count of the port data lock passed as argument (pdl).

The current reference count after the increment has been performed is returned.

This function is thread-safe.

long driver_pdl_dec_refc(ErlDrvPDL pdl)

This function decrements the reference count of the port data lock passed as argument (pdl).

The current reference count after the decrement has been performed is returned.

This function is thread-safe.

int driver_monitor_process(ErlDrvPort port, ErlDrvTermData process,
ErlDrvMonitor *monitor)

Start monitoring a process from a driver. When a process is monitored, a process exit will result in a call to the provided
process_exit call-back in the ErlDrvEntry structure. The ErlDrvMonitor structure is filled in, for later removal
or compare.

The process parameter should be the return value of an earlier call to driver_caller or driver_connected call.

The function returns 0 on success, < 0 if no call-back is provided and > 0 if the process is no longer alive.

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 227

int driver_demonitor_process(ErlDrvPort port, const ErlDrvMonitor *monitor)

This function cancels an monitor created earlier.

The function returns 0 if a monitor was removed and > 0 if the monitor did no longer exist.

ErlDrvTermData driver_get_monitored_process(ErlDrvPort port, const
ErlDrvMonitor *monitor)

The function returns the process id associated with a living monitor. It can be used in the process_exit call-back
to get the process identification for the exiting process.

The function returns driver_term_nil if the monitor no longer exists.

int driver_compare_monitors(const ErlDrvMonitor *monitor1, const
ErlDrvMonitor *monitor2)

This function is used to compare two ErlDrvMonitors. It can also be used to imply some artificial order on
monitors, for whatever reason.

The function returns 0 if monitor1 and monitor2 are equal, < 0 if monitor1 is less than monitor2 and > 0
if monitor1 is greater than monitor2.

void add_driver_entry(ErlDrvEntry *de)

This function adds a driver entry to the list of drivers known by Erlang. The init function of the de parameter is called.

Note:
To use this function for adding drivers residing in dynamically loaded code is dangerous. If the driver code for the
added driver resides in the same dynamically loaded module (i.e. .so file) as a normal dynamically loaded driver
(loaded with the erl_ddll interface), the caller should call driver_lock_driver before adding driver entries.

Use of this function is generally deprecated.

int remove_driver_entry(ErlDrvEntry *de)

This function removes a driver entry de previously added with add_driver_entry.

Driver entries added by the erl_ddll erlang interface can not be removed by using this interface.

char* erl_errno_id(int error)

This function returns the atom name of the erlang error, given the error number in error. Error atoms are: einval,
enoent, etc. It can be used to make error terms from the driver.

void set_busy_port(ErlDrvPort port, int on)

This function set and resets the busy status of the port. If on is 1, the port is set to busy, if it's 0 the port is set to not busy.

When the port is busy, sending to it with Port ! Data or port_command/2, will block the port owner process,
until the port is signaled as not busy.

If the ERL_DRV_FLAG_SOFT_BUSY has been set in the driver_entry, data can be forced into the driver via
port_command(Port, Data, [force]) even though the driver has signaled that it is busy.

erl_driver

228 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

void set_port_control_flags(ErlDrvPort port, int flags)

This function sets flags for how the control driver entry function will return data to the port owner process. (The
control function is called from port_control/3 in erlang.)

Currently there are only two meaningful values for flags: 0 means that data is returned in a list, and
PORT_CONTROL_FLAG_BINARY means data is returned as a binary from control.

int driver_failure_eof(ErlDrvPort port)

This function signals to erlang that the driver has encountered an EOF and should be closed, unless the port was opened
with the eof option, in that case eof is sent to the port. Otherwise, the port is close and an 'EXIT' message is sent
to the port owner process.

The return value is 0.

int driver_failure_atom(ErlDrvPort port, char *string)

int driver_failure_posix(ErlDrvPort port, int error)

int driver_failure(ErlDrvPort port, int error)

These functions signal to Erlang that the driver has encountered an error and should be closed. The port is closed
and the tuple {'EXIT', error, Err}, is sent to the port owner process, where error is an error atom
(driver_failure_atom and driver_failure_posix), or an integer (driver_failure).

The driver should fail only when in severe error situations, when the driver cannot possibly keep open, for instance
buffer allocation gets out of memory. Normal errors is more appropriate to handle with sending error codes with
driver_output.

The return value is 0.

ErlDrvTermData driver_connected(ErlDrvPort port)

This function returns the port owner process.

ErlDrvTermData driver_caller(ErlDrvPort port)

This function returns the process id of the process that made the current call to the driver. The process id can be
used with driver_send_term to send back data to the caller. driver_caller() only return valid data when
currently executing in one of the following driver callbacks:

start
Called from open_port/2.

output
Called from erlang:send/2, and erlang:port_command/2

outputv
Called from erlang:send/2, and erlang:port_command/2

control
Called from erlang:port_control/3

call
Called from erlang:port_call/3

int driver_output_term(ErlDrvPort port, ErlDrvTermData* term, int n)

This functions sends data in the special driver term format. This is a fast way to deliver term data from a driver. It also
needs no binary conversion, so the port owner process receives data as normal Erlang terms.

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 229

The term parameter points to an array of ErlDrvTermData, with n elements. This array contains terms described
in the driver term format. Every term consists of one to four elements in the array. The term first has a term type,
and then arguments.

Tuple and lists (with the exception of strings, see below), are built in reverse polish notation, so that to build a tuple,
the elements are given first, and then the tuple term, with a count. Likewise for lists.

A tuple must be specified with the number of elements. (The elements precedes the ERL_DRV_TUPLE term.)

A list must be specified with the number of elements, including the tail, which is the last term preceding
ERL_DRV_LIST.

The special term ERL_DRV_STRING_CONS is used to "splice" in a string in a list, a string given this way is not a
list per se, but the elements are elements of the surrounding list.

Term type Argument(s)
===
ERL_DRV_NIL
ERL_DRV_ATOM ErlDrvTermData atom (from driver_mk_atom(char *string))
ERL_DRV_INT ErlDrvSInt integer
ERL_DRV_UINT ErlDrvUInt integer
ERL_DRV_INT64 ErlDrvSInt64 *integer_ptr
ERL_DRV_UINT64 ErlDrvUInt64 *integer_ptr
ERL_DRV_PORT ErlDrvTermData port (from driver_mk_port(ErlDrvPort port))
ERL_DRV_BINARY ErlDrvBinary *bin, ErlDrvUInt len, ErlDrvUInt offset
ERL_DRV_BUF2BINARY char *buf, ErlDrvUInt len
ERL_DRV_STRING char *str, int len
ERL_DRV_TUPLE int sz
ERL_DRV_LIST int sz
ERL_DRV_PID ErlDrvTermData pid (from driver_connected(ErlDrvPort port) or driver_caller(ErlDrvPort port))
ERL_DRV_STRING_CONS char *str, int len
ERL_DRV_FLOAT double *dbl
ERL_DRV_EXT2TERM char *buf, ErlDrvUInt len

The unsigned integer data type ErlDrvUInt and the signed integer data type ErlDrvSInt are 64 bits wide on
a 64 bit runtime system and 32 bits wide on a 32 bit runtime system. They were introduced in erts version 5.6, and
replaced some of the int arguments in the list above.

The unsigned integer data type ErlDrvUInt64 and the signed integer data type ErlDrvSInt64 are always 64
bits wide. They were introduced in erts version 5.7.4.

To build the tuple {tcp, Port, [100 | Binary]}, the following call could be made.

 ErlDrvBinary* bin = ...
 ErlDrvPort port = ...
 ErlDrvTermData spec[] = {
 ERL_DRV_ATOM, driver_mk_atom("tcp"),
 ERL_DRV_PORT, driver_mk_port(port),
 ERL_DRV_INT, 100,
 ERL_DRV_BINARY, bin, 50, 0,
 ERL_DRV_LIST, 2,
 ERL_DRV_TUPLE, 3,
 };
 driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

erl_driver

230 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Where bin is a driver binary of length at least 50 and port is a port handle. Note that the ERL_DRV_LIST comes
after the elements of the list, likewise the ERL_DRV_TUPLE.

The term ERL_DRV_STRING_CONS is a way to construct strings. It works differently from how ERL_DRV_STRING
works. ERL_DRV_STRING_CONS builds a string list in reverse order, (as opposed to how ERL_DRV_LIST works),
concatenating the strings added to a list. The tail must be given before ERL_DRV_STRING_CONS.

The ERL_DRV_STRING constructs a string, and ends it. (So it's the same as ERL_DRV_NIL followed by
ERL_DRV_STRING_CONS.)

 /* to send [x, "abc", y] to the port: */
 ErlDrvTermData spec[] = {
 ERL_DRV_ATOM, driver_mk_atom("x"),
 ERL_DRV_STRING, (ErlDrvTermData)"abc", 3,
 ERL_DRV_ATOM, driver_mk_atom("y"),
 ERL_DRV_NIL,
 ERL_DRV_LIST, 4
 };
 driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

 /* to send "abc123" to the port: */
 ErlDrvTermData spec[] = {
 ERL_DRV_NIL, /* with STRING_CONS, the tail comes first */
 ERL_DRV_STRING_CONS, (ErlDrvTermData)"123", 3,
 ERL_DRV_STRING_CONS, (ErlDrvTermData)"abc", 3,
 };
 driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

The ERL_DRV_EXT2TERM term type is used for passing a term encoded with the external format, i.e., a term that has
been encoded by erlang:term_to_binary, erl_interface, etc. For example, if binp is a pointer to an ErlDrvBinary
that contains the term {17, 4711} encoded with the external format and you want to wrap it in a two tuple with
the tag my_tag, i.e., {my_tag, {17, 4711}}, you can do as follows:

 ErlDrvTermData spec[] = {
 ERL_DRV_ATOM, driver_mk_atom("my_tag"),
 ERL_DRV_EXT2TERM, (ErlDrvTermData) binp->orig_bytes, binp->orig_size
 ERL_DRV_TUPLE, 2,
 };
 driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

If you want to pass a binary and doesn't already have the content of the binary in an ErlDrvBinary, you can benefit
from using ERL_DRV_BUF2BINARY instead of creating an ErlDrvBinary via driver_alloc_binary()
and then pass the binary via ERL_DRV_BINARY. The runtime system will often allocate binaries smarter
if ERL_DRV_BUF2BINARY is used. However, if the content of the binary to pass already resides in an
ErlDrvBinary, it is normally better to pass the binary using ERL_DRV_BINARY and the ErlDrvBinary in
question.

The ERL_DRV_UINT, ERL_DRV_BUF2BINARY, and ERL_DRV_EXT2TERM term types were introduced in the 5.6
version of erts.

Note that this function is not thread-safe, not even when the emulator with SMP support is used.

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 231

ErlDrvTermData driver_mk_atom(char* string)

This function returns an atom given a name string. The atom is created and won't change, so the return value may
be saved and reused, which is faster than looking up the atom several times.

ErlDrvTermData driver_mk_port(ErlDrvPort port)

This function converts a port handle to the erlang term format, usable in the driver_output_send function.

int driver_send_term(ErlDrvPort port, ErlDrvTermData receiver,
ErlDrvTermData* term, int n)

This function is the only way for a driver to send data to other processes than the port owner process. The receiver
parameter specifies the process to receive the data.

The parameters term and n does the same thing as in driver_output_term.

This function is only thread-safe when the emulator with SMP support is used.

long driver_async (ErlDrvPort port, unsigned int* key, void (*async_invoke)
(void*), void* async_data, void (*async_free)(void*))

This function performs an asynchronous call. The function async_invoke is invoked in a thread separate from
the emulator thread. This enables the driver to perform time-consuming, blocking operations without blocking the
emulator.

Erlang is by default started without an async thread pool. The number of async threads that the runtime system should
use is specified by the +A command line argument of erl(1). If no async thread pool is available, the call is made
synchronously in the thread calling driver_async(). The current number of async threads in the async thread
pool can be retrieved via driver_system_info().

If there is a thread pool available, a thread will be used. If the key argument is null, the threads from the pool are used
in a round-robin way, each call to driver_async uses the next thread in the pool. With the key argument set, this
behaviour is changed. The two same values of *key always get the same thread.

To make sure that a driver instance always uses the same thread, the following call can be used:

 unsigned int myKey = (unsigned int) myPort;

 r = driver_async(myPort, &myKey, myData, myFunc);

It is enough to initialize myKey once for each driver instance.

If a thread is already working, the calls will be queued up and executed in order. Using the same thread for each driver
instance ensures that the calls will be made in sequence.

The async_data is the argument to the functions async_invoke and async_free. It's typically a pointer to a
structure that contains a pipe or event that can be used to signal that the async operation completed. The data should
be freed in async_free, because it's called if driver_async_cancel is called.

When the async operation is done, ready_async driver entry function is called. If async_ready is null in the driver
entry, the async_free function is called instead.

The return value is a handle to the asynchronous task, which can be used as argument to driver_async_cancel.

erl_driver

232 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Note:
As of erts version 5.5.4.3 the default stack size for threads in the async-thread pool is 16 kilowords, i.e., 64 kilobyte
on 32-bit architectures. This small default size has been chosen since the amount of async-threads might be quite
large. The default stack size is enough for drivers delivered with Erlang/OTP, but might not be sufficiently large
for other dynamically linked in drivers that use the driver_async() functionality. A suggested stack size for threads
in the async-thread pool can be configured via the +a command line argument of erl(1).

int driver_async_cancel(long id)

This function cancels an asynchronous operation, by removing it from the queue. Only functions in the queue can be
cancelled; if a function is executing, it's too late to cancel it. The async_free function is also called.

The return value is 1 if the operation was removed from the queue, otherwise 0.

int driver_lock_driver(ErlDrvPort port)

This function locks the driver used by the port port in memory for the rest of the emulator process lifetime. After
this call, the driver behaves as one of Erlang's statically linked in drivers.

ErlDrvPort driver_create_port(ErlDrvPort port, ErlDrvTermData owner_pid,
char* name, ErlDrvData drv_data)

This function creates a new port executing the same driver code as the port creating the new port. A short description
of the arguments:

port
The port handle of the port (driver instance) creating the new port.

owner_pid
The process id of the Erlang process which will be owner of the new port. This process will be linked to the
new port. You usually want to use driver_caller(port) as owner_pid.

name
The port name of the new port. You usually want to use the same port name as the driver name (driver_name
field of the driver_entry).

drv_data
The driver defined handle that will be passed in subsequent calls to driver call-backs. Note, that the driver start
call-back will not be called for this new driver instance. The driver defined handle is normally created in the
driver start call-back when a port is created via erlang:open_port/2.

The caller of driver_create_port() is allowed to manipulate the newly created port when
driver_create_port() has returned. When port level locking is used, the creating port is, however, only allowed
to manipulate the newly created port until the current driver call-back that was called by the emulator returns.

Note:
When port level locking is used, the creating port is only allowed to manipulate the newly created port until the
current driver call-back returns.

int erl_drv_thread_create(char *name, ErlDrvTid *tid, void * (*func)(void *),
void *arg, ErlDrvThreadOpts *opts)

Arguments:

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 233

name
A string identifying the created thread. It will be used to identify the thread in planned future debug
functionality.

tid
A pointer to a thread identifier variable.

func
A pointer to a function to execute in the created thread.

arg
A pointer to argument to the func function.

opts
A pointer to thread options to use or NULL.

This function creates a new thread. On success 0 is returned; otherwise, an errno value is returned to indicate the
error. The newly created thread will begin executing in the function pointed to by func, and func will be passed
arg as argument. When erl_drv_thread_create() returns the thread identifier of the newly created thread
will be available in *tid. opts can be either a NULL pointer, or a pointer to an ErlDrvThreadOpts structure. If opts
is a NULL pointer, default options will be used; otherwise, the passed options will be used.

Warning:
You are not allowed to allocate the ErlDrvThreadOpts structure by yourself. It has to be allocated and initialized
by erl_drv_thread_opts_create().

The created thread will terminate either when func returns or if erl_drv_thread_exit() is called by the thread. The exit
value of the thread is either returned from func or passed as argument to erl_drv_thread_exit(). The driver creating
the thread has the responsibility of joining the thread, via erl_drv_thread_join(), before the driver is unloaded. It is
not possible to create "detached" threads, i.e., threads that don't need to be joined.

Warning:
All created threads need to be joined by the driver before it is unloaded. If the driver fails to join all threads
created before it is unloaded, the runtime system will most likely crash when the code of the driver is unloaded.

This function is thread-safe.

ErlDrvThreadOpts * erl_drv_thread_opts_create(char *name)

Arguments:

name
A string identifying the created thread options. It will be used to identify the thread options in planned future
debug functionality.

This function allocates and initialize a thread option structure. On failure NULL is returned. A thread option
structure is used for passing options to erl_drv_thread_create(). If the structure isn't modified before it is passed to
erl_drv_thread_create(), the default values will be used.

erl_driver

234 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Warning:
You are not allowed to allocate the ErlDrvThreadOpts structure by yourself. It has to be allocated and initialized
by erl_drv_thread_opts_create().

This function is thread-safe.

void erl_drv_thread_opts_destroy(ErlDrvThreadOpts *opts)

Arguments:

opts
A pointer to thread options to destroy.

This function destroys thread options previously created by erl_drv_thread_opts_create().

This function is thread-safe.

void erl_drv_thread_exit(void *exit_value)

Arguments:

exit_value
A pointer to an exit value or NULL.

This function terminates the calling thread with the exit value passed as argument. You are only allowed to
terminate threads created with erl_drv_thread_create(). The exit value can later be retrieved by another thread via
erl_drv_thread_join().

This function is thread-safe.

int erl_drv_thread_join(ErlDrvTid tid, void **exit_value)

Arguments:

tid
The thread identifier of the thread to join.

exit_value
A pointer to a pointer to an exit value, or NULL.

This function joins the calling thread with another thread, i.e., the calling thread is blocked until the thread identified
by tid has terminated. On success 0 is returned; otherwise, an errno value is returned to indicate the error. A
thread can only be joined once. The behavior of joining more than once is undefined, an emulator crash is likely. If
exit_value == NULL, the exit value of the terminated thread will be ignored; otherwise, the exit value of the
terminated thread will be stored at *exit_value.

This function is thread-safe.

ErlDrvTid erl_drv_thread_self(void)

This function returns the thread identifier of the calling thread.

This function is thread-safe.

int erl_drv_equal_tids(ErlDrvTid tid1, ErlDrvTid tid2)

Arguments:

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 235

tid1
A thread identifier.

tid2
A thread identifier.

This function compares two thread identifiers for equality, and returns 0 it they aren't equal, and a value not equal
to 0 if they are equal.

Note:
A Thread identifier may be reused very quickly after a thread has terminated. Therefore, if a thread corresponding
to one of the involved thread identifiers has terminated since the thread identifier was saved, the result of
erl_drv_equal_tids() might not give expected result.

This function is thread-safe.

ErlDrvMutex * erl_drv_mutex_create(char *name)

Arguments:

name
A string identifying the created mutex. It will be used to identify the mutex in planned future debug
functionality.

This function creates a mutex and returns a pointer to it. On failure NULL is returned. The driver creating the mutex
has the responsibility of destroying it before the driver is unloaded.

This function is thread-safe.

void erl_drv_mutex_destroy(ErlDrvMutex *mtx)

Arguments:

mtx
A pointer to a mutex to destroy.

This function destroys a mutex previously created by erl_drv_mutex_create(). The mutex has to be in an unlocked
state before being destroyed.

This function is thread-safe.

void erl_drv_mutex_lock(ErlDrvMutex *mtx)

Arguments:

mtx
A pointer to a mutex to lock.

This function locks a mutex. The calling thread will be blocked until the mutex has been locked. A thread which
currently has locked the mutex may not lock the same mutex again.

Warning:
If you leave a mutex locked in an emulator thread when you let the thread out of your control, you will very likely
deadlock the whole emulator.

erl_driver

236 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

This function is thread-safe.

int erl_drv_mutex_trylock(ErlDrvMutex *mtx)

Arguments:

mtx
A pointer to a mutex to try to lock.

This function tries to lock a mutex. If successful 0, is returned; otherwise, EBUSY is returned. A thread which currently
has locked the mutex may not try to lock the same mutex again.

Warning:
If you leave a mutex locked in an emulator thread when you let the thread out of your control, you will very likely
deadlock the whole emulator.

This function is thread-safe.

void erl_drv_mutex_unlock(ErlDrvMutex *mtx)

Arguments:

mtx
A pointer to a mutex to unlock.

This function unlocks a mutex. The mutex currently has to be locked by the calling thread.

This function is thread-safe.

ErlDrvCond * erl_drv_cond_create(char *name)

Arguments:

name
A string identifying the created condition variable. It will be used to identify the condition variable in planned
future debug functionality.

This function creates a condition variable and returns a pointer to it. On failure NULL is returned. The driver creating
the condition variable has the responsibility of destroying it before the driver is unloaded.

This function is thread-safe.

void erl_drv_cond_destroy(ErlDrvCond *cnd)

Arguments:

cnd
A pointer to a condition variable to destroy.

This function destroys a condition variable previously created by erl_drv_cond_create().

This function is thread-safe.

void erl_drv_cond_signal(ErlDrvCond *cnd)

Arguments:

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 237

cnd
A pointer to a condition variable to signal on.

This function signals on a condition variable. That is, if other threads are waiting on the condition variable being
signaled, one of them will be woken.

This function is thread-safe.

void erl_drv_cond_broadcast(ErlDrvCond *cnd)

Arguments:

cnd
A pointer to a condition variable to broadcast on.

This function broadcasts on a condition variable. That is, if other threads are waiting on the condition variable being
broadcasted on, all of them will be woken.

This function is thread-safe.

void erl_drv_cond_wait(ErlDrvCond *cnd, ErlDrvMutex *mtx)

Arguments:

cnd
A pointer to a condition variable to wait on.

mtx
A pointer to a mutex to unlock while waiting.

This function waits on a condition variable. The calling thread is blocked until another thread wakes it by signaling or
broadcasting on the condition variable. Before the calling thread is blocked it unlocks the mutex passed as argument,
and when the calling thread is woken it locks the same mutex before returning. That is, the mutex currently has to be
locked by the calling thread when calling this function.

Note:
erl_drv_cond_wait() might return even though no-one has signaled or broadcasted on the condition
variable. Code calling erl_drv_cond_wait() should always be prepared for erl_drv_cond_wait()
returning even though the condition that the thread was waiting for hasn't occurred. That is, when
returning from erl_drv_cond_wait() always check if the condition has occurred, and if not call
erl_drv_cond_wait() again.

This function is thread-safe.

ErlDrvRWLock * erl_drv_rwlock_create(char *name)

Arguments:

name
A string identifying the created rwlock. It will be used to identify the rwlock in planned future debug
functionality.

This function creates an rwlock and returns a pointer to it. On failure NULL is returned. The driver creating the rwlock
has the responsibility of destroying it before the driver is unloaded.

This function is thread-safe.

erl_driver

238 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

void erl_drv_rwlock_destroy(ErlDrvRWLock *rwlck)

Arguments:

rwlck
A pointer to an rwlock to destroy.

This function destroys an rwlock previously created by erl_drv_rwlock_create(). The rwlock has to be in an unlocked
state before being destroyed.

This function is thread-safe.

void erl_drv_rwlock_rlock(ErlDrvRWLock *rwlck)

Arguments:

rwlck
A pointer to an rwlock to read lock.

This function read locks an rwlock. The calling thread will be blocked until the rwlock has been read locked. A thread
which currently has read or read/write locked the rwlock may not lock the same rwlock again.

Warning:
If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

int erl_drv_rwlock_tryrlock(ErlDrvRWLock *rwlck)

Arguments:

rwlck
A pointer to an rwlock to try to read lock.

This function tries to read lock an rwlock. If successful 0, is returned; otherwise, EBUSY is returned. A thread which
currently has read or read/write locked the rwlock may not try to lock the same rwlock again.

Warning:
If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

void erl_drv_rwlock_runlock(ErlDrvRWLock *rwlck)

Arguments:

rwlck
A pointer to an rwlock to read unlock.

This function read unlocks an rwlock. The rwlock currently has to be read locked by the calling thread.

This function is thread-safe.

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 239

void erl_drv_rwlock_rwlock(ErlDrvRWLock *rwlck)

Arguments:

rwlck
A pointer to an rwlock to read/write lock.

This function read/write locks an rwlock. The calling thread will be blocked until the rwlock has been read/write
locked. A thread which currently has read or read/write locked the rwlock may not lock the same rwlock again.

Warning:
If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

int erl_drv_rwlock_tryrwlock(ErlDrvRWLock *rwlck)

Arguments:

rwlck
A pointer to an rwlock to try to read/write lock.

This function tries to read/write lock an rwlock. If successful 0, is returned; otherwise, EBUSY is returned. A thread
which currently has read or read/write locked the rwlock may not try to lock the same rwlock again.

Warning:
If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

void erl_drv_rwlock_rwunlock(ErlDrvRWLock *rwlck)

Arguments:

rwlck
A pointer to an rwlock to read/write unlock.

This function read/write unlocks an rwlock. The rwlock currently has to be read/write locked by the calling thread.

This function is thread-safe.

int erl_drv_tsd_key_create(char *name, ErlDrvTSDKey *key)

Arguments:

name
A string identifying the created key. It will be used to identify the key in planned future debug functionality.

key
A pointer to a thread specific data key variable.

erl_driver

240 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

This function creates a thread specific data key. On success 0 is returned; otherwise, an errno value is returned to
indicate the error. The driver creating the key has the responsibility of destroying it before the driver is unloaded.

This function is thread-safe.

void erl_drv_tsd_key_destroy(ErlDrvTSDKey key)

Arguments:

key
A thread specific data key to destroy.

This function destroys a thread specific data key previously created by erl_drv_tsd_key_create(). All thread
specific data using this key in all threads have to be cleared (see erl_drv_tsd_set()) prior to the call to
erl_drv_tsd_key_destroy().

Warning:
A destroyed key is very likely to be reused soon. Therefore, if you fail to clear the thread specific data using this
key in a thread prior to destroying the key, you will very likely get unexpected errors in other parts of the system.

This function is thread-safe.

void erl_drv_tsd_set(ErlDrvTSDKey key, void *data)

Arguments:

key
A thread specific data key.

data
A pointer to data to associate with key in calling thread.

This function sets thread specific data associated with key for the calling thread. You are only allowed to set thread
specific data for threads while they are fully under your control. For example, if you set thread specific data in a thread
calling a driver call-back function, it has to be cleared, i.e. set to NULL, before returning from the driver call-back
function.

Warning:
If you fail to clear thread specific data in an emulator thread before letting it out of your control, you might not
ever be able to clear this data with later unexpected errors in other parts of the system as a result.

This function is thread-safe.

void * erl_drv_tsd_get(ErlDrvTSDKey key)

Arguments:

key
A thread specific data key.

This function returns the thread specific data associated with key for the calling thread. If no data has been associated
with key for the calling thread, NULL is returned.

erl_driver

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 241

This function is thread-safe.

int erl_drv_putenv(char *key, char *value)

Arguments:

key
A null terminated string containing the name of the environment variable.

value
A null terminated string containing the new value of the environment variable.

This function sets the value of an environment variable. It returns 0 on success, and a value != 0 on failure.

Note:
The result of passing the empty string ("") as a value is platform dependent. On some platforms the value of the
variable is set to the empty string, on others, the environment variable is removed.

Warning:
Do not use libc's putenv or similar C library interfaces from a driver.

This function is thread-safe.

int erl_drv_getenv(char *key, char *value, size_t *value_size)

Arguments:

key
A null terminated string containing the name of the environment variable.

value
A pointer to an output buffer.

value_size
A pointer to an integer. The integer is both used for passing input and output sizes (see below).

This function retrieves the value of an environment variable. When called, *value_size should contain the size
of the value buffer. On success 0 is returned, the value of the environment variable has been written to the value
buffer, and *value_size contains the string length (excluding the terminating null character) of the value written
to the value buffer. On failure, i.e., no such environment variable was found, a value less than 0 is returned. When
the size of the value buffer is too small, a value greater than 0 is returned and *value_size has been set to the
buffer size needed.

Warning:
Do not use libc's getenv or similar C library interfaces from a driver.

This function is thread-safe.

erl_driver

242 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

SEE ALSO
driver_entry(3), erl_ddll(3), erlang(3)

An Alternative Distribution Driver (ERTS User's Guide Ch. 3)

driver_entry

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 243

driver_entry
C Library

As of erts version 5.5.3 the driver interface has been extended (see extended marker). The extended interface
introduces version management, the possibility to pass capability flags (see driver flags) to the runtime system at driver
initialization, and some new driver API functions.

Note:
Old drivers (compiled with an erl_driver.h from an earlier erts version than 5.5.3) have to be recompiled
(but do not have to use the extended interface).

The driver_entry structure is a C struct that all erlang drivers define. It contains entry points for the erlang driver
that are called by the erlang emulator when erlang code accesses the driver.

The erl_driver driver API functions need a port handle that identifies the driver instance (and the port in the emulator).
This is only passed to the start function, but not to the other functions. The start function returns a driver-
defined handle that is passed to the other functions. A common practice is to have the start function allocate some
application-defined structure and stash the port handle in it, to use it later with the driver API functions.

The driver call-back functions are called synchronously from the erlang emulator. If they take too long before
completing, they can cause timeouts in the emulator. Use the queue or asynchronous calls if necessary, since the
emulator must be responsive.

The driver structure contains the name of the driver and some 15 function pointers. These pointers are called at different
times by the emulator.

The only exported function from the driver is driver_init. This function returns the driver_entry
structure that points to the other functions in the driver. The driver_init function is declared with a macro
DRIVER_INIT(drivername). (This is because different OS's have different names for it.)

When writing a driver in C++, the driver entry should be of "C" linkage. One way to do this is to put this line
somewhere before the driver entry: extern "C" DRIVER_INIT(drivername);.

When the driver has passed the driver_entry over to the emulator, the driver is not allowed to modify the
driver_entry.

Note:
Do not declare the driver_entryconst. This since the emulator needs to modify the handle, and the
handle2 fields. A statically allocated, and const declared driver_entry may be located in read only
memory which will cause the emulator to crash.

DATA TYPES
ErlDrvEntry

typedef struct erl_drv_entry {
 int (*init)(void); /* called at system start up for statically

driver_entry

244 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

 linked drivers, and after loading for
 dynamically loaded drivers */

#ifndef ERL_SYS_DRV
 ErlDrvData (*start)(ErlDrvPort port, char *command);
 /* called when open_port/2 is invoked.
 return value -1 means failure. */
#else
 ErlDrvData (*start)(ErlDrvPort port, char *command, SysDriverOpts* opts);
 /* special options, only for system driver */
#endif
 void (*stop)(ErlDrvData drv_data);
 /* called when port is closed, and when the
 emulator is halted. */
 void (*output)(ErlDrvData drv_data, char *buf, int len);
 /* called when we have output from erlang to
 the port */
 void (*ready_input)(ErlDrvData drv_data, ErlDrvEvent event);
 /* called when we have input from one of
 the driver's handles) */
 void (*ready_output)(ErlDrvData drv_data, ErlDrvEvent event);
 /* called when output is possible to one of
 the driver's handles */
 char *driver_name; /* name supplied as command
 in open_port XXX ? */
 void (*finish)(void); /* called before unloading the driver -
 DYNAMIC DRIVERS ONLY */
 void *handle; /* Reserved -- Used by emulator internally */
 int (*control)(ErlDrvData drv_data, unsigned int command, char *buf,
 int len, char **rbuf, int rlen);
 /* "ioctl" for drivers - invoked by
 port_control/3) */
 void (*timeout)(ErlDrvData drv_data); /* Handling of timeout in driver */
 void (*outputv)(ErlDrvData drv_data, ErlIOVec *ev);
 /* called when we have output from erlang
 to the port */
 void (*ready_async)(ErlDrvData drv_data, ErlDrvThreadData thread_data);
 void (*flush)(ErlDrvData drv_data);
 /* called when the port is about to be
 closed, and there is data in the
 driver queue that needs to be flushed
 before 'stop' can be called */
 int (*call)(ErlDrvData drv_data, unsigned int command, char *buf,
 int len, char **rbuf, int rlen, unsigned int *flags);
 /* Works mostly like 'control', a syncronous
 call into the driver. */
 void (*event)(ErlDrvData drv_data, ErlDrvEvent event,
 ErlDrvEventData event_data);
 /* Called when an event selected by
 driver_event() has occurred */
 int extended_marker; /* ERL_DRV_EXTENDED_MARKER */
 int major_version; /* ERL_DRV_EXTENDED_MAJOR_VERSION */
 int minor_version; /* ERL_DRV_EXTENDED_MINOR_VERSION */
 int driver_flags; /* ERL_DRV_FLAGs */
 void *handle2; /* Reserved -- Used by emulator internally */
 void (*process_exit)(ErlDrvData drv_data, ErlDrvMonitor *monitor);
 /* Called when a process monitor fires */
 void (*stop_select)(ErlDrvEvent event, void* reserved);
 /* Called to close an event object */
 } ErlDrvEntry;

driver_entry

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 245

int (*init)(void)

This is called directly after the driver has been loaded by erl_ddll:load_driver/2. (Actually when the
driver is added to the driver list.) The driver should return 0, or if the driver can't initialize, -1.

ErlDrvData (*start)(ErlDrvPort port, char* command)

This is called when the driver is instantiated, when open_port/2 is called. The driver should return a number
>= 0 or a pointer, or if the driver can't be started, one of three error codes should be returned:

ERL_DRV_ERROR_GENERAL - general error, no error code

ERL_DRV_ERROR_ERRNO - error with error code in erl_errno

ERL_DRV_ERROR_BADARG - error, badarg

If an error code is returned, the port isn't started.

void (*stop)(ErlDrvData drv_data)

This is called when the port is closed, with port_close/1 or Port ! {self(), close}. Note that
terminating the port owner process also closes the port. If drv_data is a pointer to memory allocated in start,
then stop is the place to deallocate that memory.

void (*output)(ErlDrvData drv_data, char *buf, int len)

This is called when an erlang process has sent data to the port. The data is pointed to by buf, and is len bytes.
Data is sent to the port with Port ! {self(), {command, Data}}, or with port_command/2.
Depending on how the port was opened, it should be either a list of integers 0...255 or a binary. See
open_port/3 and port_command/2.

void (*ready_input)(ErlDrvData drv_data, ErlDrvEvent event)
void (*ready_output)(ErlDrvData drv_data, ErlDrvEvent event)

This is called when a driver event (given in the event parameter) is signaled. This is used to help asynchronous
drivers "wake up" when something happens.

On unix the event is a pipe or socket handle (or something that the select system call understands).

On Windows the event is an Event or Semaphore (or something that the WaitForMultipleObjects API
function understands). (Some trickery in the emulator allows more than the built-in limit of 64 Events to be
used.)

To use this with threads and asynchronous routines, create a pipe on unix and an Event on Windows. When
the routine completes, write to the pipe (use SetEvent on Windows), this will make the emulator call
ready_input or ready_output.

Spurious events may happen. That is, calls to ready_input or ready_output even though no real events
are signaled. In reality it should be rare (and OS dependant), but a robust driver must nevertheless be able to
handle such cases.

char *driver_name

This is the name of the driver, it must correspond to the atom used in open_port, and the name of the driver
library file (without the extension).

void (*finish)(void)

This function is called by the erl_ddll driver when the driver is unloaded. (It is only called in dynamic drivers.)

The driver is only unloaded as a result of calling unload_driver/1, or when the emulator halts.

void *handle

This field is reserved for the emulator's internal use. The emulator will modify this field; therefore, it is important
that the driver_entry isn't declared const.

driver_entry

246 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

int (*control)(ErlDrvData drv_data, unsigned int command, char *buf, int len, char **rbuf, int rlen)

This is a special routine invoked with the erlang function port_control/3. It works a little like an "ioctl"
for erlang drivers. The data given to port_control/3 arrives in buf and len. The driver may send data
back, using *rbuf and rlen.

This is the fastest way of calling a driver and get a response. It won't make any context switch in the erlang
emulator, and requires no message passing. It is suitable for calling C function to get faster execution, when
erlang is too slow.

If the driver wants to return data, it should return it in rbuf. When control is called, *rbuf points to a default
buffer of rlen bytes, which can be used to return data. Data is returned different depending on the port control
flags (those that are set with set_port_control_flags).

If the flag is set to PORT_CONTROL_FLAG_BINARY, a binary will be returned. Small binaries can be returned
by writing the raw data into the default buffer. A binary can also be returned by setting *rbuf to point
to a binary allocated with driver_alloc_binary. This binary will be freed automatically after control has
returned. The driver can retain the binary for read only access with driver_binary_inc_refc to be freed later with
driver_free_binary. It is never allowed to alter the binary after control has returned. If *rbuf is set to NULL,
an empty list will be returned.

If the flag is set to 0, data is returned as a list of integers. Either use the default buffer or set *rbuf to point to a
larger buffer allocated with driver_alloc. The buffer will be freed automatically after control has returned.

Using binaries is faster if more than a few bytes are returned.

The return value is the number of bytes returned in *rbuf.

void (*timeout)(ErlDrvData drv_data)

This function is called any time after the driver's timer reaches 0. The timer is activated with
driver_set_timer. There are no priorities or ordering among drivers, so if several drivers time out at the
same time, any one of them is called first.

void (*outputv)(ErlDrvData drv_data, ErlIOVec *ev)

This function is called whenever the port is written to. If it is NULL, the output function is called instead. This
function is faster than output, because it takes an ErlIOVec directly, which requires no copying of the data.
The port should be in binary mode, see open_port/2.

The ErlIOVec contains both a SysIOVec, suitable for writev, and one or more binaries. If these binaries
should be retained, when the driver returns from outputv, they can be queued (using driver_enq_bin for
instance), or if they are kept in a static or global variable, the reference counter can be incremented.

void (*ready_async)(ErlDrvData drv_data, ErlDrvThreadData thread_data)

This function is called after an asynchronous call has completed. The asynchronous call is started with
driver_async. This function is called from the erlang emulator thread, as opposed to the asynchronous function,
which is called in some thread (if multithreading is enabled).

int (*call)(ErlDrvData drv_data, unsigned int command, char *buf, int len, char **rbuf, int rlen, unsigned int
*flags)

This function is called from erlang:port_call/3. It works a lot like the control call-back, but uses the
external term format for input and output.

command is an integer, obtained from the call from erlang (the second argument to erlang:port_call/3).

buf and len provide the arguments to the call (the third argument to erlang:port_call/3). They can be
decoded using ei functions.

rbuf points to a return buffer, rlen bytes long. The return data should be a valid erlang term in the
external (binary) format. This is converted to an erlang term and returned by erlang:port_call/3 to the

driver_entry

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 247

caller. If more space than rlen bytes is needed to return data, *rbuf can be set to memory allocated with
driver_alloc. This memory will be freed automatically after call has returned.

The return value is the number of bytes returned in *rbuf. If ERL_DRV_ERROR_GENERAL is returned (or in
fact, anything < 0), erlang:port_call/3 will throw a BAD_ARG.

void (*event)(ErlDrvData drv_data, ErlDrvEvent event, ErlDrvEventData event_data)

Intentionally left undocumented.

int extended_marker

This field should either be equal to ERL_DRV_EXTENDED_MARKER or 0. An old driver (not aware of the
extended driver interface) should set this field to 0. If this field is equal to 0, all the fields following this field
also have to be 0, or NULL in case it is a pointer field.

int major_version

This field should equal ERL_DRV_EXTENDED_MAJOR_VERSION if the extended_marker field equals
ERL_DRV_EXTENDED_MARKER.

int minor_version

This field should equal ERL_DRV_EXTENDED_MINOR_VERSION if the extended_marker field equals
ERL_DRV_EXTENDED_MARKER.

int driver_flags

This field is used to pass driver capability information to the runtime system. If the extended_marker field
equals ERL_DRV_EXTENDED_MARKER, it should contain 0 or driver flags (ERL_DRV_FLAG_*) ored bitwise.
Currently the following driver flags exist:

ERL_DRV_FLAG_USE_PORT_LOCKING
The runtime system will use port level locking on all ports executing this driver instead of driver level locking
when the driver is run in a runtime system with SMP support. For more information see the erl_driver
documentation.
ERL_DRV_FLAG_SOFT_BUSY
Marks that driver instances can handle being called in the output and/or outputv callbacks even though a driver
instance has marked itself as busy (see set_busy_port()). Since erts version 5.7.4 this flag is required for drivers
used by the Erlang distribution (the behaviour has always been required by drivers used by the distribution).

void *handle2

This field is reserved for the emulator's internal use. The emulator will modify this field; therefore, it is important
that the driver_entry isn't declared const.

void (*process_exit)(ErlDrvData drv_data, ErlDrvMonitor *monitor)

This callback is called when a monitored process exits. The drv_data is the data associated with the
port for which the process is monitored (using driver_monitor_process) and the monitor corresponds
to the ErlDrvMonitor structure filled in when creating the monitor. The driver interface function
driver_get_monitored_process can be used to retrieve the process id of the exiting process as an
ErlDrvTermData.

void (*stop_select)(ErlDrvEvent event, void* reserved)

This function is called on behalf of driver_select when it is safe to close an event object.

A typical implementation on Unix is to do close((int)event).

Argument reserved is intended for future use and should be ignored.

In contrast to most of the other call-back functions, stop_select is called independent of any port. No
ErlDrvData argument is passed to the function. No driver lock or port lock is guaranteed to be held. The port

driver_entry

248 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

that called driver_select might even be closed at the time stop_select is called. But it could also be
the case that stop_select is called directly by driver_select.

It is not allowed to call any functions in the driver API from stop_select. This strict limitation is due to the
volatile context that stop_select may be called.

SEE ALSO
erl_driver(3), erl_ddll(3), erlang(3), kernel(3)

erts_alloc

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 249

erts_alloc
C Library

erts_alloc is an Erlang Run-Time System internal memory allocator library. erts_alloc provides the Erlang
Run-Time System with a number of memory allocators.

Allocators
Currently the following allocators are present:

temp_alloc
Allocator used for temporary allocations.

eheap_alloc
Allocator used for Erlang heap data, such as Erlang process heaps.

binary_alloc
Allocator used for Erlang binary data.

ets_alloc
Allocator used for ETS data.

driver_alloc
Allocator used for driver data.

sl_alloc
Allocator used for memory blocks that are expected to be short-lived.

ll_alloc
Allocator used for memory blocks that are expected to be long-lived, for example Erlang code.

fix_alloc
A very fast allocator used for some fix-sized data. fix_alloc manages a set of memory pools from which
memory blocks are handed out. fix_alloc allocates memory pools from ll_alloc. Memory pools that
have been allocated are never deallocated.

std_alloc
Allocator used for most memory blocks not allocated via any of the other allocators described above.

sys_alloc
This is normally the default malloc implementation used on the specific OS.

mseg_alloc
A memory segment allocator. mseg_alloc is used by other allocators for allocating memory segments and is
currently only available on systems that have the mmap system call. Memory segments that are deallocated are
kept for a while in a segment cache before they are destroyed. When segments are allocated, cached segments
are used if possible instead of creating new segments. This in order to reduce the number of system calls made.

sys_alloc and fix_alloc are always enabled and cannot be disabled. mseg_alloc is always enabled if it
is available and an allocator that uses it is enabled. All other allocators can be enabled or disabled. By default all
allocators are enabled. When an allocator is disabled, sys_alloc is used instead of the disabled allocator.

The main idea with the erts_alloc library is to separate memory blocks that are used differently into different
memory areas, and by this achieving less memory fragmentation. By putting less effort in finding a good fit for memory
blocks that are frequently allocated than for those less frequently allocated, a performance gain can be achieved.

The alloc_util framework
Internally a framework called alloc_util is used for implementing allocators. sys_alloc, fix_alloc, and
mseg_alloc do not use this framework; hence, the following does not apply to them.

An allocator manages multiple areas, called carriers, in which memory blocks are placed. A carrier is either placed
in a separate memory segment (allocated via mseg_alloc) or in the heap segment (allocated via sys_alloc).

erts_alloc

250 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Multiblock carriers are used for storage of several blocks. Singleblock carriers are used for storage of one block. Blocks
that are larger than the value of the singleblock carrier threshold (sbct) parameter are placed in singleblock carriers.
Blocks smaller than the value of the sbct parameter are placed in multiblock carriers. Normally an allocator creates
a "main multiblock carrier". Main multiblock carriers are never deallocated. The size of the main multiblock carrier
is determined by the value of the mmbcs parameter.

Sizes of multiblock carriers allocated via mseg_alloc are decided based on the values of the largest multiblock
carrier size (lmbcs), the smallest multiblock carrier size (smbcs), and the multiblock carrier growth stages (mbcgs)
parameters. If nc is the current number of multiblock carriers (the main multiblock carrier excluded) managed by
an allocator, the size of the next mseg_alloc multiblock carrier allocated by this allocator will roughly be smbcs
+nc*(lmbcs-smbcs)/mbcgs when nc <= mbcgs, and lmbcs when nc > mbcgs. If the value of the sbct
parameter should be larger than the value of the lmbcs parameter, the allocator may have to create multiblock carriers
that are larger than the value of the lmbcs parameter, though. Singleblock carriers allocated via mseg_alloc are
sized to whole pages.

Sizes of carriers allocated via sys_alloc are decided based on the value of the sys_alloc carrier size (ycs)
parameter. The size of a carrier is the least number of multiples of the value of the ycs parameter that satisfies the
request.

Coalescing of free blocks are always performed immediately. Boundary tags (headers and footers) in free blocks are
used which makes the time complexity for coalescing constant.

The memory allocation strategy used for multiblock carriers by an allocator is configurable via the as parameter.
Currently the following strategies are available:

Best fit

Strategy: Find the smallest block that satisfies the requested block size.

Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N
is the number of sizes of free blocks.

Address order best fit

Strategy: Find the smallest block that satisfies the requested block size. If multiple blocks are found, choose the
one with the lowest address.

Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N
is the number of free blocks.

Good fit

Strategy: Try to find the best fit, but settle for the best fit found during a limited search.

Implementation: The implementation uses segregated free lists with a maximum block search depth (in each list)
in order to find a good fit fast. When the maximum block search depth is small (by default 3) this implementation
has a time complexity that is constant. The maximum block search depth is configurable via the mbsd parameter.

A fit

Strategy: Do not search for a fit, inspect only one free block to see if it satisfies the request. This strategy is only
intended to be used for temporary allocations.

Implementation: Inspect the first block in a free-list. If it satisfies the request, it is used; otherwise, a new carrier
is created. The implementation has a time complexity that is constant.

As of erts version 5.6.1 the emulator will refuse to use this strategy on other allocators than temp_alloc. This
since it will only cause problems for other allocators.

erts_alloc

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 251

System Flags Effecting erts_alloc

Warning:
Only use these flags if you are absolutely sure what you are doing. Unsuitable settings may cause serious
performance degradation and even a system crash at any time during operation.

Memory allocator system flags have the following syntax: +M<S><P> <V> where <S> is a letter identifying a
subsystem, <P> is a parameter, and <V> is the value to use. The flags can be passed to the Erlang emulator (erl) as
command line arguments.

System flags effecting specific allocators have an upper-case letter as <S>. The following letters are used for the
currently present allocators:

• B: binary_alloc

• D: std_alloc

• E: ets_alloc

• F: fix_alloc

• H: eheap_alloc

• L: ll_alloc

• M: mseg_alloc

• R: driver_alloc

• S: sl_alloc

• T: temp_alloc

• Y: sys_alloc

The following flags are available for configuration of mseg_alloc:

+MMamcbf <size>
Absolute max cache bad fit (in kilobytes). A segment in the memory segment cache is not reused if its size
exceeds the requested size with more than the value of this parameter. Default value is 4096.

+MMrmcbf <ratio>
Relative max cache bad fit (in percent). A segment in the memory segment cache is not reused if its size
exceeds the requested size with more than relative max cache bad fit percent of the requested size. Default
value is 20.

+MMmcs <amount>
Max cached segments. The maximum number of memory segments stored in the memory segment cache. Valid
range is 0-30. Default value is 5.

+MMcci <time>
Cache check interval (in milliseconds). The memory segment cache is checked for segments to destroy at an
interval determined by this parameter. Default value is 1000.

The following flags are available for configuration of fix_alloc:

+MFe true
Enable fix_alloc. Note: fix_alloc cannot be disabled.

The following flags are available for configuration of sys_alloc:

+MYe true
Enable sys_alloc. Note: sys_alloc cannot be disabled.

erts_alloc

252 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

+MYm libc
malloc library to use. Currently only libc is available. libc enables the standard libc malloc
implementation. By default libc is used.

+MYtt <size>
Trim threshold size (in kilobytes). This is the maximum amount of free memory at the top of the heap
(allocated by sbrk) that will be kept by malloc (not released to the operating system). When the amount of
free memory at the top of the heap exceeds the trim threshold, malloc will release it (by calling sbrk). Trim
threshold is given in kilobytes. Default trim threshold is 128. Note: This flag will only have any effect when the
emulator has been linked with the GNU C library, and uses its malloc implementation.

+MYtp <size>
Top pad size (in kilobytes). This is the amount of extra memory that will be allocated by malloc when
sbrk is called to get more memory from the operating system. Default top pad size is 0. Note: This flag
will only have any effect when the emulator has been linked with the GNU C library, and uses its malloc
implementation.

The following flags are available for configuration of allocators based on alloc_util. If u is used as subsystem
identifier (i.e., <S> = u) all allocators based on alloc_util will be effected. If B, D, E, H, L, R, S, or T is used
as subsystem identifier, only the specific allocator identified will be effected:

+M<S>as bf|aobf|gf|af
Allocation strategy. Valid strategies are bf (best fit), aobf (address order best fit), gf (good fit), and af (a
fit). See the description of allocation strategies in "the alloc_util framework" section.

+M<S>asbcst <size>
Absolute singleblock carrier shrink threshold (in kilobytes). When a block located in an mseg_alloc
singleblock carrier is shrunk, the carrier will be left unchanged if the amount of unused memory is less than this
threshold; otherwise, the carrier will be shrunk. See also rsbcst.

+M<S>e true|false
Enable allocator <S>.

+M<S>lmbcs <size>
Largest (mseg_alloc) multiblock carrier size (in kilobytes). See the description on how sizes for mseg_alloc
multiblock carriers are decided in "the alloc_util framework" section.

+M<S>mbcgs <ratio>
(mseg_alloc) multiblock carrier growth stages. See the description on how sizes for mseg_alloc multiblock
carriers are decided in "the alloc_util framework" section.

+M<S>mbsd <depth>
Max block search depth. This flag has effect only if the good fit strategy has been selected for allocator <S>.
When the good fit strategy is used, free blocks are placed in segregated free-lists. Each free list contains blocks
of sizes in a specific range. The max block search depth sets a limit on the maximum number of blocks to
inspect in a free list during a search for suitable block satisfying the request.

+M<S>mmbcs <size>
Main multiblock carrier size. Sets the size of the main multiblock carrier for allocator <S>. The main
multiblock carrier is allocated via sys_alloc and is never deallocated.

+M<S>mmmbc <amount>
Max mseg_alloc multiblock carriers. Maximum number of multiblock carriers allocated via mseg_alloc
by allocator <S>. When this limit has been reached, new multiblock carriers will be allocated via
sys_alloc.

+M<S>mmsbc <amount>
Max mseg_alloc singleblock carriers. Maximum number of singleblock carriers allocated via
mseg_alloc by allocator <S>. When this limit has been reached, new singleblock carriers will be allocated
via sys_alloc.

+M<S>ramv <bool>
Realloc always moves. When enabled, reallocate operations will more or less be translated into an allocate,
copy, free sequence. This often reduce memory fragmentation, but costs performance.

erts_alloc

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 253

+M<S>rmbcmt <ratio>
Relative multiblock carrier move threshold (in percent). When a block located in a multiblock carrier is shrunk,
the block will be moved if the ratio of the size of the returned memory compared to the previous size is more
than this threshold; otherwise, the block will be shrunk at current location.

+M<S>rsbcmt <ratio>
Relative singleblock carrier move threshold (in percent). When a block located in a singleblock carrier is
shrunk to a size smaller than the value of the sbct parameter, the block will be left unchanged in the singleblock
carrier if the ratio of unused memory is less than this threshold; otherwise, it will be moved into a multiblock
carrier.

+M<S>rsbcst <ratio>
Relative singleblock carrier shrink threshold (in percent). When a block located in an mseg_alloc
singleblock carrier is shrunk, the carrier will be left unchanged if the ratio of unused memory is less than this
threshold; otherwise, the carrier will be shrunk. See also asbcst.

+M<S>sbct <size>
Singleblock carrier threshold. Blocks larger than this threshold will be placed in singleblock carriers. Blocks
smaller than this threshold will be placed in multiblock carriers.

+M<S>smbcs <size>
Smallest (mseg_alloc) multiblock carrier size (in kilobytes). See the description on how sizes for
mseg_alloc multiblock carriers are decided in "the alloc_util framework" section.

+M<S>t true|false|<amount>
Multiple, thread specific instances of the allocator. This option will only have any effect on the runtime system
with SMP support. Default behaviour on the runtime system with SMP support (N equals the number of
scheduler threads):

temp_alloc
N + 1 instances.
ll_alloc
1 instance.
Other allocators
N instances when N is less than or equal to 16. 16 instances when N is greater than 16.

temp_alloc will always use N + 1 instances when this option has been enabled regardless of the amount
passed. Other allocators will use the same amount of instances as the amount passed as long as it isn't greater
than N.

Currently the following flags are available for configuration of alloc_util, i.e. all allocators based on
alloc_util will be effected:

+Muycs <size>
sys_alloc carrier size. Carriers allocated via sys_alloc will be allocated in sizes which are multiples
of the sys_alloc carrier size. This is not true for main multiblock carriers and carriers allocated during a
memory shortage, though.

+Mummc <amount>
Max mseg_alloc carriers. Maximum number of carriers placed in separate memory segments. When this
limit has been reached, new carriers will be placed in memory retrieved from sys_alloc.

Instrumentation flags:

+Mim true|false
A map over current allocations is kept by the emulator. The allocation map can be retrieved via the
instrument module. +Mim true implies +Mis true. +Mim true is the same as -instr.

+Mis true|false
Status over allocated memory is kept by the emulator. The allocation status can be retrieved via the
instrument module.

+Mit X
Reserved for future use. Do not use this flag.

erts_alloc

254 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Note:
When instrumentation of the emulator is enabled, the emulator uses more memory and runs slower.

Other flags:

+Mea min|max|r9c|r10b|r11b|config

min
Disables all allocators that can be disabled.
max
Enables all allocators (currently default).
r9c|r10b|r11b
Configures all allocators as they were configured in respective OTP release. These will eventually be removed.
config
Disables features that cannot be enabled while creating an allocator configuration with erts_alloc_config(3).
Note, this option should only be used while running erts_alloc_config, not when using the created
configuration.

Only some default values have been presented here. erlang:system_info(allocator), and erlang:system_info({allocator,
Alloc}) can be used in order to obtain currently used settings and current status of the allocators.

Note:
Most of these flags are highly implementation dependent, and they may be changed or removed without prior
notice.

erts_alloc is not obliged to strictly use the settings that have been passed to it (it may even ignore them).

erts_alloc_config(3) is a tool that can be used to aid creation of an erts_alloc configuration that is suitable for
a limited number of runtime scenarios.

SEE ALSO
erts_alloc_config(3), erl(1), instrument(3), erlang(3)

erl_nif

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 255

erl_nif
C Library

Note:
The NIF concept is officially supported from R14B. NIF source code written for earlier experimental versions
might need adaption to run on R14B.

No incompatible changes between R14B and R14A.

Incompatible changes between R14A and R13B04:

• Environment argument removed for enif_alloc, enif_realloc, enif_free,
enif_alloc_binary, enif_realloc_binary, enif_release_binary,
enif_alloc_resource, enif_release_resource, enif_is_identical and
enif_compare.

• Character encoding argument added to enif_get_atom and enif_make_existing_atom.

• Module argument added to enif_open_resource_type while changing name spaces of resource types
from global to module local.

Incompatible changes between R13B04 and R13B03:

• The function prototypes of the NIFs have changed to expect argc and argv arguments. The arity of a NIF
is by that no longer limited to 3.

• enif_get_data renamed as enif_priv_data.

• enif_make_string got a third argument for character encoding.

A NIF library contains native implementation of some functions of an Erlang module. The native implemented
functions (NIFs) are called like any other functions without any difference to the caller. Each NIF must also
have an implementation in Erlang that will be invoked if the function is called before the NIF library has been
successfully loaded. A typical such stub implementation is to throw an exception. But it can also be used as a fallback
implementation if the NIF library is not implemented for some architecture.

A minimal example of a NIF library can look like this:

/* niftest.c */
#include "erl_nif.h"

static ERL_NIF_TERM hello(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
 return enif_make_string(env, "Hello world!", ERL_NIF_LATIN1);
}

static ErlNifFunc nif_funcs[] =
{
 {"hello", 0, hello}
};

ERL_NIF_INIT(niftest,nif_funcs,NULL,NULL,NULL,NULL)

and the Erlang module would have to look something like this:

erl_nif

256 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

-module(niftest).

-export([init/0, hello/0]).

init() ->
 erlang:load_nif("./niftest", 0).

hello() ->
 "NIF library not loaded".

and compile and test something like this (on Linux):

$> gcc -fPIC -shared -o niftest.so niftest.c -I $ERL_ROOT/usr/include/
$> erl

1> c(niftest).
{ok,niftest}
2> niftest:hello().
"NIF library not loaded"
3> niftest:init().
ok
4> niftest:hello().
"Hello world!"

A better solution for a real module is to take advantage of the new directive on_load to automatically load the NIF
library when the module is loaded.

Note:
A NIF does not have to be exported, it can be local to the module. Note however that unused local stub functions
will be optimized away by the compiler causing loading of the NIF library to fail.

A loaded NIF library is tied to the Erlang module code version that loaded it. If the module is upgraded with a new
version, the new Erlang code will have to load its own NIF library (or maybe choose not to). The new code version
can however choose to load the exact same NIF library as the old code if it wants to. Sharing the same dynamic library
will mean that static data defined by the library will be shared as well. To avoid unintentionally shared static data,
each Erlang module code can keep its own private data. This private data can be set when the NIF library is loaded
and then retrieved by calling enif_priv_data.

There is no way to explicitly unload a NIF library. A library will be automatically unloaded when the module code
that it belongs to is purged by the code server. A NIF library will also be unloaded if it is replaced by another version
of the library by a second call to erlang:load_nif/2 from the same module code.

FUNCTIONALITY
All functions that a NIF library needs to do with Erlang are performed through the NIF API functions. There are
functions for the following functionality:

Read and write Erlang terms

Any Erlang terms can be passed to a NIF as function arguments and be returned as function return values.
The terms are of C-type ERL_NIF_TERM and can only be read or written using API functions. Most functions
to read the content of a term are prefixed enif_get_ and usually return true (or false) if the term was

erl_nif

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 257

of the expected type (or not). The functions to write terms are all prefixed enif_make_ and usually
return the created ERL_NIF_TERM. There are also some functions to query terms, like enif_is_atom,
enif_is_identical and enif_compare.

All terms of type ERL_NIF_TERM belong to an environment of type ErlNifEnv. The lifetime of a term is
controlled by the lifetime of its environment object. All API functions that read or write terms has the environment,
that the term belongs to, as the first function argument.

Binaries

Terms of type binary are accessed with the help of the struct type ErlNifBinary that contains a pointer (data) to
the raw binary data and the length (size) of the data in bytes. Both data and size are read-only and should
only be written using calls to API functions. Instances of ErlNifBinary are however always allocated by the
user (usually as local variables).

The raw data pointed to by data is only mutable after a call to enif_alloc_binary or enif_realloc_binary. All
other functions that operates on a binary will leave the data as read-only. A mutable binary must in the end either
be freed with enif_release_binary or made read-only by transferring it to an Erlang term with enif_make_binary.
But it does not have to happen in the same NIF call. Read-only binaries do not have to be released.

enif_make_new_binary can be used as a shortcut to allocate and return a binary in the same NIF call.

Binaries are sequences of whole bytes. Bitstrings with an arbitrary bit length have no support yet.

Resource objects

The use of resource objects is a way to return pointers to native data structures from a NIF in a safe way.
A resource object is just a block of memory allocated with enif_alloc_resource. A handle ("safe pointer") to
this memory block can then be returned to Erlang by the use of enif_make_resource. The term returned by
enif_make_resource is totally opaque in nature. It can be stored and passed between processes on the same
node, but the only real end usage is to pass it back as an argument to a NIF. The NIF can then call enif_get_resource
and get back a pointer to the memory block that is guaranteed to still be valid. A resource object will not be
deallocated until the last handle term has been garbage collected by the VM and the resource has been released
with enif_release_resource (not necessarily in that order).

All resource objects are created as instances of some resource type. This makes resources from different modules
to be distinguishable. A resource type is created by calling enif_open_resource_type when a library is loaded.
Objects of that resource type can then later be allocated and enif_get_resource verifies that the resource
is of the expected type. A resource type can have a user supplied destructor function that is automatically called
when resources of that type are released (by either the garbage collector or enif_release_resource).
Resource types are uniquely identified by a supplied name string and the name of the implementing module.

Here is a template example of how to create and return a resource object.

 ERL_NIF_TERM term;
 MyStruct* ptr = enif_alloc_resource(my_resource_type, sizeof(MyStruct));

 /* initialize struct ... */

 term = enif_make_resource(env, ptr);

 if (keep_a_reference_of_our_own) {
 /* store 'ptr' in static variable, private data or other resource object */
 }
 else {
 enif_release_resource(obj);
 /* resource now only owned by "Erlang" */
 }
 return term;

erl_nif

258 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Note that once enif_make_resource creates the term to return to Erlang, the code can choose to either keep
its own native pointer to the allocated struct and release it later, or release it immediately and rely solely on the
garbage collector to eventually deallocate the resource object when it collects the term.

Another usage of resource objects is to create binary terms with user defined memory management.
enif_make_resource_binary will create a binary term that is connected to a resource object. The destructor of the
resource will be called when the binary is garbage collected, at which time the binary data can be released. An
example of this can be a binary term consisting of data from a mmap'ed file. The destructor can then do munmap
to release the memory region.

Resource types support upgrade in runtime by allowing a loaded NIF library to takeover an already existing
resource type and thereby "inherit" all existing objects of that type. The destructor of the new library will thereafter
be called for the inherited objects and the library with the old destructor function can be safely unloaded. Existing
resource objects, of a module that is upgraded, must either be deleted or taken over by the new NIF library. The
unloading of a library will be postponed as long as there exist resource objects with a destructor function in the
library.

Threads and concurrency

A NIF is thread-safe without any explicit synchronization as long as it acts as a pure function and only reads the
supplied arguments. As soon as you write towards a shared state either through static variables or enif_priv_data
you need to supply your own explicit synchronization. This includes terms in process independent environments
that are shared between threads. Resource objects will also require synchronization if you treat them as mutable.

The library initialization callbacks load, reload and upgrade are all thread-safe even for shared state data.

Avoid doing lengthy work in NIF calls as that may degrade the responsiveness of the VM. NIFs are called directly
by the same scheduler thread that executed the calling Erlang code. The calling scheduler will thus be blocked
from doing any other work until the NIF returns.

INITIALIZATION
ERL_NIF_INIT(MODULE, ErlNifFunc funcs[], load, reload, upgrade, unload)

This is the magic macro to initialize a NIF library. It should be evaluated in global file scope.

MODULE is the name of the Erlang module as an identifier without string quotations. It will be stringified by
the macro.

funcs is a static array of function descriptors for all the implemented NIFs in this library.

load, reload, upgrade and unload are pointers to functions. One of load, reload or upgrade will be
called to initialize the library. unload is called to release the library. They are all described individually below.

int (*load)(ErlNifEnv* env, void** priv_data, ERL_NIF_TERM load_info)

load is called when the NIF library is loaded and there is no previously loaded library for this module.

*priv_data can be set to point to some private data that the library needs in order to keep a state between
NIF calls. enif_priv_data will return this pointer. *priv_data will be initialized to NULL when load
is called.

load_info is the second argument to erlang:load_nif/2.

The library will fail to load if load returns anything other than 0. load can be NULL in case no initialization
is needed.

erl_nif

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 259

int (*reload)(ErlNifEnv* env, void** priv_data, ERL_NIF_TERM load_info)

reload is called when the NIF library is loaded and there is already a previously loaded library for this module
code.

Works the same as load. The only difference is that *priv_data already contains the value set by the previous
call to load or reload.

The library will fail to load if reload returns anything other than 0 or if reload is NULL.

int (*upgrade)(ErlNifEnv* env, void** priv_data, void** old_priv_data, ERL_NIF_TERM load_info)

upgrade is called when the NIF library is loaded and there is no previously loaded library for this module code,
BUT there is old code of this module with a loaded NIF library.

Works the same as load. The only difference is that *old_priv_data already contains the value set by the
last call to load or reload for the old module code. *priv_data will be initialized to NULL when upgrade
is called. It is allowed to write to both *priv_data and *old_priv_data.

The library will fail to load if upgrade returns anything other than 0 or if upgrade is NULL.

void (*unload)(ErlNifEnv* env, void* priv_data)

unload is called when the module code that the NIF library belongs to is purged as old. New code of the same
module may or may not exist. Note that unload is not called for a replaced library as a consequence of reload.

DATA TYPES
ERL_NIF_TERM

Variables of type ERL_NIF_TERM can refer to any Erlang term. This is an opaque type and values of it can only
by used either as arguments to API functions or as return values from NIFs. All ERL_NIF_TERM's belong to an
environment (ErlNifEnv). A term can not be destructed individually, it is valid until its environment is destructed.

ErlNifEnv

ErlNifEnv represents an environment that can host Erlang terms. All terms in an environment are valid as
long as the environment is valid. ErlNifEnv is an opaque type and pointers to it can only be passed on to API
functions. There are two types of environments; process bound and process independent.

A process bound environment is passed as the first argument to all NIFs. All function arguments passed to a
NIF will belong to that environment. The return value from a NIF must also be a term belonging to the same
environment. In addition a process bound environment contains transient information about the calling Erlang
process. The environment is only valid in the thread where it was supplied as argument until the NIF returns. It
is thus useless and dangerous to store pointers to process bound environments between NIF calls.

A process independent environment is created by calling enif_alloc_env. It can be used to store terms between
NIF calls and to send terms with enif_send. A process independent environment with all its terms is valid until
you explicitly invalidates it with enif_free_env or enif_send.

All elements of a list/tuple must belong to the same environment as the list/tuple itself. Terms can be copied
between environments with enif_make_copy.

ErlNifFunc

typedef struct {
 const char* ;
 unsigned ;
 ERL_NIF_TERM (*)(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
} ErlNifFunc;

erl_nif

260 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

Describes a NIF by its name, arity and implementation. fptr is a pointer to the function that implements the
NIF. The argument argv of a NIF will contain the function arguments passed to the NIF and argc is the length
of the array, i.e. the function arity. argv[N-1] will thus denote the Nth argument to the NIF. Note that the
argc argument allows for the same C function to implement several Erlang functions with different arity (but
same name probably).

ErlNifBinary

typedef struct {
 unsigned ;
 unsigned char* ;
} ErlNifBinary;

ErlNifBinary contains transient information about an inspected binary term. data is a pointer to a buffer
of size bytes with the raw content of the binary.

Note that ErlNifBinary is a semi-opaque type and you are only allowed to read fields size and data.

ErlNifPid

ErlNifPid is a process identifier (pid). In contrast to pid terms (instances of ERL_NIF_TERM), ErlNifPid's
are self contained and not bound to any environment. ErlNifPid is an opaque type.

ErlNifResourceType

Each instance of ErlNifResourceType represent a class of memory managed resource objects that can be
garbage collected. Each resource type has a unique name and a destructor function that is called when objects
of its type are released.

ErlNifResourceDtor

typedef void ErlNifResourceDtor(ErlNifEnv* env, void* obj);

The function prototype of a resource destructor function. A destructor function is not allowed to call any term-
making functions.

ErlNifCharEncoding

typedef enum {
 ERL_NIF_LATIN1
}ErlNifCharEncoding;

The character encoding used in strings and atoms. The only supported encoding is currently ERL_NIF_LATIN1
for iso-latin-1 (8-bit ascii).

ErlNifSysInfo

Used by enif_system_info to return information about the runtime system. Contains currently the exact same
content as ErlDrvSysInfo.

ErlNifSInt64

A native signed 64-bit integer type.

erl_nif

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 261

ErlNifUInt64

A native unsigned 64-bit integer type.

Exports

void* enif_alloc(size_t size)

Allocate memory of size bytes. Return NULL if allocation failed.

int enif_alloc_binary(size_t size, ErlNifBinary* bin)

Allocate a new binary of size size bytes. Initialize the structure pointed to by bin to refer to the allocated
binary. The binary must either be released by enif_release_binary or ownership transferred to an Erlang term with
enif_make_binary. An allocated (and owned) ErlNifBinary can be kept between NIF calls.

Return true on success or false if allocation failed.

ErlNifEnv* enif_alloc_env()

Allocate a new process independent environment. The environment can be used to hold terms that is not bound to
any process. Such terms can later be copied to a process environment with enif_make_copy or be sent to a process
as a message with enif_send.

Return pointer to the new environment.

void* enif_alloc_resource(ErlNifResourceType* type, unsigned size)

Allocate a memory managed resource object of type type and size size bytes.

void enif_clear_env(ErlNifEnv* env)

Free all terms in an environment and clear it for reuse. The environment must have been allocated with enif_alloc_env.

int enif_compare(ERL_NIF_TERM lhs, ERL_NIF_TERM rhs)

Return an integer less than, equal to, or greater than zero if lhs is found, respectively, to be less than, equal, or greater
than rhs. Corresponds to the Erlang operators ==, /=, =<, <, >= and > (but not =:= or =/=).

void enif_cond_broadcast(ErlNifCond *cnd)

Same as erl_drv_cond_broadcast.

ErlNifCond* enif_cond_create(char *name)

Same as erl_drv_cond_create.

void enif_cond_destroy(ErlNifCond *cnd)

Same as erl_drv_cond_destroy.

void enif_cond_signal(ErlNifCond *cnd)

Same as erl_drv_cond_signal.

erl_nif

262 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

void enif_cond_wait(ErlNifCond *cnd, ErlNifMutex *mtx)

Same as erl_drv_cond_wait.

int enif_equal_tids(ErlNifTid tid1, ErlNifTid tid2)

Same as erl_drv_equal_tids.

void enif_free(void* ptr)

Free memory allocated by enif_alloc.

void enif_free_env(ErlNifEnv* env)

Free an environment allocated with enif_alloc_env. All terms created in the environment will be freed as well.

int enif_get_atom(ErlNifEnv* env, ERL_NIF_TERM term, char* buf, unsigned
size, ErlNifCharEncoding encode)

Write a null-terminated string, in the buffer pointed to by buf of size size, consisting of the string representation
of the atom term with encoding encode. Return the number of bytes written (including terminating null character)
or 0 if term is not an atom with maximum length of size-1.

int enif_get_atom_length(ErlNifEnv* env, ERL_NIF_TERM term, unsigned* len,
ErlNifCharEncoding encode)

Set *len to the length (number of bytes excluding terminating null character) of the atom term with encoding
encode. Return true on success or false if term is not an atom.

int enif_get_double(ErlNifEnv* env, ERL_NIF_TERM term, double* dp)

Set *dp to the floating point value of term. Return true on success or false if term is not a float.

int enif_get_int(ErlNifEnv* env, ERL_NIF_TERM term, int* ip)

Set *ip to the integer value of term. Return true on success or false if term is not an integer or is outside the bounds
of type int.

int enif_get_int64(ErlNifEnv* env, ERL_NIF_TERM term, ErlNifSInt64* ip)

Set *ip to the integer value of term. Return true on success or false if term is not an integer or is outside the bounds
of a signed 64-bit integer.

int enif_get_local_pid(ErlNifEnv* env, ERL_NIF_TERM term, ErlNifPid* pid)

If term is the pid of a node local process, initialize the pid variable *pid from it and return true. Otherwise return
false. No check if the process is alive is done.

int enif_get_list_cell(ErlNifEnv* env, ERL_NIF_TERM list, ERL_NIF_TERM* head,
ERL_NIF_TERM* tail)

Set *head and *tail from list and return true, or return false if list is not a non-empty list.

int enif_get_list_length(ErlNifEnv* env, ERL_NIF_TERM term, unsigned* len)

Set *len to the length of list term and return true, or return false if term is not a list.

erl_nif

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 263

int enif_get_long(ErlNifEnv* env, ERL_NIF_TERM term, long int* ip)

Set *ip to the long integer value of term and return true, or return false if term is not an integer or is outside the
bounds of type long int.

int enif_get_resource(ErlNifEnv* env, ERL_NIF_TERM term, ErlNifResourceType*
type, void** objp)

Set *objp to point to the resource object referred to by term.

Return true on success or false if term is not a handle to a resource object of type type.

int enif_get_string(ErlNifEnv* env, ERL_NIF_TERM list, char* buf, unsigned
size, ErlNifCharEncoding encode)

Write a null-terminated string, in the buffer pointed to by buf with size size, consisting of the characters in the string
list. The characters are written using encoding encode. Return the number of bytes written (including terminating
null character), or -size if the string was truncated due to buffer space, or 0 if list is not a string that can be
encoded with encode or if size was less than 1. The written string is always null-terminated unless buffer size
is less than 1.

int enif_get_tuple(ErlNifEnv* env, ERL_NIF_TERM term, int* arity, const
ERL_NIF_TERM** array)

If term is a tuple, set *array to point to an array containing the elements of the tuple and set *arity to the number
of elements. Note that the array is read-only and (*array)[N-1] will be the Nth element of the tuple. *array
is undefined if the arity of the tuple is zero.

Return true on success or false if term is not a tuple.

int enif_get_uint(ErlNifEnv* env, ERL_NIF_TERM term, unsigned int* ip)

Set *ip to the unsigned integer value of term and return true, or return false if term is not an unsigned integer or
is outside the bounds of type unsigned int.

int enif_get_uint64(ErlNifEnv* env, ERL_NIF_TERM term, ErlNifUInt64* ip)

Set *ip to the unsigned integer value of term and return true, or return false if term is not an unsigned integer or
is outside the bounds of an unsigned 64-bit integer.

int enif_get_ulong(ErlNifEnv* env, ERL_NIF_TERM term, unsigned long* ip)

Set *ip to the unsigned long integer value of term and return true, or return false if term is not an unsigned integer
or is outside the bounds of type unsigned long.

int enif_inspect_binary(ErlNifEnv* env, ERL_NIF_TERM bin_term, ErlNifBinary*
bin)

Initialize the structure pointed to by bin with information about the binary term bin_term. Return true on success
or false if bin_term is not a binary.

erl_nif

264 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

int enif_inspect_iolist_as_binary(ErlNifEnv* env, ERL_NIF_TERM term,
ErlNifBinary* bin)

Initialize the structure pointed to by bin with one continuous buffer with the same byte content as iolist. As with
inspect_binary, the data pointed to by bin is transient and does not need to be released. Return true on success or
false if iolist is not an iolist.

int enif_is_atom(ErlNifEnv* env, ERL_NIF_TERM term)

Return true if term is an atom.

int enif_is_binary(ErlNifEnv* env, ERL_NIF_TERM term)

Return true if term is a binary

int enif_is_empty_list(ErlNifEnv* env, ERL_NIF_TERM term)

Return true if term is an empty list.

int enif_is_fun(ErlNifEnv* env, ERL_NIF_TERM term)

Return true if term is a fun.

int enif_is_identical(ERL_NIF_TERM lhs, ERL_NIF_TERM rhs)

Return true if the two terms are identical. Corresponds to the Erlang operators =:= and =/=.

int enif_is_pid(ErlNifEnv* env, ERL_NIF_TERM term)

Return true if term is a pid.

int enif_is_port(ErlNifEnv* env, ERL_NIF_TERM term)

Return true if term is a port.

int enif_is_ref(ErlNifEnv* env, ERL_NIF_TERM term)

Return true if term is a reference.

int enif_is_tuple(ErlNifEnv* env, ERL_NIF_TERM term)

Return true if term is a tuple.

int enif_is_list(ErlNifEnv* env, ERL_NIF_TERM term)

Return true if term is a list.

int enif_keep_resource(void* obj)

Add a reference to resource object obj obtained from enif_alloc_resource. Each call to enif_keep_resource
for an object must be balanced by a call to enif_release_resource before the object will be destructed.

ERL_NIF_TERM enif_make_atom(ErlNifEnv* env, const char* name)

Create an atom term from the null-terminated C-string name with iso-latin-1 encoding.

erl_nif

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 265

ERL_NIF_TERM enif_make_atom_len(ErlNifEnv* env, const char* name, size_t len)

Create an atom term from the string name with length len. Null-characters are treated as any other characters.

ERL_NIF_TERM enif_make_badarg(ErlNifEnv* env)

Make a badarg exception to be returned from a NIF.

ERL_NIF_TERM enif_make_binary(ErlNifEnv* env, ErlNifBinary* bin)

Make a binary term from bin. Any ownership of the binary data will be transferred to the created term and bin
should be considered read-only for the rest of the NIF call and then as released.

ERL_NIF_TERM enif_make_copy(ErlNifEnv* dst_env, ERL_NIF_TERM src_term)

Make a copy of term src_term. The copy will be created in environment dst_env. The source term may be located
in any environment.

ERL_NIF_TERM enif_make_double(ErlNifEnv* env, double d)

Create a floating-point term from a double.

int enif_make_existing_atom(ErlNifEnv* env, const char* name, ERL_NIF_TERM*
atom, ErlNifCharEncoding encode)

Try to create the term of an already existing atom from the null-terminated C-string name with encoding encode. If
the atom already exists store the term in *atom and return true, otherwise return false.

int enif_make_existing_atom_len(ErlNifEnv* env, const char* name, size_t len,
ERL_NIF_TERM* atom, ErlNifCharEncoding encoding)

Try to create the term of an already existing atom from the string name with length len and encoding encode. Null-
characters are treated as any other characters. If the atom already exists store the term in *atom and return true,
otherwise return false.

ERL_NIF_TERM enif_make_int(ErlNifEnv* env, int i)

Create an integer term.

ERL_NIF_TERM enif_make_int64(ErlNifEnv* env, ErlNifSInt64 i)

Create an integer term from a signed 64-bit integer.

ERL_NIF_TERM enif_make_list(ErlNifEnv* env, unsigned cnt, ...)

Create an ordinary list term of length cnt. Expects cnt number of arguments (after cnt) of type ERL_NIF_TERM
as the elements of the list. An empty list is returned if cnt is 0.

erl_nif

266 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

ERL_NIF_TERM enif_make_list1(ErlNifEnv* env, ERL_NIF_TERM e1)

ERL_NIF_TERM enif_make_list2(ErlNifEnv* env, ERL_NIF_TERM e1, ERL_NIF_TERM
e2)

ERL_NIF_TERM enif_make_list3(ErlNifEnv* env, ERL_NIF_TERM e1, ERL_NIF_TERM
e2, ERL_NIF_TERM e3)

ERL_NIF_TERM enif_make_list4(ErlNifEnv* env, ERL_NIF_TERM e1, ...,
ERL_NIF_TERM e4)

ERL_NIF_TERM enif_make_list5(ErlNifEnv* env, ERL_NIF_TERM e1, ...,
ERL_NIF_TERM e5)

ERL_NIF_TERM enif_make_list6(ErlNifEnv* env, ERL_NIF_TERM e1, ...,
ERL_NIF_TERM e6)

ERL_NIF_TERM enif_make_list7(ErlNifEnv* env, ERL_NIF_TERM e1, ...,
ERL_NIF_TERM e7)

ERL_NIF_TERM enif_make_list8(ErlNifEnv* env, ERL_NIF_TERM e1, ...,
ERL_NIF_TERM e8)

ERL_NIF_TERM enif_make_list9(ErlNifEnv* env, ERL_NIF_TERM e1, ...,
ERL_NIF_TERM e9)

Create an ordinary list term with length indicated by the function name. Prefer these functions (macros) over the
variadic enif_make_list to get a compile time error if the number of arguments does not match.

ERL_NIF_TERM enif_make_list_cell(ErlNifEnv* env, ERL_NIF_TERM head,
ERL_NIF_TERM tail)

Create a list cell [head | tail].

ERL_NIF_TERM enif_make_list_from_array(ErlNifEnv* env, const ERL_NIF_TERM
arr[], unsigned cnt)

Create an ordinary list containing the elements of array arr of length cnt. An empty list is returned if cnt is 0.

ERL_NIF_TERM enif_make_long(ErlNifEnv* env, long int i)

Create an integer term from a long int.

unsigned char* enif_make_new_binary(ErlNifEnv* env, size_t size,
ERL_NIF_TERM* termp)

Allocate a binary of size size bytes and create an owning term. The binary data is mutable until the calling NIF
returns. This is a quick way to create a new binary without having to use ErlNifBinary. The drawbacks are that the
binary can not be kept between NIF calls and it can not be reallocated.

Return a pointer to the raw binary data and set *termp to the binary term.

erl_nif

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 267

ERL_NIF_TERM enif_make_pid(ErlNifEnv* env, const ErlNifPid* pid)

Make a pid term from *pid.

ERL_NIF_TERM enif_make_ref(ErlNifEnv* env)

Create a reference like erlang:make_ref/0.

ERL_NIF_TERM enif_make_resource(ErlNifEnv* env, void* obj)

Create an opaque handle to a memory managed resource object obtained by enif_alloc_resource. No ownership
transfer is done, as the resource object still needs to be released by enif_release_resource, but note that the call to
enif_release_resource can occur immediately after obtaining the term from enif_make_resource, in
which case the resource object will be deallocated when the term is garbage collected. See the example of creating
and returning a resource object for more details.

Note that the only defined behaviour of using a resource term in an Erlang program is to store it and send it between
processes on the same node. Other operations such as matching or term_to_binary will have unpredictable (but
harmless) results.

ERL_NIF_TERM enif_make_resource_binary(ErlNifEnv* env, void* obj, const void*
data, size_t size)

Create a binary term that is memory managed by a resource object obj obtained by enif_alloc_resource. The returned
binary term will consist of size bytes pointed to by data. This raw binary data must be kept readable and unchanged
until the destructor of the resource is called. The binary data may be stored external to the resource object in which
case it is the responsibility of the destructor to release the data.

Several binary terms may be managed by the same resource object. The destructor will not be called until the last
binary is garbage collected. This can be useful as a way to return different parts of a larger binary buffer.

As with enif_make_resource, no ownership transfer is done. The resource still needs to be released with
enif_release_resource.

ERL_NIF_TERM enif_make_string(ErlNifEnv* env, const char* string,
ErlNifCharEncoding encoding)

Create a list containing the characters of the null-terminated string string with encoding encoding.

ERL_NIF_TERM enif_make_string_len(ErlNifEnv* env, const char* string, size_t
len, ErlNifCharEncoding encoding)

Create a list containing the characters of the string string with length len and encoding encoding. Null-characters
are treated as any other characters.

ERL_NIF_TERM enif_make_sub_binary(ErlNifEnv* env, ERL_NIF_TERM bin_term,
size_t pos, size_t size)

Make a subbinary of binary bin_term, starting at zero-based position pos with a length of size bytes. bin_term
must be a binary or bitstring and pos+size must be less or equal to the number of whole bytes in bin_term.

ERL_NIF_TERM enif_make_tuple(ErlNifEnv* env, unsigned cnt, ...)

Create a tuple term of arity cnt. Expects cnt number of arguments (after cnt) of type ERL_NIF_TERM as the
elements of the tuple.

erl_nif

268 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

ERL_NIF_TERM enif_make_tuple1(ErlNifEnv* env, ERL_NIF_TERM e1)

ERL_NIF_TERM enif_make_tuple2(ErlNifEnv* env, ERL_NIF_TERM e1, ERL_NIF_TERM
e2)

ERL_NIF_TERM enif_make_tuple3(ErlNifEnv* env, ERL_NIF_TERM e1, ERL_NIF_TERM
e2, ERL_NIF_TERM e3)

ERL_NIF_TERM enif_make_tuple4(ErlNifEnv* env, ERL_NIF_TERM e1, ...,
ERL_NIF_TERM e4)

ERL_NIF_TERM enif_make_tuple5(ErlNifEnv* env, ERL_NIF_TERM e1, ...,
ERL_NIF_TERM e5)

ERL_NIF_TERM enif_make_tuple6(ErlNifEnv* env, ERL_NIF_TERM e1, ...,
ERL_NIF_TERM e6)

ERL_NIF_TERM enif_make_tuple7(ErlNifEnv* env, ERL_NIF_TERM e1, ...,
ERL_NIF_TERM e7)

ERL_NIF_TERM enif_make_tuple8(ErlNifEnv* env, ERL_NIF_TERM e1, ...,
ERL_NIF_TERM e8)

ERL_NIF_TERM enif_make_tuple9(ErlNifEnv* env, ERL_NIF_TERM e1, ...,
ERL_NIF_TERM e9)

Create a tuple term with length indicated by the function name. Prefer these functions (macros) over the variadic
enif_make_tuple to get a compile time error if the number of arguments does not match.

ERL_NIF_TERM enif_make_tuple_from_array(ErlNifEnv* env, const ERL_NIF_TERM
arr[], unsigned cnt)

Create a tuple containing the elements of array arr of length cnt.

ERL_NIF_TERM enif_make_uint(ErlNifEnv* env, unsigned int i)

Create an integer term from an unsigned int.

ERL_NIF_TERM enif_make_uint64(ErlNifEnv* env, ErlNifUInt64 i)

Create an integer term from an unsigned 64-bit integer.

ERL_NIF_TERM enif_make_ulong(ErlNifEnv* env, unsigned long i)

Create an integer term from an unsigned long int.

ErlNifMutex* enif_mutex_create(char *name)

Same as erl_drv_mutex_create.

void enif_mutex_destroy(ErlNifMutex *mtx)

Same as erl_drv_mutex_destroy.

erl_nif

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 269

void enif_mutex_lock(ErlNifMutex *mtx)

Same as erl_drv_mutex_lock.

int enif_mutex_trylock(ErlNifMutex *mtx)

Same as erl_drv_mutex_trylock.

void enif_mutex_unlock(ErlNifMutex *mtx)

Same as erl_drv_mutex_unlock.

ErlNifResourceType* enif_open_resource_type(ErlNifEnv* env, const char*
module_str, const char* name, ErlNifResourceDtor* dtor, ErlNifResourceFlags
flags, ErlNifResourceFlags* tried)

Create or takeover a resource type identified by the string name and give it the destructor function pointed to by dtor.
Argument flags can have the following values:

ERL_NIF_RT_CREATE
Create a new resource type that does not already exist.

ERL_NIF_RT_TAKEOVER
Open an existing resource type and take over ownership of all its instances. The supplied destructor dtor will
be called both for existing instances as well as new instances not yet created by the calling NIF library.

The two flag values can be combined with bitwise-or. The name of the resource type is local to the calling module.
Argument module_str is not (yet) used and must be NULL. The dtor may be NULL in case no destructor is needed.

On success, return a pointer to the resource type and *tried will be set to either ERL_NIF_RT_CREATE or
ERL_NIF_RT_TAKEOVER to indicate what was actually done. On failure, return NULL and set *tried to flags.
It is allowed to set tried to NULL.

Note that enif_open_resource_type is only allowed to be called in the three callbacks load, reload and
upgrade.

void* enif_priv_data(ErlNifEnv* env)

Return the pointer to the private data that was set by load, reload or upgrade.

Was previously named enif_get_data.

int enif_realloc_binary(ErlNifBinary* bin, size_t size)

Change the size of a binary bin. The source binary may be read-only, in which case it will be left untouched and a
mutable copy is allocated and assigned to *bin. Return true on success, false if memory allocation failed.

void enif_release_binary(ErlNifBinary* bin)

Release a binary obtained from enif_alloc_binary.

void enif_release_resource(void* obj)

Remove a reference to resource object objobtained from enif_alloc_resource. The resource object will be destructed
when the last reference is removed. Each call to enif_release_resource must correspond to a previous call
to enif_alloc_resource or enif_keep_resource. References made by enif_make_resource can only be removed
by the garbage collector.

erl_nif

270 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

ErlNifRWLock* enif_rwlock_create(char *name)

Same as erl_drv_rwlock_create.

void enif_rwlock_destroy(ErlNifRWLock *rwlck)

Same as erl_drv_rwlock_destroy.

void enif_rwlock_rlock(ErlNifRWLock *rwlck)

Same as erl_drv_rwlock_rlock.

void enif_rwlock_runlock(ErlNifRWLock *rwlck)

Same as erl_drv_rwlock_runlock.

void enif_rwlock_rwlock(ErlNifRWLock *rwlck)

Same as erl_drv_rwlock_rwlock.

void enif_rwlock_rwunlock(ErlNifRWLock *rwlck)

Same as erl_drv_rwlock_rwunlock.

int enif_rwlock_tryrlock(ErlNifRWLock *rwlck)

Same as erl_drv_rwlock_tryrlock.

int enif_rwlock_tryrwlock(ErlNifRWLock *rwlck)

Same as erl_drv_rwlock_tryrwlock.

ErlNifPid* enif_self(ErlNifEnv* caller_env, ErlNifPid* pid)

Initialize the pid variable *pid to represent the calling process. Return pid.

int enif_send(ErlNifEnv* env, ErlNifPid* to_pid, ErlNifEnv* msg_env,
ERL_NIF_TERM msg)

Send a message to a process.

env
The environment of the calling process. Must be NULL if and only if calling from a created thread.

*to_pid
The pid of the receiving process. The pid should refer to a process on the local node.

msg_env
The environment of the message term. Must be a process independent environment allocated with
enif_alloc_env.

msg
The message term to send.

Return true on success, or false if *to_pid does not refer to an alive local process.

The message environment msg_env with all its terms (including msg) will be invalidated by a successful call to
enif_send. The environment should either be freed with enif_free_env of cleared for reuse with enif_clear_env.

This function is only thread-safe when the emulator with SMP support is used. It can only be used in a non-SMP
emulator from a NIF-calling thread.

erl_nif

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 271

unsigned enif_sizeof_resource(void* obj)

Get the byte size of a resource object obj obtained by enif_alloc_resource.

void enif_system_info(ErlNifSysInfo *sys_info_ptr, size_t size)

Same as driver_system_info.

int enif_thread_create(char *name,ErlNifTid *tid,void * (*func)(void *),void
*args,ErlNifThreadOpts *opts)

Same as erl_drv_thread_create.

void enif_thread_exit(void *resp)

Same as erl_drv_thread_exit.

int enif_thread_join(ErlNifTid, void **respp)

Same as erl_drv_thread_join .

ErlNifThreadOpts* enif_thread_opts_create(char *name)

Same as erl_drv_thread_opts_create.

void enif_thread_opts_destroy(ErlNifThreadOpts *opts)

Same as erl_drv_thread_opts_destroy.

ErlNifTid enif_thread_self(void)

Same as erl_drv_thread_self.

int enif_tsd_key_create(char *name, ErlNifTSDKey *key)

Same as erl_drv_tsd_key_create.

void enif_tsd_key_destroy(ErlNifTSDKey key)

Same as erl_drv_tsd_key_destroy.

void* enif_tsd_get(ErlNifTSDKey key)

Same as erl_drv_tsd_get.

void enif_tsd_set(ErlNifTSDKey key, void *data)

Same as erl_drv_tsd_set.

SEE ALSO
erlang:load_nif/2

	Erlang Run-Time System Application (ERTS)
	User's Guide
	Match specifications in Erlang
	Grammar
	Function descriptions
	Functions allowed in all types of match specifications
	Functions allowed only for tracing

	Variables and literals
	Execution of the match
	Differences between match specifications in ETS and tracing
	Examples

	How to interpret the Erlang crash dumps
	General information
	Reasons for crash dumps (slogan)
	Number of atoms

	Memory information
	Internal table information
	Allocated areas
	Allocator
	Process information
	Port information
	ETS tables
	Timers
	Distribution information
	Loaded module information
	Fun information
	Process Data
	Atoms
	Disclaimer

	How to implement an alternative carrier for the Erlang distribution
	Introduction
	The driver
	Drivers in general
	The distribution driver's data structures
	Selected parts of the distribution driver implementation

	Putting it all together

	The Abstract Format
	Module declarations and forms
	Record fields
	Representation of parse errors and end of file

	Atomic literals
	Patterns
	Expressions
	Generators and filters
	Binary element type specifiers

	Clauses
	Guards
	The abstract format after preprocessing

	tty - A command line interface
	Normal Mode
	Shell Break Mode

	How to implement a driver
	Introduction
	Sample driver
	Compiling and linking the sample driver
	Calling a driver as a port in Erlang
	Sample asynchronous driver
	An asynchronous driver using driver_async

	Inet configuration
	Introduction
	Configuration Data
	User Configuration Example

	External Term Format
	Introduction
	Distribution header
	ATOM_CACHE_REF
	SMALL_INTEGER_EXT
	INTEGER_EXT
	FLOAT_EXT
	ATOM_EXT
	REFERENCE_EXT
	PORT_EXT
	PID_EXT
	SMALL_TUPLE_EXT
	LARGE_TUPLE_EXT
	NIL_EXT
	STRING_EXT
	LIST_EXT
	BINARY_EXT
	SMALL_BIG_EXT
	LARGE_BIG_EXT
	NEW_REFERENCE_EXT
	SMALL_ATOM_EXT
	FUN_EXT
	NEW_FUN_EXT
	EXPORT_EXT
	BIT_BINARY_EXT
	NEW_FLOAT_EXT

	Distribution Protocol
	EPMD Protocol
	Register a node in the EPMD
	Unregister a node from the EPMD
	Get the distribution port of another node
	Get all registered names from EPMD
	Dump all data from EPMD
	Kill the EPMD
	STOP_REQ (Not Used)

	Handshake
	Protocol between connected nodes
	New Ctrlmessages for distrvsn = 1 (OTP R4)
	New Ctrlmessages for distrvsn = 2
	New Ctrlmessages for distrvsn = 3 (OTP R5C)
	New Ctrlmessages for distrvsn = 4 (OTP R6)

	Reference Manual
	erl_prim_loader
	start/3
	get_file/1
	get_path/0
	list_dir/1
	read_file_info/1
	set_path/1

	erlang
	abs/1
	adler32/1
	adler32/2
	adler32_combine/3
	append_element/2
	apply/2
	apply/3
	atom_to_binary/2
	atom_to_list/1
	binary_part/2
	binary_part/3
	binary_to_atom/2
	binary_to_existing_atom/2
	binary_to_list/1
	binary_to_list/3
	bitstring_to_list/1
	binary_to_term/1
	binary_to_term/2
	bit_size/1
	bump_reductions/1
	byte_size/1
	cancel_timer/1
	check_process_code/2
	concat_binary/1
	crc32/1
	crc32/2
	crc32_combine/3
	date/0
	decode_packet/3
	delete_module/1
	demonitor/1
	demonitor/2
	disconnect_node/1
	display/1
	element/2
	erase/0
	erase/1
	error/1
	error/2
	exit/1
	exit/2
	float/1
	float_to_list/1
	fun_info/1
	fun_info/2
	fun_to_list/1
	function_exported/3
	garbage_collect/0
	garbage_collect/1
	get/0
	get/1
	get_cookie/0
	get_keys/1
	get_stacktrace/0
	group_leader/0
	group_leader/2
	halt/0
	halt/1
	hash/2
	hd/1
	hibernate/3
	integer_to_list/1
	integer_to_list/2
	iolist_to_binary/1
	iolist_size/1
	is_alive/0
	is_atom/1
	is_binary/1
	is_bitstring/1
	is_boolean/1
	is_builtin/3
	is_float/1
	is_function/1
	is_function/2
	is_integer/1
	is_list/1
	is_number/1
	is_pid/1
	is_port/1
	is_process_alive/1
	is_record/2
	is_record/3
	is_reference/1
	is_tuple/1
	length/1
	link/1
	list_to_atom/1
	list_to_binary/1
	list_to_bitstring/1
	list_to_existing_atom/1
	list_to_float/1
	list_to_integer/1
	list_to_integer/2
	list_to_pid/1
	list_to_tuple/1
	load_module/2
	load_nif/2
	loaded/0
	localtime/0
	localtime_to_universaltime/1
	localtime_to_universaltime/2
	make_ref/0
	make_tuple/2
	make_tuple/3
	max/2
	md5/1
	md5_final/1
	md5_init/0
	md5_update/2
	memory/0
	memory/1
	min/2
	module_loaded/1
	monitor/2
	monitor_node/2
	monitor_node/3
	nif_error/1
	nif_error/2
	node/0
	node/1
	nodes/0
	nodes/1
	now/0
	open_port/2
	phash/2
	phash2/1
	pid_to_list/1
	port_close/1
	port_command/2
	port_command/3
	port_connect/2
	port_control/3
	port_call/3
	port_info/1
	port_info/2
	port_to_list/1
	ports/0
	pre_loaded/0
	process_display/2
	process_flag/2
	process_flag/3
	process_info/1
	process_info/2
	processes/0
	purge_module/1
	put/2
	raise/3
	read_timer/1
	ref_to_list/1
	register/2
	registered/0
	resume_process/1
	round/1
	self/0
	send/2
	send/3
	send_after/3
	send_nosuspend/2
	send_nosuspend/3
	set_cookie/2
	setelement/3
	size/1
	spawn/1
	spawn/2
	spawn/3
	spawn/4
	spawn_link/1
	spawn_link/2
	spawn_link/3
	spawn_link/4
	spawn_monitor/1
	spawn_monitor/3
	spawn_opt/2
	spawn_opt/3
	spawn_opt/4
	spawn_opt/5
	split_binary/2
	start_timer/3
	statistics/1
	suspend_process/2
	suspend_process/1
	system_flag/2
	system_info/1
	system_monitor/0
	system_monitor/1
	system_monitor/2
	system_profile/0
	system_profile/2
	term_to_binary/1
	term_to_binary/2
	throw/1
	time/0
	tl/1
	trace/3
	trace_delivered/1
	trace_info/2
	trace_pattern/2
	trace_pattern/3
	trunc/1
	tuple_size/1
	tuple_to_list/1
	universaltime/0
	universaltime_to_localtime/1
	unlink/1
	unregister/1
	whereis/1
	yield/0

	init
	boot/1
	get_args/0
	get_argument/1
	get_arguments/0
	get_plain_arguments/0
	get_status/0
	reboot/0
	restart/0
	script_id/0
	stop/0
	stop/1

	zlib
	open/0
	close/1
	deflateInit/1
	deflateInit/2
	deflateInit/6
	deflate/2
	deflate/3
	deflateSetDictionary/2
	deflateReset/1
	deflateParams/3
	deflateEnd/1
	inflateInit/1
	inflateInit/2
	inflate/2
	inflateSetDictionary/2
	inflateReset/1
	inflateEnd/1
	setBufSize/2
	getBufSize/1
	crc32/1
	crc32/2
	crc32/3
	crc32_combine/4
	adler32/2
	adler32/3
	adler32_combine/4
	compress/1
	uncompress/1
	zip/1
	unzip/1
	gzip/1
	gunzip/1

	epmd
	erl
	erlc
	werl
	escript
	erlsrv
	start_erl
	erl_set_memory_block
	erl_set_memory_block()

	erl_memory_show()

	erl_mem_info_get()

	run_erl
	start
	erl_driver
	driver_system_info()

	driver_output()

	driver_output2()

	driver_output_binary()

	driver_outputv()

	driver_vec_to_buf()

	driver_set_timer()

	driver_cancel_timer()

	driver_read_timer()

	driver_get_now()

	driver_select()

	driver_alloc()

	driver_realloc()

	driver_free()

	driver_alloc_binary()

	driver_realloc_binary()

	driver_free_binary()

	driver_binary_get_refc()

	driver_binary_inc_refc()

	driver_binary_dec_refc()

	driver_enq()

	driver_pushq()

	driver_deq()

	driver_sizeq()

	driver_enq_bin()

	driver_pushq_bin()

	driver_peekq()

	driver_enqv()

	driver_pushqv()

	driver_pdl_create()

	driver_pdl_lock()

	driver_pdl_unlock()

	driver_pdl_get_refc()

	driver_pdl_inc_refc()

	driver_pdl_dec_refc()

	driver_monitor_process()

	driver_demonitor_process()

	driver_get_monitored_process()

	driver_compare_monitors()

	add_driver_entry()

	remove_driver_entry()

	erl_errno_id()

	set_busy_port()

	set_port_control_flags()

	driver_failure_eof()

	driver_failure_atom()

	driver_failure_posix()

	driver_failure()

	driver_connected()

	driver_caller()

	driver_output_term()

	driver_mk_atom()

	driver_mk_port()

	driver_send_term()

	driver_async ()

	driver_async_cancel()

	driver_lock_driver()

	driver_create_port()

	erl_drv_thread_create()

	erl_drv_thread_opts_create()

	erl_drv_thread_opts_destroy()

	erl_drv_thread_exit()

	erl_drv_thread_join()

	erl_drv_thread_self()

	erl_drv_equal_tids()

	erl_drv_mutex_create()

	erl_drv_mutex_destroy()

	erl_drv_mutex_lock()

	erl_drv_mutex_trylock()

	erl_drv_mutex_unlock()

	erl_drv_cond_create()

	erl_drv_cond_destroy()

	erl_drv_cond_signal()

	erl_drv_cond_broadcast()

	erl_drv_cond_wait()

	erl_drv_rwlock_create()

	erl_drv_rwlock_destroy()

	erl_drv_rwlock_rlock()

	erl_drv_rwlock_tryrlock()

	erl_drv_rwlock_runlock()

	erl_drv_rwlock_rwlock()

	erl_drv_rwlock_tryrwlock()

	erl_drv_rwlock_rwunlock()

	erl_drv_tsd_key_create()

	erl_drv_tsd_key_destroy()

	erl_drv_tsd_set()

	erl_drv_tsd_get()

	erl_drv_putenv()

	erl_drv_getenv()

	driver_entry
	erts_alloc
	erl_nif
	enif_alloc()

	enif_alloc_binary()

	enif_alloc_env()

	enif_alloc_resource()

	enif_clear_env()

	enif_compare()

	enif_cond_broadcast()

	enif_cond_create()

	enif_cond_destroy()

	enif_cond_signal()

	enif_cond_wait()

	enif_equal_tids()

	enif_free()

	enif_free_env()

	enif_get_atom()

	enif_get_atom_length()

	enif_get_double()

	enif_get_int()

	enif_get_int64()

	enif_get_local_pid()

	enif_get_list_cell()

	enif_get_list_length()

	enif_get_long()

	enif_get_resource()

	enif_get_string()

	enif_get_tuple()

	enif_get_uint()

	enif_get_uint64()

	enif_get_ulong()

	enif_inspect_binary()

	enif_inspect_iolist_as_binary()

	enif_is_atom()

	enif_is_binary()

	enif_is_empty_list()

	enif_is_fun()

	enif_is_identical()

	enif_is_pid()

	enif_is_port()

	enif_is_ref()

	enif_is_tuple()

	enif_is_list()

	enif_keep_resource()

	enif_make_atom()

	enif_make_atom_len()

	enif_make_badarg()

	enif_make_binary()

	enif_make_copy()

	enif_make_double()

	enif_make_existing_atom()

	enif_make_existing_atom_len()

	enif_make_int()

	enif_make_int64()

	enif_make_list()

	enif_make_list1()

	enif_make_list2()

	enif_make_list3()

	enif_make_list4()

	enif_make_list5()

	enif_make_list6()

	enif_make_list7()

	enif_make_list8()

	enif_make_list9()

	enif_make_list_cell()

	enif_make_list_from_array()

	enif_make_long()

	enif_make_new_binary()

	enif_make_pid()

	enif_make_ref()

	enif_make_resource()

	enif_make_resource_binary()

	enif_make_string()

	enif_make_string_len()

	enif_make_sub_binary()

	enif_make_tuple()

	enif_make_tuple1()

	enif_make_tuple2()

	enif_make_tuple3()

	enif_make_tuple4()

	enif_make_tuple5()

	enif_make_tuple6()

	enif_make_tuple7()

	enif_make_tuple8()

	enif_make_tuple9()

	enif_make_tuple_from_array()

	enif_make_uint()

	enif_make_uint64()

	enif_make_ulong()

	enif_mutex_create()

	enif_mutex_destroy()

	enif_mutex_lock()

	enif_mutex_trylock()

	enif_mutex_unlock()

	enif_open_resource_type()

	enif_priv_data()

	enif_realloc_binary()

	enif_release_binary()

	enif_release_resource()

	enif_rwlock_create()

	enif_rwlock_destroy()

	enif_rwlock_rlock()

	enif_rwlock_runlock()

	enif_rwlock_rwlock()

	enif_rwlock_rwunlock()

	enif_rwlock_tryrlock()

	enif_rwlock_tryrwlock()

	enif_self()

	enif_send()

	enif_sizeof_resource()

	enif_system_info()

	enif_thread_create()

	enif_thread_exit()

	enif_thread_join()

	enif_thread_opts_create()

	enif_thread_opts_destroy()

	enif_thread_self()

	enif_tsd_key_create()

	enif_tsd_key_destroy()

	enif_tsd_get()

	enif_tsd_set()

