JThread manual (v1.2.1)

Jori Liesenborgs
jori.liesenborgs@gmail.com

June 20, 2006

1 Introduction

A lot of projects on which I'm working use threads. To be able to use the
same code on both unix and MS-Windows platforms, I decided to write some
simple wrapper classes for the existing thread functions on those platforms.

The JThread package is very simple: currently, it only contains three
classes, namely JThread, JMutex and JMutexAutoLock. As their names
might suggest, JThread represents a thread and JMutex a mutex. The thread
class only contains very basic functions, for example to start or kill a thread.

2 Copyright & disclaimer

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the ”Software”), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,



OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

3 Usage

Here follows a description of the JThread, JMutex and JMutexAutoLock
classes. Note that functions with return type int always return a value of
zero or more on success and a negative value in case something went wrong.

3.1 JMutex

The class definition of JMutex is shown below. Before you can use an instance
of this type, you must first call the Init function. You can check if the
mutex was already initialized by checking the return value of IsInitialized.
After the initialization, the mutex can be locked and unlocked by calling the
functions Lock and Unlock respectively.

class JMutex
{
public:
JMutex () ;
“JMutex () ;
int Init ();
int Lock();
int Unlock ();
bool IsInitialized ();

b

3.2 JMutexAutoLock

The class definition of JMutexAutoLock is shown below. It is meant to make
it easier to implement thread-safe functions, without having to worry about
when to unlock a mutex.

class JMutexAutoLock

{

public:
JMutexAutoLock (JMutex &m);
“JMutexAutoLock () ;

}s




The code below illustrates the way this class can be used:

void MyClass:: MyFunction ()
{

JMutexAutoLock autoLock (m_myMutex );

)

// Do operations protected by mutex 'm_myMutex’ here

When the autoLock variable is created, it automatically locks the mutex
m_myMutex specified in the constructor. The destructor of the autoLock
variable makes sure the lock is released again.

3.3 JThread

To create your own thread, you have to derive a class from JThread, which
is depicted below. In your derived class, you have to implement a member
function Thread, which will be executed in the new thread. Your own Thread
implementation should call ThreadStarted immediately.

To start your thread, you simply have to call the Start function. This
function finishes when your own Thread function has called ThreadStarted.
This way, when the Start function finishes, you can be really sure that your
own Thread implementation is really running.

You can check if the thread is still running by calling IsRunning. If the
thread has finished, you can check its return value by calling GetReturnValue.
Finally, in case your thread gets stuck, you can end it by using the Kill func-
tion.

You should be careful with this Kill function: if you call it when the
thread is working with a mutex (for example an internal mutex), this mutex
can be left in a locked state, which in turn can cause another thread to block.
You should only use the Kill function when you’re absolutely sure that the
thread is stuck in some loop and cannot be ended otherwise.

class JThread
{
public:
JThread ();
virtual “JThread ();
int Start ();
int Kill ();
virtual void *Thread() = 0;
bool IsRunning();




void *GetReturnValue ();
protected:

void ThreadStarted ();
}s




